JPS604703A - Diagnostic device for performance of feedwater heater - Google Patents

Diagnostic device for performance of feedwater heater

Info

Publication number
JPS604703A
JPS604703A JP11387183A JP11387183A JPS604703A JP S604703 A JPS604703 A JP S604703A JP 11387183 A JP11387183 A JP 11387183A JP 11387183 A JP11387183 A JP 11387183A JP S604703 A JPS604703 A JP S604703A
Authority
JP
Japan
Prior art keywords
feed water
pressure
loss
change
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11387183A
Other languages
Japanese (ja)
Inventor
小野 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11387183A priority Critical patent/JPS604703A/en
Publication of JPS604703A publication Critical patent/JPS604703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は火力発電所等の熱サイクルプラントで使用され
る給水加熱器の性能を診断し、その経済的運用を可能に
する給水加熱器の性能診断装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention diagnoses the performance of a feedwater heater used in a thermal cycle plant such as a thermal power plant, and diagnoses the performance of the feedwater heater to enable its economical operation. Related to diagnostic equipment.

[発明の技術的青用とその問題点コ 火力発電所や原子力発電所等の熱サイクルプラントでは
、ボイラに給水する復水を加熱するため、給水加熱器が
使用されている。
[Technical application of the invention and its problems] In thermal cycle plants such as thermal power plants and nuclear power plants, feed water heaters are used to heat condensate water that is fed to the boiler.

第1図は火力発電プラントの概略構成を示すもので、ボ
イラ1で発生した蒸気は主蒸気管2を通って高圧タービ
ン3に入り、ここで仕事をした後、低温再熱蒸気管4を
介して再熱器5に導入され、再熱された上、再熱蒸気管
6を通って中圧タービン7に入り、そこで仕事をした後
、クロスオーバ−管8を通って低圧タービン9に入り仕
事をする。
Figure 1 shows the schematic configuration of a thermal power plant. Steam generated in a boiler 1 passes through a main steam pipe 2 and enters a high-pressure turbine 3. After doing work there, it is passed through a low-temperature reheat steam pipe 4. The steam is then introduced into a reheater 5, where it is reheated, passes through a reheat steam pipe 6, enters an intermediate pressure turbine 7, performs work there, and then passes through a crossover pipe 8, enters a low pressure turbine 9, where work is performed. do.

これらの仕事によつC失なわれ7j熱エネルギーは各タ
ービンによって駆動される発電110により電気エネル
ギーに変換される。低圧タービン9で仕事を終えた蒸気
は排気として復水器11に導入され、海水等の冷却水で
冷却されて復水となる。
The C loss 7j thermal energy due to these works is converted into electrical energy by power generation 110 driven by each turbine. The steam that has completed its work in the low-pressure turbine 9 is introduced as exhaust into the condenser 11, where it is cooled with cooling water such as seawater and becomes condensed water.

この復水は復水ポンプ12により昇圧され、低圧給水加
熱器13a 、13b、13Cで加熱され、脱気」14
で加熱脱気された後、ボイラ給水ポンプ15により昇圧
され、高圧給水加熱器16a116b116Cで再び加
熱され、給水管17を通ってボイラ1へ給水される。低
圧給水加熱器138〜13C1脱気器14および高圧給
水加熱器168〜16Cはタービン3.7.9、からの
抽気で加熱され、またボイラ給水ポンプ15を駆動する
ボイラ給水ポンプ用蒸気タービン18は中圧タービン7
の抽気によって駆動される。
This condensate is pressurized by the condensate pump 12, heated by the low-pressure feed water heaters 13a, 13b, and 13C, and degassed.
After being heated and deaerated, the pressure is increased by the boiler feed water pump 15, heated again by the high pressure feed water heater 16a116b116C, and water is supplied to the boiler 1 through the water feed pipe 17. The low-pressure feedwater heaters 138 to 13C1, the deaerator 14, and the high-pressure feedwater heaters 168 to 16C are heated by extraction air from the turbine 3.7.9, and the boiler feedwater pump steam turbine 18 that drives the boiler feedwater pump 15 is Medium pressure turbine 7
Powered by bleed air.

