JPS6048488A - Purifier for exhaust gas from high-temperature heating furnace - Google Patents

Purifier for exhaust gas from high-temperature heating furnace

Info

Publication number
JPS6048488A
JPS6048488A JP58156591A JP15659183A JPS6048488A JP S6048488 A JPS6048488 A JP S6048488A JP 58156591 A JP58156591 A JP 58156591A JP 15659183 A JP15659183 A JP 15659183A JP S6048488 A JPS6048488 A JP S6048488A
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature heating
heating furnace
ammonia
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58156591A
Other languages
Japanese (ja)
Other versions
JPH0474636B2 (en
Inventor
大久保 敏雄
石原 公司
洲崎 秀矩
哲郎 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58156591A priority Critical patent/JPS6048488A/en
Publication of JPS6048488A publication Critical patent/JPS6048488A/en
Publication of JPH0474636B2 publication Critical patent/JPH0474636B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Treating Waste Gases (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、特にアルカリ性ガス成分を排出する高温加熱
炉の排ガス浄化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention particularly relates to an exhaust gas purification device for a high temperature heating furnace that discharges alkaline gas components.

従来例の構成とその問題点 加熱炉としては、被加熱体から吸着水分や各種溶剤など
の比較的低沸点の物質を揮発させる乾燥炉、炉内温度が
比較的高い焼結炉や加熱分解炉がある。前者の乾燥炉か
ら排出される有害ガスのほとんどは炭化水素であるから
、これらは酸化触媒で浄化することができる。
Conventional configurations and their problems Heating furnaces include drying furnaces that volatilize substances with relatively low boiling points such as adsorbed moisture and various solvents from heated objects, and sintering furnaces and thermal decomposition furnaces that have relatively high internal temperatures. There is. Since most of the harmful gases discharged from the former drying furnace are hydrocarbons, these can be purified with an oxidation catalyst.

一方、後者の焼結炉や分解炉では、低沸点物質の他に各
種分解ガスが発生する。これらのガス組成は被加熱体に
より異なるが、一般に炭化水素(HG ) 、−酸化炭
素(CO) 、窒素酸化物(NOx)。
On the other hand, in the latter sintering furnace and cracking furnace, various cracked gases are generated in addition to low boiling point substances. The composition of these gases varies depending on the object to be heated, but generally includes hydrocarbons (HG), -carbon oxides (CO), and nitrogen oxides (NOx).

硫黄酸化物(SOx)、アンモニア(NH5)などがあ
り、さらには酸化リン、タンパク質を含む場合もある。
These include sulfur oxides (SOx) and ammonia (NH5), and may also include phosphorus oxide and proteins.

特にアンモニア塩を含む被加熱体の場合、150℃を超
えると急激にアンモニアガスを発生する。これらのガス
のうち、アンモニアガスハ酸化触媒を通ることによりN
Oxになることがある。
In particular, in the case of a heated object containing ammonia salt, ammonia gas is rapidly generated when the temperature exceeds 150°C. Among these gases, ammonia gas is converted to N by passing through an oxidation catalyst.
It may become Ox.

従来、この種の高温加熱炉から発生するアンモニアを浄
化する方法として、水を通してアンモニアを水に吸収す
る方法があるが、再蒸散するので、完全に吸収浄化する
ことはできない。捷だ固体の吸着剤としての活性炭は、
アンモニアをほとんど吸着せず、70〜80℃の高温で
(づ:吸着能力は低く、100℃以上では脱離が始1す
、200℃以上では活性炭が燃焼してし1う。
Conventionally, as a method of purifying ammonia generated from this type of high-temperature heating furnace, there is a method of passing water and absorbing ammonia into water, but since re-transpiration occurs, complete absorption and purification cannot be achieved. Activated carbon as an adsorbent for crushed solids is
It hardly adsorbs ammonia, and its adsorption capacity is low at high temperatures of 70 to 80°C, and desorption begins at temperatures above 100°C, and activated carbon burns at temperatures above 200°C.

発明の目的 本発明は、以上のような不都合を除去し、還元11:ガ
スを酸化浄化するのみでなく、アンモニアなどのアルカ
リ性ガス成分をも効率的に浄化できる装置を提供するこ
とを目的とする。
Purpose of the Invention An object of the present invention is to eliminate the above-mentioned disadvantages and provide an apparatus that not only oxidizes and purifies gas, but also efficiently purifies alkaline gas components such as ammonia. .

発明の構成 本発明の排ガス浄化装置は、高温加熱炉の排ガス経路に
酸化触媒を設けるとともに、酸化触媒のことを特徴とす
る。
Structure of the Invention The exhaust gas purification device of the present invention is characterized in that an oxidation catalyst is provided in the exhaust gas path of the high-temperature heating furnace.

