JPS58133820A - Treatment of waste gas - Google Patents

Treatment of waste gas

Info

Publication number
JPS58133820A
JPS58133820A JP57015423A JP1542382A JPS58133820A JP S58133820 A JPS58133820 A JP S58133820A JP 57015423 A JP57015423 A JP 57015423A JP 1542382 A JP1542382 A JP 1542382A JP S58133820 A JPS58133820 A JP S58133820A
Authority
JP
Japan
Prior art keywords
activated carbon
active carbon
raw material
waste gas
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57015423A
Other languages
Japanese (ja)
Other versions
JPH0153087B2 (en
Inventor
Norio Aibe
紀夫 相部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP57015423A priority Critical patent/JPS58133820A/en
Publication of JPS58133820A publication Critical patent/JPS58133820A/en
Publication of JPH0153087B2 publication Critical patent/JPH0153087B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To remove SOx and NOx in waste gas efficiently by incorporating ammonium salts in a raw material for active carbon, carbonizing and activating the same and bringing the active carbon into contact with the waste gas. CONSTITUTION:First, ammonium salt is incorporated in the raw material for active carbon. Ordinary raw material for the active carbon such as charcoal is used, and ammonium sulfate or the like is used for the ammonium salt. The amt. of ammonium salt to be contained to the raw material for the active carbon is about 0.1-50wt% based on the weight of the active carbon. After the mixture is kneaded, the mixture is molded under pressure. The molding is carbonized at about 400-800 deg.C and then activated with steam, carbon dioxide or the like at about 800-1,000 deg.C. Such active carbon is brought into contact with waste gas to remove SOx and/or NOx in the gas. The contact temp. is regulated to about <=150 deg.C, the gaseous pressure to about 30kg/cm<2>, and the contact time to about 0.1-30sec.

Description

【発明の詳細な説明】 本発明は、硫黄酸化物、窒素酸化物含有排ガスの処理方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating exhaust gas containing sulfur oxides and nitrogen oxides.

近年、火力発奮所、化学工場、壺属精錬工場あるいは金
属洗浄工場などからの排ガスには、硫黄酸化物、窒素酸
化物などが含有され、これらが大気を汚染し、大きな社
命問題となっている。このため、排ガス中の硫黄酸化物
、窒素酸化物を除去するプロセスが種々検討きれ、実用
化研究か進められている。
In recent years, exhaust gas from thermal power plants, chemical plants, pot smelting plants, metal cleaning plants, etc. contains sulfur oxides, nitrogen oxides, etc., which pollute the atmosphere and pose a major problem for companies. There is. For this reason, various processes for removing sulfur oxides and nitrogen oxides from exhaust gas have been studied, and research into practical application is underway.

最近、燃料事情の急変に伴なって再び活性炭を用いて排
ガス中の硫黄酸化物持K 802を除去するプリセス−
いわゆる活性炭法排煙脱硫−が注目され、実用化研究が
盛んに行なわれている。活性炭法脱硫には、大別して湿
式脱硫、水洗脱離方式脱硫および加熱脱離方式脱硫など
かあ夛、いずれの方法にもそれぞれ特徴があるが、いず
れも排ガス中のSO2をF[2804に変換する際に、
活性炭の触媒活性が高いことが要求される。従来の活性
炭では、この触媒活性が充分でなく、また長期間使用す
ることによって、活性炭の触媒活性は著しく低下する。
Recently, due to sudden changes in the fuel situation, activated carbon has been used again in a process to remove K802 sulfur oxides from exhaust gas.
The so-called activated carbon method flue gas desulfurization is attracting attention, and research into its practical application is being actively conducted. Activated carbon desulfurization can be roughly divided into wet desulfurization, water washing desulfurization, and thermal desulfurization. Each method has its own characteristics, but all of them convert SO2 in exhaust gas into F[2804]. When converting,
Activated carbon is required to have high catalytic activity. Conventional activated carbon does not have sufficient catalytic activity, and when used for a long period of time, the catalytic activity of activated carbon decreases significantly.

このため脱硫装置が大型となり、一定期間確動後、活性
炭の入替が必要でありしたがって脱硫コストが高くなる
欠点があった。活性炭の脱硫性能例えば触媒活性訃よび
触媒寿命などを陶土させる方法の一つとして、活性炭に
金属を添着する方法があるが、活性炭の着火点が低下し
えり、また湿式脱硫および水洗脱離方式脱硫においては
、金属が溶出するなどの欠点があつ九。
For this reason, the desulfurization equipment becomes large, and the activated carbon must be replaced after a certain period of continuous operation, which has the disadvantage of increasing the desulfurization cost. One method to improve the desulfurization performance of activated carbon, such as catalyst activity and catalyst life, is to impregnate activated carbon with a metal, but this lowers the ignition point of activated carbon, and wet desulfurization and water washing desulfurization methods However, there are drawbacks such as leaching of metals.