上述のように構成した火力発電所においては、従来、プ
ラント性能の監視はボイラおよびタービン性能を主体と
したユニットの発電端または送電端効率が重視され、補
機類については運転状態値が機器の制限値内に入ること
を監視の主眼としていたため、wJ搬機類性能劣化J3
よびその推移についてのきめ細かな監視はなされていな
かった。即ち、例えば高圧および低圧給水加熱器13a
〜13c、16a〜16cの性能は給水出口ターミナル
温度差とドレン出口温度差にj、り監視されていたにす
ぎない。
In thermal power plants configured as described above, monitoring of plant performance has conventionally focused on the generating end or sending end efficiency of the unit, mainly boiler and turbine performance, and for auxiliary equipment, the operating status values of the equipment have been Since the main focus of monitoring was to keep within the limit values, wJ carrier equipment performance deteriorated J3
There was no detailed monitoring of the demand and its trends. That is, for example, high pressure and low pressure feed water heater 13a
The performance of ~13c and 16a~16c was merely monitored based on the difference in temperature at the water supply outlet terminal and the temperature at the drain outlet.

しかしながら、最近の火力売電プラントは蒸気条件の高
圧高温化と、それに伴う給水処理上の問題から高圧給水
加熱器の加熱管に炭素鋼が使用されるようになったこと
に伴い、給水中の酸素、鉄、PH等は給水処理基準値(
負流ユニツ1−においてはボイラ入ロ酸素ニアppb以
下、鉄:1011+]tl以下、PH:9.3〜9.5
)内に制限され、高圧給水加熱器加熱管に(=I谷する
腐食生成物く例えばFe 304 )を主成分とする鉄
酸化物スケールが最小限となるよう管理する必要が生じ
てきた。
However, in recent years, thermal power plants have been using carbon steel for the heating pipes of high-pressure feed water heaters due to the high pressure and high temperature steam conditions and the associated problems with water supply treatment. Oxygen, iron, PH, etc. meet water supply treatment standard values (
In negative flow unit 1-, boiler oxygen near ppb or less, iron: 1011+] tl or less, PH: 9.3 to 9.5
), and it has become necessary to control the iron oxide scale, which is mainly composed of corrosion products such as Fe 304 , in the heating tubes of high-pressure feed water heaters, to be kept to a minimum.

また、高圧給水加熱器は水室内で発生する渦流により加
熱管の管端部に侵食(インレットアタック)をうけやす
いため、その防止効果に有効である整流向を給水入「1
水室内に設けるようにしている。
In addition, high-pressure feed water heaters are susceptible to erosion (inlet attack) at the end of the heating tube due to the vortex generated in the water chamber.
It is installed inside the water chamber.

ところで、最近、高圧給水加熱器の給水側すなわち加熱
管内および上述の整流向に鉄酸化物スケールがはなはだ
しく付着して給水入口と出口の差圧上昇を生じ、その結
果、給水加熱器氷室仕切り板の損傷、ボイラ給水ポンプ
の負荷増加、それに伴う給水管の最高使用圧力の限界超
過および発電所効率の低下という問題をひきおこしてい
る。特にスケールイq@の事例をみると、加熱管内より
整流筒部への目詰りが君しく、給水の差圧の大部分を整
流向が占め【いる。この場合、加熱管内は熱交換率の低
下をきたしていないため、給水出口ターミナル温度差や
ドレン出口温度差の変化としては現われない。
By the way, recently, iron oxide scale has been deposited on the water supply side of the high-pressure feed water heater, that is, inside the heating pipes and in the rectification direction mentioned above, causing an increase in the differential pressure between the water supply inlet and outlet, and as a result, the temperature of the ice compartment partition plate of the feed water heater has increased. This has caused problems such as damage, increased load on boiler feed pumps, the associated maximum working pressure of water pipes being exceeded, and a decrease in power plant efficiency. In particular, in the case of Scale Iq@, clogging in the rectifying cylinder is more prevalent than in the heating tube, and the rectifying direction accounts for most of the differential pressure of the water supply. In this case, since there is no reduction in the heat exchange rate inside the heating tube, this does not appear as a change in the temperature difference at the water supply outlet terminal or the drain outlet temperature difference.