実施例の説明 第1図は排ガス浄化装置を備えた高温加熱炉の構成を示
す。1は断熱材と@属外装により構成した高温加熱炉で
あり、炉内に加熱源と]7てのヒータ2と被加熱物をの
せる棚3が設けである。4は容器5に収容された被加熱
物である。6は炉−に部に開口された排気孔である。
DESCRIPTION OF THE EMBODIMENTS FIG. 1 shows the configuration of a high temperature heating furnace equipped with an exhaust gas purification device. Reference numeral 1 denotes a high-temperature heating furnace constructed of a heat insulating material and a metal exterior, and the furnace is provided with a heating source, a heater 2, and a shelf 3 on which objects to be heated are placed. 4 is a heated object housed in a container 5. Reference numeral 6 denotes an exhaust hole opened in the furnace.

7は固体酸8を収容したアルカリ性成分吸着槽で、炉1
の排気孔6に連結した管9に連結している。10は管に
よって槽7に連結した触媒槽で、酸化触媒11とこの触
媒を加熱するヒータ12を有する。
7 is an alkaline component adsorption tank containing solid acid 8;
It is connected to a pipe 9 connected to an exhaust hole 6 of. A catalyst tank 10 is connected to the tank 7 by a pipe, and has an oxidation catalyst 11 and a heater 12 for heating the catalyst.

次に、この装置の作用を説明する。被加熱物4の加熱に
より発生するガスは、自然対流または強制送風により排
気孔6より管9を通って槽7に導入される。ここでガス
中のNH5などのアルカリ性成分は固体酸8に吸着され
る。なお、固体酸としに示す。
Next, the operation of this device will be explained. Gas generated by heating the object to be heated 4 is introduced into the tank 7 from the exhaust hole 6 through the pipe 9 by natural convection or forced air flow. Here, alkaline components such as NH5 in the gas are adsorbed by the solid acid 8. In addition, the solid acid is shown below.

AIH2P、0.0 + 2NJ −) Al(NH5
)2PyO,Qなお、トリポリリン酸二水素アルミニウ
ムを加熱すると、次式のように変化する。
AIH2P, 0.0 + 2NJ −) Al(NH5
)2PyO,Q When aluminum dihydrogen tripolyphosphate is heated, it changes as shown in the following formula.

AIH2P50jQ ・2H20 100〜150℃ 一一−−−−−−→A12 H2P 30.0500〜
550℃ 一一一一−−−→Al(PO3)i トリポリリン酸アルミニウムは、上記から明らかなよう
に、500℃以下では安定であり、活性炭や水と異なり
、高温(500℃)丑で使用可能な特徴を有する。
AIH2P50jQ ・2H20 100~150℃ 11------→A12 H2P 30.0500~
550℃ 1111---→Al(PO3)i As is clear from the above, aluminum tripolyphosphate is stable at temperatures below 500℃, and unlike activated carbon and water, it can be used at high temperatures (500℃). It has the following characteristics.

上記のようにして槽7を通過したガスは、NH。The gas that has passed through the tank 7 as described above is NH.

などのアルカリ性の有害ガスは吸着化学反応で浄化され
、Hc、coなどのガスのみが残っている。
Alkaline harmful gases such as gases are purified by adsorption chemical reactions, leaving only gases such as Hc and co.

これらのガスは酸化触媒11により酸化浄化される。こ
うして浄化されたガスは外部へ排出されろ。
These gases are oxidized and purified by the oxidation catalyst 11. The gas purified in this way is discharged to the outside.

高温加熱炉を、例えば歯科用型取り剤の焼結に用いると
、型取り剤のバインダーにはリン酸アンモニウム塩が用
いられているので、型取りのパラフィンとともに分解さ
れ、 HC,Goの他に多量のアンモニアガスを発生す
る。
When a high-temperature heating furnace is used, for example, to sinter a dental molding agent, ammonium phosphate salt is used as a binder in the molding agent, so it is decomposed together with the paraffin in the molding, and in addition to HC and Go, it is decomposed. Generates large amounts of ammonia gas.

2NH4MgP04・6H20→Mg2P2O7+13
H20→−2NH32NH4H2PO4→P2O5−1
−3H20+ 2NH5このように型取り剤は多量のア
ンモニアガスを発生し、室内外はアンモニアガスの悪臭
に満ちる。
2NH4MgP04・6H20→Mg2P2O7+13
H20→-2NH32NH4H2PO4→P2O5-1
-3H20+ 2NH5 In this way, the molding agent generates a large amount of ammonia gas, and the interior and exterior of the room are filled with the foul odor of ammonia gas.