本発明者は、以上のような問題点を解決すべく種々検討
した結果、活性炭原料にアンモニウム堆を混入し、これ
を膨化、賦活して得られる活性家は硫黄酸化物、窒素酸
化物の酸化に対する触媒活性を有することを見いだした
As a result of various studies to solve the above-mentioned problems, the inventor of the present invention mixed ammonium sediment into the activated carbon raw material, expanded it, and activated it. was found to have catalytic activity against.

すなわち本発明は、排ガス中の硫黄酸化物および/fた
は窒素酸化物を除去するに際し、該排ガスを、活性炭原
料にアンモニウム塩を混入し炭化、賦活して得られた活
性炭と接触させることを特徴とする排ガスの処理方法で
ある。
That is, the present invention, when removing sulfur oxides and /f or nitrogen oxides in exhaust gas, brings the exhaust gas into contact with activated carbon obtained by mixing ammonium salt into activated carbon raw material, carbonizing and activating the mixture. This is a distinctive feature of the exhaust gas treatment method.

上記硫黄酸化物は、俗にSOxと呼ばれるもので、主[
902であり、窒素酸化物は俗にNOxと呼ばれ、主と
してN0 とNo2との混合物である。
The above sulfur oxides are commonly called SOx, and are mainly [
902, and nitrogen oxides are commonly called NOx and are mainly a mixture of N0 and No2.

本発明において用いられる活性炭はつぎのようにして製
造することができる。
The activated carbon used in the present invention can be produced as follows.

まず活性炭原料にアンモニウム塩を混入する。First, ammonium salt is mixed into the activated carbon raw material.

活性炭原料は通常O活性炭の製造に用いられるものであ
ればいかなるもので木よく、九とえはヤシ殻、木酸1召
炭などがあげられる。前記アンモニウム塩としては九と
えば硫酸アンモニウム、硝酸アンモニウム、ハロゲン化
アンモニウム(N、塩化アンモニウム、臭化アンモニウ
ム、ミラ化アンモニウムなど)の無機酸のアンモニウム
塩、たとえば酢酸アンモニウム、修酸アンモニウムなど
の有機酸のアンモニラふ堆があげられる。アンモニウム
塩O活性炭原料への混入量は活性炭原料に対して0.1
ないし50重量%、好ましくは1.0ないし30重量%
である。
The raw material for activated carbon can be any material that is normally used in the production of activated carbon, such as wood, coconut shell, wood acid charcoal, etc. Examples of the ammonium salts include ammonium salts of inorganic acids such as ammonium sulfate, ammonium nitrate, ammonium halides (N, ammonium chloride, ammonium bromide, ammonium miride, etc.), and ammonium salts of organic acids such as ammonium acetate and ammonium oxalate. A litter box is provided. The amount of ammonium salt O mixed into the activated carbon raw material is 0.1 per activated carbon raw material.
from 1.0 to 50% by weight, preferably from 1.0 to 30% by weight
It is.

アンモニウム塩を活性炭原料に混入した後、練合し、通
常は常法によって加圧成型する9ついで炭化、賦活する
ことにより目的とする活性炭を得ることができる。炭化
、賦活工捏は自体会知の活性炭の製法に従って行なえば
よく、たとえば約400〜800℃の1度で炭化した後
、800−1000℃の温度で水蒸気、炭酸ガスなどに
より賦活すればよい。
The desired activated carbon can be obtained by mixing the ammonium salt into the activated carbon raw material, kneading it, press-molding it by a conventional method, and then carbonizing and activating it. Carbonization and activation may be carried out according to the well-known activated carbon manufacturing method, for example, after carbonization at a temperature of about 400 to 800°C, activation may be performed at a temperature of 800 to 1000°C with steam, carbon dioxide gas, etc.