しかしながら、スケール付着が給水加熱器のいかなる部
分であろうとボイラ給水ポンプとしては外圧上昇分が負
荷増となり、また実際に発電所損失の増加となるので、
ボイラ給水ポン1分の損失をも同時に評価しないと給水
加熱器の劣化を精度良く評価出来ないことになる。
However, no matter what part of the feedwater heater the scale is attached to, the increase in external pressure will increase the load on the boiler feedwater pump and actually increase the power plant loss.
If the loss per minute of the boiler feedwater pump is not evaluated at the same time, the deterioration of the feedwater heater cannot be accurately evaluated.

[発明の目的] 本発明は上記の如き従来技術の欠点を除去すべくなされ
たもので、給水出口ターミナル温度差およびドレン出口
温度差の変化と給水出入口差圧力とを同断に評価するこ
とによっ゛C1給水加熱器の性能を精度良く診断し、熱
サイクルプラントの経済的運用を可能ならしめる給水加
熱器の性能診断装置を提供することを目的とするも弓で
ある。
[Object of the Invention] The present invention has been made in order to eliminate the drawbacks of the prior art as described above. The object of the present invention is to provide a performance diagnostic device for a feed water heater that accurately diagnoses the performance of a C1 feed water heater and enables economical operation of a thermal cycle plant.

[発明の概要コ 本発明の給水加熱器の性能診断装置(ユ、検出器によっ
て検出した給水加熱器の給水入口温度[1、給水出口温
度t2、ドレン出ロ温度td、器内圧力Pと、予め設定
した計画ターミナルン扁度差TD。
[Summary of the Invention] Performance diagnostic device for a feed water heater of the present invention (U) Feed water inlet temperature of the feed water heater detected by a detector [1, feed water outlet temperature t2, drain outlet temperature td, internal pressure P, Preset planned terminal angle difference TD.

および計画ドレン出口温度差とを演算器によって演算し
てターミナル温度差変化△TDとドレン出口温度差変化
△DCを出力し、検出器によって検出した前記給水加熱
器の給水入口圧力P+、給水出口圧力P2によって給水
圧力損失差△Pを演算出力し、これらの′fJ算出力出
力種入力データにより熱消費率低下似合31△l−I 
Rを演算して熱消費率低下による損費Fを演算出力し、
この損費Fと給水加熱器対策費Fcとを比較器によって
比較すると共に、前記給水圧力損失差△Iつと予め設定
された許容圧力損失△]フoとを比較し、これらの比較
結果に基いて判定器を作動さゼるよう構成されている。
and the planned drain outlet temperature difference are calculated by a calculator to output the terminal temperature difference change △TD and the drain outlet temperature difference change △DC, and the feed water inlet pressure P+ of the feed water heater and the feed water outlet pressure detected by the detector are P2 calculates and outputs the water supply pressure loss difference △P, and uses these 'fJ calculation output type input data to calculate the heat consumption rate reduction suitability 31△l-I
Calculate R and calculate and output the loss F due to the decrease in heat consumption rate,
This loss cost F and the feed water heater countermeasure cost Fc are compared using a comparator, and the feed water pressure loss difference △I and the preset allowable pressure loss △] are compared, and based on these comparison results, The device is configured to operate the determiner when

[発明の実施例] jス下、第2図ないし第7図を参照して本発明の原理と
実施例および作動を説明する。
[Embodiments of the Invention] Below, the principle, embodiments, and operation of the present invention will be explained with reference to FIGS. 2 to 7.