このようなJJI熱炉の排気ガス浄化のために、排ガス
を水中へ導入してアンモニアを水に吸着させると、水に
一度溶けたアンモニアが再蒸発する。捷た。水に通すこ
とによりガス温度が水温まで下がり、酸化触媒に至る前
にヒータで加熱しなければならない。通常、酸化触媒は
200℃以上に加熱しないと効果を発揮しないからであ
る。一方、本発明では固体酸を用いており、水と異なり
、交換が非常に容易であ!ll1%甘た吸着によりアン
モニアを固定するので再蒸発しない。さらに、この固体
酸は500℃の温度貰で使用できるので、水を使った場
合に較らべ排気ガス温度が下がらないので。
In order to purify the exhaust gas of such a JJI thermal furnace, when the exhaust gas is introduced into water and ammonia is adsorbed to the water, the ammonia once dissolved in the water is re-evaporated. I cut it. By passing it through water, the gas temperature drops to water temperature, and must be heated with a heater before reaching the oxidation catalyst. This is because oxidation catalysts usually do not exhibit their effects unless heated to 200° C. or higher. On the other hand, the present invention uses a solid acid, which, unlike water, can be exchanged very easily! Ammonia is fixed by 1% sweet adsorption, so it does not evaporate again. Furthermore, since this solid acid can be used at a temperature of 500°C, the exhaust gas temperature does not drop as much as when water is used.

触媒加熱用補助ヒータを用いる必要がないか、またはそ
の電気容量を小さくできる効果がある。
There is an effect that there is no need to use an auxiliary heater for heating the catalyst, or that the electric capacity thereof can be reduced.

実施例1 トリポリリン酸二水素アルミニウムを径1〜2mm に
造粒したもの0.5 f/とともに容積64の密閉袋に
100Q pHmのアンモニアガスを封入し、袋中のア
ンモニアガスの製置変化を調べた結果を第2図aに示す
。一方、比較例として、市販活性炭を径2〜3mmに造
粒したものQ・6g用いて同様のテストをした結果を第
2図すに示す。
Example 1 Ammonia gas of 100Q pHm was sealed in a sealed bag with a volume of 64 with 0.5 f/ aluminum dihydrogen tripolyphosphate granulated to a diameter of 1 to 2 mm, and changes in the ammonia gas in the bag during manufacturing were investigated. The results are shown in Figure 2a. On the other hand, as a comparative example, a similar test was conducted using Q.6 g of commercially available activated carbon granulated to a diameter of 2 to 3 mm, and the results are shown in Figure 2.

市販活性炭では、初期濃度11000PPのものが60
分で約800 Pl’m、80分で700 PIIIN
になったにすぎないが、トリポリリン酸二水素アルミニ
ウムでは60分で約3oけm、 60分でほぼ0となっ
たO このように、トリポリリン酸二水素アルミニウノ、は市
販活性炭に較らべてすぐれた結果を示す。
Commercially available activated carbon has an initial concentration of 11,000 PP.
Approximately 800 Pl'm per minute, 700 Pl'm per 80 minutes
However, with aluminum dihydrogen tripolyphosphate, it became approximately 3 o m in 60 minutes, and it became almost 0 in 60 minutes. Thus, aluminum dihydrogen tripolyphosphate is superior to commercially available activated carbon. The results are shown below.

実施例2 トリポリリン酸二水素アルミニウムを径1〜2朋に造粒
したもの100gを第1図に示す装置の吸着剤槽7に充
填し、実験をおこなった。炉1からの発生アンモニアガ
スは、第3図人のように最大10,0OOI?mに達し
たが、トリポIJ IJン酸二水素アルミニウムを通す
ことにより、第3図Bのようにアンモニアはほぼ完全に
浄化され、3〜5 Pl’mのアンモニアガスが一時的
に流れたにすぎなかった。
Example 2 An experiment was conducted by filling the adsorbent tank 7 of the apparatus shown in FIG. 1 with 100 g of granulated aluminum dihydrogen tripolyphosphate having a diameter of 1 to 2 mm. The ammonia gas generated from furnace 1 is up to 10,0 OOI as shown in Figure 3? However, as shown in Figure 3B, the ammonia was almost completely purified by passing aluminum dihydrogen oxide, and 3 to 5 Pl'm of ammonia gas temporarily flowed. It wasn't too much.

このときI・リポリリン酸二水素アルミニウムの温度は
350℃に達した。
At this time, the temperature of I.aluminum dihydrogen lipolyphosphate reached 350°C.