本発明はこのようにして得られる活性炭と排ガスを接触
させることによって行なわれゐ。接触方法としてはたと
えば固定層、移動層、流a層などを用いて行なわれ、接
触温度は150℃以下、好ましくは0〜120℃、ガス
圧力は通常30kg/C112以下、好ましくはO,1
〜20kg/rv2、接触時間は061〜30秒、好ま
しくは0.2〜15秒である。
The present invention is carried out by bringing the thus obtained activated carbon into contact with exhaust gas. The contact method is carried out using, for example, a fixed bed, a moving bed, a flowing a bed, etc., the contact temperature is 150°C or less, preferably 0 to 120°C, and the gas pressure is usually 30kg/C112 or less, preferably O,1
~20 kg/rv2, contact time is 0.61 to 30 seconds, preferably 0.2 to 15 seconds.

本発明によれば排ガス中の硫黄酸化物、窒素酸化物を効
率よく除去することができ、また用いられる活性炭の触
媒寿命が長い。
According to the present invention, sulfur oxides and nitrogen oxides in exhaust gas can be efficiently removed, and the activated carbon used has a long catalyst life.

以下に実施例を記載して本発明をより具体的に説明する
EXAMPLES The present invention will be described in more detail with reference to Examples below.

実施例/ 微粉砕した50ないし200メツシユの石炭IQkgK
粘結剤としてピッチを2kg、若干の水、さらに次表に
記載のアンモニウム塩を各500gを加え屯しくけ加え
ないで混合練合後、加圧成型した。成型物を600℃に
おいて炭化し、さらに850℃で水蒸気の存在下にて賦
活して、’BE丁表面積がほぼ同じの各種活性炭を得た
Example/ Finely ground coal IQ kgK of 50 to 200 mesh
2 kg of pitch as a binder, some water, and 500 g of each of the ammonium salts listed in the following table were added, mixed and kneaded without further addition, and then pressure molded. The molded products were carbonized at 600°C and further activated at 850°C in the presence of water vapor to obtain various activated carbons having approximately the same surface area.

それぞれの触媒を2gずつ、直径11のカフムに充1J
CL、5o2−o、 1vO1g 、 o、−s、 5
vO15% 、l’!20−10.0”15%、 N2
−83.4”1Xノfi舎カスtts流連30 cva
 / 81!IOで通じ、130℃で8時間、SO2の
吸着を行なつ九。吸着後、活性炭を70℃で2時間20
0ccの水中で抽出することによって再生し、再生後、
再び上記の吸着操作をおこなった。
Fill a cuff with a diameter of 11 with 2 g of each catalyst for 1 J.
CL, 5o2-o, 1vO1g, o, -s, 5
vO15%, l'! 20-10.0”15%, N2
-83.4” 1X Nofi Sha Cast TTS Flow Ren 30 CVA
/ 81! 9. Adsorb SO2 at 130°C for 8 hours with IO. After adsorption, the activated carbon was heated at 70°C for 2 hours.
Regenerated by extraction in 0cc of water, after regeneration,
The above adsorption operation was performed again.

活性炭の802吸着量は、抽出液中のH2SO4をOI
NのNaOHで中和し、sop換算して算出した。
The 802 adsorption amount of activated carbon is the OI of H2SO4 in the extract.
It was calculated by neutralizing with N NaOH and converting it into sop.

吸着・再生操作を繰返すことにより、各活性炭について
、サイクル数と各サイクルにおけるSO2吸着量との関
係は以下のように要約される。
By repeating the adsorption/regeneration operation, the relationship between the number of cycles and the amount of SO2 adsorbed in each cycle for each activated carbon can be summarized as follows.

実施例λ 実施例/で得られた活性炭A、BおよびFについて、実
施例Xと同様なS02吸着を行なう。802吸着後、活
性炭を線流速Q、3cs/seaのN2気流中で、30
0℃、1時間加熱することにより再生し、この際脱離す
るS02を3%のH2O2水溶液で捕集し、0 、 I
 N(DlfaOHf中和し、S02量を算出し、これ
を802吸着量とした。再生した活性炭に再び802吸
着を行なった。
Example λ The same S02 adsorption as in Example X is carried out on the activated carbons A, B and F obtained in Example/. After adsorption of 802, the activated carbon was heated for 30
It is regenerated by heating at 0°C for 1 hour, and the S02 desorbed at this time is collected with a 3% H2O2 aqueous solution.
N (DlfaOHf) was neutralized, the S02 amount was calculated, and this was taken as the 802 adsorption amount. 802 adsorption was performed again on the regenerated activated carbon.

このような吸着・再生操作を繰返し九場合、各活性炭に
ついて、サイクル数と各サイクルにおけるS02吸着量
との関係は下記の通)である。
When such adsorption/regeneration operations are repeated nine times, the relationship between the number of cycles and the amount of S02 adsorbed in each cycle for each activated carbon is as follows.