第2図は、第1図にa3ける高圧給水加熱器16Cまわ
りの圧力と温度とを現わす記号を示すもので、給水入口
圧力と温度をP + 、L + 、給水出口圧力と温度
をP2、[2、給水加熱器160の器内圧力と器内飽和
温度をp、ts、ドレン出口温度\〜−7 をtdとすると、各部(イ)、(ロ)、(ハ)、(ニ)
における温度状態は、正常時には第3図の実線のように
分布しているが、加熱器に性能劣化が生ずると、第3図
中の鎖線のように変化する。
Figure 2 shows symbols representing the pressure and temperature around the high-pressure feed water heater 16C in Figure 1. The water supply inlet pressure and temperature are P + , L + , and the water supply outlet pressure and temperature are P2. , [2. If the internal pressure and internal saturation temperature of the feed water heater 160 are p and ts, and the drain outlet temperature \~-7 is td, each part (a), (b), (c), (d)
Under normal conditions, the temperature state is distributed as shown by the solid line in FIG. 3, but when performance deterioration occurs in the heater, the temperature changes as shown by the chain line in FIG. 3.

すなわち、加熱器に性能劣化が生ずると、給水出口温度
t2はTDo−TDだけ低゛下()、ドレン出口温度t
dはDc−DCoだけ上昇する。
That is, when performance deterioration occurs in the heater, the water supply outlet temperature t2 decreases by TDo - TD (), and the drain outlet temperature t2 decreases by TDo - TD.
d increases by Dc-DCo.

一方、給水加熱器16cの出入口の圧力損失が正常の場
合は、ボイラ誼水ポンプ用蒸気タービン18により駆動
されるボイラ給水ボ′ンプ15は第4図に示す各損失よ
−り構成されており、同図中の正常運転時抵抗曲線Aに
そって運転される。ここで、仮に給水加熱器内に△h(
kg/clIl)の圧力損失の増加が発生したとすると
、抵抗曲線は第4図中の圧力損失増加時抵抗曲線Bの様
に△hだけ上昇する。
On the other hand, when the pressure loss at the inlet and outlet of the feedwater heater 16c is normal, the boiler feedwater pump 15 driven by the boiler water pump steam turbine 18 is composed of the losses shown in FIG. , is operated along the resistance curve A during normal operation in the figure. Here, suppose that △h(
kg/clIl), the resistance curve rises by Δh as shown in resistance curve B when pressure loss increases in FIG.

すなわち、Δ1)分がそのままボイラ給水ポンプの吐出
圧の増加となって現われる。
That is, Δ1) directly appears as an increase in the discharge pressure of the boiler feed water pump.

給水出口1ターミナル温1m差TD1ドレン出口温度差
DCおよびボイラ給水ポンプ吐出圧変化△Pによる熱消
費率偏差は第5図および第6図のようになる。
The heat consumption rate deviation due to the water supply outlet 1 terminal temperature difference TD1 drain outlet temperature difference DC and the boiler feed water pump discharge pressure change ΔP is as shown in FIGS. 5 and 6.

本発明は各種入力データに基いてターミナル温度差変化
△TD’(=TDo −TD) 、ドレン出口温度差変
化△DC(=DCo −Dc )および給水圧力損失差
△P(=P+−P2)をめ、これらを他の入力データと
共に演算して熱消費率偏差償を算出し、これらの結果か
らユニット停止、運転継続および対策必要を判定するこ
とを基本原理とするものである。
The present invention calculates terminal temperature difference change △TD' (=TDo -TD), drain outlet temperature difference change △DC (=DCo -Dc) and supply water pressure loss difference △P (=P+ - P2) based on various input data. Therefore, the basic principle is to calculate heat consumption rate deviation compensation by calculating these together with other input data, and to determine whether to stop the unit, continue operation, or take measures based on these results.