発明の効果 以上のように、本発明によれば、高温加熱炉から発生す
る高温の有害ガスを酸化浄化するのみでなく、アンモニ
アのようなアルカリ性成分をも効率よく吸着浄化するこ
とができろ。
Effects of the Invention As described above, according to the present invention, it is possible not only to oxidize and purify high-temperature harmful gases generated from a high-temperature heating furnace, but also to efficiently adsorb and purify alkaline components such as ammonia.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の排ガス浄化装置を備えた高温
加熱炉の縦断面略図、第2図は各種吸着剤共存下でのア
ンモニアガスの経時変化を示す図、第3図は高温加熱炉
の排ガス中のアンモニア濃度の経時変化を示す図である
。 1・・・高温加熱炉、6・ ・・排気孔、7・・・・ア
ルカリ作成分吸着槽、1o・・・・・触媒槽。
Figure 1 is a schematic vertical cross-sectional view of a high-temperature heating furnace equipped with an exhaust gas purification device according to an embodiment of the present invention, Figure 2 is a diagram showing changes over time in ammonia gas in the coexistence of various adsorbents, and Figure 3 is a diagram showing high-temperature heating. FIG. 3 is a diagram showing changes over time in the ammonia concentration in the exhaust gas of the furnace. 1... High temperature heating furnace, 6... Exhaust hole, 7... Alkali production adsorption tank, 1o... Catalyst tank.

Claims (1)

【特許請求の範囲】[Claims] 高温加熱炉の排気ガス経路に酸化触媒を設け、この酸化
触媒の上流側ニ、トリポリリン酸二水素アルミニウムを
主成分とする固体酸によるアルカ1JffEガス成分吸
収部を設けたことを特徴とする高温加熱炉の排ガス浄化
装置。
High-temperature heating characterized in that an oxidation catalyst is provided in the exhaust gas path of the high-temperature heating furnace, and on the upstream side of the oxidation catalyst, an alkali gas component absorption section using a solid acid mainly composed of aluminum dihydrogen tripolyphosphate is provided. Furnace exhaust gas purification device.
JP58156591A 1983-08-26 1983-08-26 Purifier for exhaust gas from high-temperature heating furnace Granted JPS6048488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58156591A JPS6048488A (en) 1983-08-26 1983-08-26 Purifier for exhaust gas from high-temperature heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58156591A JPS6048488A (en) 1983-08-26 1983-08-26 Purifier for exhaust gas from high-temperature heating furnace

Publications (2)

Publication Number Publication Date
JPS6048488A true JPS6048488A (en) 1985-03-16
JPH0474636B2 JPH0474636B2 (en) 1992-11-26

Family

ID=15631104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58156591A Granted JPS6048488A (en) 1983-08-26 1983-08-26 Purifier for exhaust gas from high-temperature heating furnace

Country Status (1)

Country Link
JP (1) JPS6048488A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4658820B2 (en) * 2006-01-27 2011-03-23 ニチアス株式会社 Inorganic fiber molded body and method for producing the same

Also Published As

Publication number Publication date
JPH0474636B2 (en) 1992-11-26

Similar Documents

Publication Publication Date Title
CA2336855C (en) Process and catalyst/sorber for treating sulfur compound containing effluent
JPS5876127A (en) Removal of nitrogen oxide and sulfur oxide from waste gas
JP2008240568A (en) Exhaust emission control device
JPS62502954A (en) Use of activated coke to remove nitrogen oxides from flue gas
US4031185A (en) Process for making nitrogen oxides contained in flue gas harmless
US4325926A (en) Process for removing sulfur dioxide from a gas
US4151124A (en) Sorbent composition and process for preparing it
JPS6048488A (en) Purifier for exhaust gas from high-temperature heating furnace
JPS6322184B2 (en)
JP3843520B2 (en) Low temperature denitration catalyst, production method thereof, and low temperature denitration method
JPS5511020A (en) Denitration method of combustion exhaust gas
JPH0647282A (en) Catalyst for low temperature denitrification of flue gas, its production and method for low temperature denitrification of flue gas
JPS5926337B2 (en) carbon monoxide remover
JPS58133820A (en) Treatment of waste gas
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
KR102434658B1 (en) Adsorbents for removing nitrogen oxides and method of treating nitrogen oxides using the same
JPS63294943A (en) Dry desulfurizing adsorbent
JP3576189B2 (en) Odor removal method and odor component adsorbent
JPH07328448A (en) Exhaust gas purification catalyst and device for purifying exhaust gas
JPH084741B2 (en) Gas adsorption decomposition agent
JPH11309371A (en) Sulfur compound adsorber and removal of sulfur compound
JPH0685872B2 (en) Desulfurization agent
JP2631067B2 (en) How to remove trace acetaldehyde from air
JP2006026590A (en) Method for removing nitrogen dioxide and adsorbent for nitrogen dioxide
JP2563862B2 (en) Adsorption remover for low concentration nitrogen oxides