実施例3 実施fl!/で得られた活性炭ム、Bおよびrt−直径
5C@のカラムに層高15cmになるように充填した。
Example 3 Implementation fl! The activated carbon obtained in B and rt- was packed in a column with a diameter of 5C@ to a bed height of 15 cm.

このカフ五を60℃で一定になるように温度コン10−
ルし、60℃の温水で活性炭を充分湿潤させ九後、60
℃の温水をカラム上部より、1、Qg/winの流速で
注下しながら、カラム上部よC1802−0,1vO1
%’、 02−6.5vO15%、 H2O−10、6
vo1g、 ’N2−83.4vOIX ノ120℃o
s合ゲスを線流速10cm/seeで流通し九。各活性
炭とも2時間以後、脱硫率および流出FI2SO4の1
11度は、はぼ−宇となり、以下の通りの結果を得た。
Adjust the temperature of this cuff to a constant temperature of 60°C.
After 90 minutes, thoroughly moisten the activated carbon with warm water at 60℃.
C1802-0,1vO1 from the top of the column while pouring warm water at ℃ from the top of the column at a flow rate of 1,Qg/win.
%', 02-6.5vO15%, H2O-10, 6
vo1g, 'N2-83.4vOIX ノ120℃o
The gas was distributed at a linear flow rate of 10 cm/see. After 2 hours for each activated carbon, the desulfurization rate and the effluent FI2SO4 were
At 11 degrees, it turned out to be a bummer, and we got the following results.

実施例久 実施例/で得られた活性pA、BおよびFの各2・ 2
gを直径1cmのカフ五に充填し、N0x(No−50
%、 No2−50量%)−0,06v01X、 H2
O−3,0”1X IAir−96,94v0’X (
D 50 T:(Da合xxtts流s10cs/se
aで流通し、5時間、 Nox〕吸jltf?なった。
Example 2 Each of active pA, B and F obtained in Example 2 and 2
Fill a cuff 5 with a diameter of 1 cm with N0x (No-50
%, No2-50 amount%)-0,06v01X, H2
O-3,0"1X IAir-96,94v0'X (
D 50 T: (Da combination xxtts flow s10cs/se
Distributed in a, 5 hours, Nox] inhalation jltf? became.

吸着後、活性炭に50℃の温水を200CC/hraの
速度で4時間注下し、活性炭を再生する。
After adsorption, hot water at 50° C. is poured onto the activated carbon at a rate of 200 CC/hr for 4 hours to regenerate the activated carbon.

NO2吸着竜は、水洗液中(DI’[NO3を0.lN
−0NaOF!で中和し、NO2!!!!算して算出し
た。
The NO2 adsorption dragon is
-0NaOF! Neutralize it, NO2! ! ! ! Calculated by calculating.

このような吸着・再生操作を繰返した場合、各活性炭に
ついて、サイクル数と各サイクルにおけるNO2吸着量
との関係は、下記の通りである。
When such adsorption/regeneration operations are repeated, the relationship between the number of cycles and the amount of NO2 adsorbed in each cycle for each activated carbon is as follows.

実施例! 実施例/で得られ九活性炭ム、BおよびFについて、実
施例グと同様にNoXの吸着を行なっ九。
Example! NoX was adsorbed on the activated carbons B and F obtained in Example 9 in the same manner as in Example 9.

NoX0吸着IIO活性度を線流速0 、3 cL/B
@c)N2気流中で、150℃、1時間加熱することに
よ)再生し、この際No脱離量を定量し、No2換算し
、これを11量2吸着量とした。再生後、再びNOx吸
着を行なった。
NoX0 adsorption IIO activity linear flow rate 0, 3 cL/B
@c) Regeneration by heating at 150° C. for 1 hour in a N2 stream) At this time, the amount of No desorbed was determined and converted into No2, and this was defined as 11 amount 2 adsorption amount. After regeneration, NOx adsorption was performed again.

このような吸着・再生を繰返し九場合、各活性1’につ
いて、サイクル数と各サイクルにおける102吸着量と
の関係を、下記に示した。
When such adsorption/regeneration was repeated nine times, the relationship between the number of cycles and the amount of 102 adsorbed in each cycle is shown below for each activity 1'.