第7図は、本発明の給水加熱器の性能診断装置の実施例
を示している。同図において、検出器20〜23によっ
て検出され7j給水加熱器の給水入口温度し1、給水出
口温度[2、ドレン出ロ温度td、器内圧力Pは予め設
定された計画ターミプル濡度差1− D o 、計画ド
レン出口温度差DCoと共に、TD、DC変化量演演算
置24に入力され、次の各式の演算により、△TD、△
DCを出力する。
FIG. 7 shows an embodiment of the performance diagnostic device for a feed water heater according to the present invention. In the same figure, the feed water inlet temperature of the feed water heater 7j, which is detected by the detectors 20 to 23, the feed water outlet temperature [2, the drain outlet temperature td, and the internal pressure P] are the preset planned termiple wetness difference 1. - D o and the planned drain outlet temperature difference DCo are input to the TD and DC change calculation unit 24, and by calculating the following formulas, △TD, △
Output DC.

器内飽和温度:ts=f(P)・・・(1)実測ターミ
ナル温度差; l−[)=ts−t2・・・・・・・・・・・・(2)
ターミナル高度差変化: △TD=TDo−TD・・・(3) 実測ドレン出口温度差; DC=td−t+・・・・・・・・・・・・(4)ドレ
ン出口温度差変化: 4△DC=DCo−Dc・・・(5) また、検出器25.26ににつ−C検出された給水加熱
器の給水入口圧力P1と給水出口圧力P2は、給水圧力
損失変化量演算装置27に入力され、給水圧力損失差△
Pを次式 %式%(6) によって演算される。
Inner saturation temperature: ts=f(P)...(1) Actual terminal temperature difference; l-[)=ts-t2...(2)
Terminal altitude difference change: △TD=TDo-TD...(3) Actual drain outlet temperature difference; DC=td-t+...................................(4) Drain outlet temperature difference change: 4 ΔDC=DCo-Dc (5) In addition, the feed water inlet pressure P1 and the feed water outlet pressure P2 of the feed water heater detected by the detectors 25 and 26 are calculated by the feed water pressure loss change calculation device 27. is input, and the water supply pressure loss difference △
P is calculated by the following formula % formula % (6).

この演算結果△Pは予め設定された許容圧力損失△Po
、最高使用圧力Poと共に比較器28に入力されて比較
演算される。
This calculation result △P is the preset allowable pressure loss △Po
, and the maximum working pressure Po are input to the comparator 28 for comparison calculation.

比較器28は次式 %式%(7) を満足するとぎはΔPを熱消費率変化量演算装置29に
向けて出力し、(7)式を満足しないとぎはユニット停
止判定器30に向けて出力を発信する。
The comparator 28 outputs ΔP to the heat consumption rate change calculation device 29 when the following formula % formula % (7) is satisfied, and outputs ΔP to the unit stop determination device 30 when the formula (7) is not satisfied. Emit output.

一方、発電所効率演算装置31はタービン室熱消費率1
−I R、ボイラ効率ηB、発゛市機端出力N、第5図
および第6図に示すTD、DC,△Pに依存する熱消費
率偏差KTD、KOC,に△P[%]を熱消費率変化足
演算装置29に向け℃出力する。
On the other hand, the power plant efficiency calculation device 31 calculates the turbine room heat consumption rate 1
−I R, boiler efficiency ηB, starting engine power N, heat consumption rate deviation KTD, KOC, which depends on TD, DC, ΔP shown in Figs. 5 and 6, and △P [%]. The temperature is outputted to the consumption rate change foot calculating device 29 in degrees Celsius.

この演粋装置29は上述の演篩装置24.31および比
較器28からの入力信号を次式によって演聾し、熱消費
率低下量△HRT o 、△)−1Ro c、△l−I
 R△p[Kcal /kwh ]を出力スル。
This extraction device 29 listens to the input signals from the above-mentioned sieving device 24.31 and comparator 28 according to the following equation, and calculates the heat consumption rate reduction amount △HRT o , △)-1Ro c, △l-I
Output R△p[Kcal/kwh].