Claims (1)

【特許請求の範囲】[Claims] 排ガス中の硫黄酸化物および/を九Fi窒素酸化物を除
去するに際し、該排ガスを、活性炭原料にアンモニウム
塩を混入し決化、賦活して得られ九活性炭と接触させる
ことを特徴とする排ガスの処理方法。
When removing sulfur oxides and/or nitrogen oxides from exhaust gas, the exhaust gas is brought into contact with activated carbon obtained by mixing an ammonium salt into an activated carbon raw material, solidifying it, and activating it. processing method.
JP57015423A 1982-02-01 1982-02-01 Treatment of waste gas Granted JPS58133820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57015423A JPS58133820A (en) 1982-02-01 1982-02-01 Treatment of waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57015423A JPS58133820A (en) 1982-02-01 1982-02-01 Treatment of waste gas

Publications (2)

Publication Number Publication Date
JPS58133820A true JPS58133820A (en) 1983-08-09
JPH0153087B2 JPH0153087B2 (en) 1989-11-13

Family

ID=11888352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57015423A Granted JPS58133820A (en) 1982-02-01 1982-02-01 Treatment of waste gas

Country Status (1)

Country Link
JP (1) JPS58133820A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855116A (en) * 1985-04-03 1989-08-08 Bergwerksverband Gmbh Activated coke method of removing nitrogen oxides from exhaust gases
EP1790614A1 (en) * 2005-11-28 2007-05-30 Air Products and Chemicals, Inc. Purification of carbon dioxide
JP2008229545A (en) * 2007-03-22 2008-10-02 Toyota Central R&D Labs Inc Sulfur-based gas removing material and its manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5553966B2 (en) 2008-03-19 2014-07-23 千代田化工建設株式会社 Mercury adsorbent and smoke treatment method using the adsorbent
JP5076471B2 (en) * 2006-12-05 2012-11-21 千代田化工建設株式会社 Method for producing carbon-based catalyst for flue gas desulfurization

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855116A (en) * 1985-04-03 1989-08-08 Bergwerksverband Gmbh Activated coke method of removing nitrogen oxides from exhaust gases
EP1790614A1 (en) * 2005-11-28 2007-05-30 Air Products and Chemicals, Inc. Purification of carbon dioxide
US7416716B2 (en) 2005-11-28 2008-08-26 Air Products And Chemicals, Inc. Purification of carbon dioxide
US8580206B2 (en) 2005-11-28 2013-11-12 Air Products And Chemicals, Inc. Purification of carbon dioxide
JP2008229545A (en) * 2007-03-22 2008-10-02 Toyota Central R&D Labs Inc Sulfur-based gas removing material and its manufacturing method

Also Published As

Publication number Publication date
JPH0153087B2 (en) 1989-11-13

Similar Documents

Publication Publication Date Title
CN105233806B (en) It is a kind of at the same purify hydrogen sulfide, hydrogen phosphide, arsenic hydride adsorbent preparation method
US2083894A (en) Process for the treatment of sulphur compounds
CN1125157A (en) Composite clay materials for removal of sox from gas streams
CN105921139B (en) A kind of mercury absorbent and its preparation method and application
JPS5876127A (en) Removal of nitrogen oxide and sulfur oxide from waste gas
US3578390A (en) Method of removing sulfur dioxide from gases containing the same
WO1997001388A1 (en) Flue-gas treatment system
JPH08239279A (en) Nitrogen-containing molecular sieve activated carbon, production and use thereof
JP2688386B2 (en) SOx removal method using carbon catalyst
JPS62502954A (en) Use of activated coke to remove nitrogen oxides from flue gas
JPH0771616B2 (en) Method for removing sulfur oxides from gas using an absorbent material that can be regenerated by reaction with hydrogen sulfide
US3345125A (en) Method of purifying gases
US4350670A (en) Process for treating flue gas
CN110115972B (en) Structural adsorption material for removing mercury in flue gas and preparation method thereof
CN114835142A (en) Method for recovering carbon dioxide from industrial kiln tail gas and producing lithium carbonate
JPS58133820A (en) Treatment of waste gas
US6106791A (en) Exhaust gas treating systems
JPH04219308A (en) Production of formed active coke for desulfurization and denitration having high denitration performance
JP2778031B2 (en) Nitrogen oxide / sulfur oxide absorbent
JPS6044012B2 (en) Adsorbent for removing sulfur-containing harmful gases
Anurov et al. The mechanism of the adsorption of sulphur dioxide on carbonaceous adsorbents
JP3947285B2 (en) Manufacturing method of activated carbon for desulfurization and denitration with high denitration performance
JPS5814363B2 (en) Activated carbon processing method
JPH049573B2 (en)
JP3985291B2 (en) Method for removing mercury from flue gas