△1−IRvo=HRX (1+KTD/100)・・
・・・・・・・(8) △HRo c =zRx (1+Ko c / 100
)・・・・・・・・・〈9) △HR△p=HRx(1+に△p /100)・・・・
・・(10) 熱漬8率損費装置32は演算装置29からの入力信号を
次式によって演算し、熱消費率低下による換算Fを出力
する。
△1-IRvo=HRX (1+KTD/100)...
・・・・・・・・・(8) △HRoc=zRx (1+Koc/100
)・・・・・・・・・〈9) △HR△p=HRx(△p to 1+/100)・・・・
(10) The heat soaking 8 rate loss device 32 calculates the input signal from the calculation device 29 according to the following equation, and outputs a conversion F based on the reduction in heat consumption rate.

△1−IR−△HRvo+△HRo c+△1−IR△
p・・・・・・(11) F=ΔHRXNXUXV/77e−・・・・・(12)
但し、 U:運転時間[hrs] V:燃料車lll1l[円/Kcal]この演粋結果F
は給水加熱器対fJI費演算演算装置の出力FCと共に
比較器34に導かれて比較演幹され、運転継続判定器3
5a3よび対策要判定器36に向けて出力を光信づる。
△1-IR-△HRvo+△HRoc+△1-IR△
p・・・・・・(11) F=ΔHRXNXUXV/77e−・・・(12)
However, U: Operating time [hrs] V: Fuel vehicle lll1l [yen/Kcal] This performance result F
is led to the comparator 34 together with the output FC of the feed water heater vs.
The output is optically transmitted to 5a3 and the countermeasure required determination unit 36.

判定器35は比較器34からの信号がF<[cであると
きは運転継続を報知し、判定器36は比較器34からの
信号がF>FCであ、葛どきは対策要を報知する。なa
プ、最近の火力発電設備における高圧給水加熱器は2系
列および25%または50%容量の給水バイパスを備え
ているのが通例であるので、対策要の場合には (a >給水バイパス併用で負荷制限せずに片系列づつ
対策。
When the signal from the comparator 34 is F<[c, the determiner 35 notifies the continuation of operation, and the determiner 36 notifies the signal from the comparator 34 if F>FC and that countermeasures are required. . Naa
The high-pressure feed water heaters in recent thermal power generation facilities are usually equipped with two lines and a 25% or 50% capacity feed water bypass, so if countermeasures are required, (a) Measures can be taken one series at a time without any restrictions.

(b)負荷抑制時対策。(b) Countermeasures for load reduction.

(c )定検時まで延長。(c) Extended until regular inspection.

等の診断結果を含めて出力するのが望ましい。また、判
定器30は比較器28からの信号を受信すると、危険防
止のため、直ちにユニットを停止して対策を講ずべきこ
とを報知する。
It is desirable to output the results including the diagnosis results. Further, when the determiner 30 receives the signal from the comparator 28, it notifies that the unit should be stopped immediately and countermeasures should be taken to prevent danger.

これにより、運転員は直ちにユニットを停止して対策を
謡するべぎか、そのまま運転を継続すべきか、あるいは
運転を継続しながら対策を講するべきかをプラントの経
済性を加味した上で適確に判別することができる。
This allows operators to decide whether to immediately stop the unit and take countermeasures, to continue operation, or to take countermeasures while continuing operation, taking into consideration the economic efficiency of the plant. can be determined accurately.

なお、本発明においては各演算装置や判定器は第7図に
示すように独立していることは必づ゛しも必要ではなく
適宜統合分散したり、あるいはデジタルコンピュータに
にって同一(幾能を実現させてもよい。
In addition, in the present invention, it is not necessarily necessary for each arithmetic unit or decision device to be independent as shown in FIG. It is also possible to realize Noh.

[発明の効果] 以上説明したように本発明装置によれば、給水加熱器の
運転状態値から運転制限値の異常の有無、運転制限値内
での性能変化に対する経済性を考慮した対策を判定づ°
ることにより、熱サイクルプラントの計画的、効率的運
用を行なうことができる。
[Effects of the Invention] As explained above, according to the device of the present invention, it is possible to determine whether or not there is an abnormality in the operating limit value from the operating state value of the feed water heater, and to take economical measures against changes in performance within the operating limit value. zu°
By doing so, the thermal cycle plant can be operated systematically and efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は火力発電プラントを例示する配管系統図、第2
図は給水加熱器まわりの温度および圧力記号の説明図、
第3図は給水加熱器の温度分布を示す特性線図、第4図
はタービン駆動のボイラ給水ポンプの特性図、第5図お
よび第6図はそれぞれ熱消費率偏差曲線を示すグラフ、
第7図は本発明装置の一実施例を示すブロック線図であ
る。 1・・・・・・・・・・・・ボイラ 2・・・・・・・・・・・・主蒸気管 3・・・・・・・・・・・・高圧タービン4・・・・・
・・・・・・・低温再熱蒸気管5・・・・・・・・・・
・・再熱器 6・・・・・・・・・・・・再熱蒸気管7・・・・・・
・・・・・・中圧タービン8・・・・・・・・・・・・
クロスオーバー管9・・・・・・・・・・・・低圧ター
ビン10・・・・・・・・・・・・発電機 11・・・・・・・・・・・・復水器 12・・・・・・・・・・・・復水ポンプ13a〜13
C・・・低圧給水加熱器 14・・・・・・・・・・・・脱気器 15・・・・・・・・・・・・ボイラ給水ポンプ168
〜16G・・・高圧給水加熱器 17・・・・・・・・・・・・給水管 18・・・・・・・・・・・・ij<ビラ給水ポンプ用
蒸気タービン 20〜23.25.26・・・検出器 代理人弁理士 須 山 佐 − 第1図 @ 2 図 第3図 第4図 第5図 第 6 し1 第7図
Figure 1 is a piping system diagram illustrating a thermal power plant;
The figure is an explanatory diagram of temperature and pressure symbols around the feed water heater,
FIG. 3 is a characteristic diagram showing the temperature distribution of the feed water heater, FIG. 4 is a characteristic diagram of a turbine-driven boiler feed water pump, and FIGS. 5 and 6 are graphs each showing heat consumption rate deviation curves.
FIG. 7 is a block diagram showing one embodiment of the device of the present invention. 1...Boiler 2...Main steam pipe 3...High pressure turbine 4...・
......Low temperature reheat steam pipe 5...
...Reheater 6...Reheat steam pipe 7...
・・・・・・Intermediate pressure turbine 8・・・・・・・・・・・・
Crossover pipe 9・・・・・・・・・・・・Low pressure turbine 10・・・・・・・・・・Generator 11・・・・・・・・・・・・Condenser 12・・・・・・・・・Condensate pump 13a~13
C...Low pressure feed water heater 14...Deaerator 15...Boiler feed water pump 168
~16G... High-pressure feed water heater 17... Water supply pipe 18... ij<Steam turbine for Villa feed water pump 20-23.25 .26...Patent attorney representing the detector Satoshi Suyama - Figure 1 @ 2 Figure 3 Figure 4 Figure 5 Figure 6 Shi1 Figure 7

Claims (1)

【特許請求の範囲】[Claims] (1)検出器によつ”C検出した給水加熱器の給水入口
温度、給水出口温度、°13レン出口温度、器内圧力と
を入力し予め設定したS1画ターミナル温度差および計
画ドレン出口温反差とに基づいてターミナル温度差変化
(15よびドレン出口温度差変化を演算しこれを出力す
るTO−DCC変化波演算装置、検出器にJ:っC検出
した前記給水加熱器の給水入口圧力、給水出口圧力を入
力し給水圧力損失差を演停しこれを出力する給水圧力損
失変化量演算装置と、前記TD−DC変化最演算装置か
らの出力、前記給水圧力損失変化量演算装置からの出力
、および、発電所効率を示す各種入力データに基づいて
熱消費率低下量合計を演算し熱消費率低下による損費を
演算しこれを出力する熱消費率損費演算装置と、この熱
消費率損費演算装置で演算された損費と給水加熱器対策
費とを比較すると共記給水圧力損失差と予め設定された
許容圧力損失とを比較し、これらの比較結果に基いて判
定器を作動させる比較器とからなることを特徴とする給
水加熱器の性能診断装置。
(1) Input the feed water inlet temperature, feed water outlet temperature, °13 drain outlet temperature, and internal pressure of the feed water heater detected by the detector and set the S1 screen terminal temperature difference and planned drain outlet temperature in advance. A TO-DCC change wave calculating device that calculates and outputs a terminal temperature difference change (15) and a drain outlet temperature difference change based on the opposite difference; A feed water pressure loss change calculation device that inputs the feed water outlet pressure, turns off and outputs the feed water pressure loss difference, an output from the TD-DC change maximum calculation device, and an output from the feed water pressure loss change calculation device. , and a heat consumption rate loss calculation device that calculates the total amount of reduction in heat consumption rate based on various input data indicating power plant efficiency, calculates the loss cost due to the reduction in heat consumption rate, and outputs this, and this heat consumption rate. When the loss cost calculated by the loss calculation device is compared with the feed water heater countermeasure cost, the water supply pressure loss difference and the preset allowable pressure loss are compared, and the judgment device is activated based on the results of these comparisons. A performance diagnostic device for a feed water heater, comprising a comparator for determining the performance of a feed water heater.
JP11387183A 1983-06-24 1983-06-24 Diagnostic device for performance of feedwater heater Pending JPS604703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11387183A JPS604703A (en) 1983-06-24 1983-06-24 Diagnostic device for performance of feedwater heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11387183A JPS604703A (en) 1983-06-24 1983-06-24 Diagnostic device for performance of feedwater heater

Publications (1)

Publication Number Publication Date
JPS604703A true JPS604703A (en) 1985-01-11

Family

ID=14623196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11387183A Pending JPS604703A (en) 1983-06-24 1983-06-24 Diagnostic device for performance of feedwater heater

Country Status (1)

Country Link
JP (1) JPS604703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269960A (en) * 1987-04-28 1988-11-08 Ikeda Shokuhin Kogyo Kk Production of noodles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269960A (en) * 1987-04-28 1988-11-08 Ikeda Shokuhin Kogyo Kk Production of noodles

Similar Documents

Publication Publication Date Title
US20070017207A1 (en) Combined Cycle Power Plant
CN110454769A (en) A kind of Generator Set high back pressure steam feed pump control system and control method
CN101899999A (en) Small turbine system in power plant and thermal cycle system in power plant containing same
CN107575854B (en) A kind of double reheat power generation sets monitoring system
CN201714431U (en) Regenerative steam-driven condensate pump system of power plant
US4138319A (en) Nuclear reactor installation with a light-water reactor
CN201851174U (en) Heat regenerative type steam-driven induced draft fan system and heating power circulation system of power plant
JPH03221702A (en) Duplex type heat exchanger for waste heat recovery
WO2024130921A1 (en) Pressurized water reactor-high-temperature gas cooled reactor integrated nuclear power generation system and method
JPS604703A (en) Diagnostic device for performance of feedwater heater
JPH08338207A (en) Exhaust heat recovery device
US20160305280A1 (en) Steam power plant with a liquid-cooled generator
CN201851182U (en) Regenerative steam-driven primary air fan system and thermal circulation system of power station
JPS61108814A (en) Gas-steam turbine composite facility
US4236968A (en) Device for removing heat of decomposition in a steam power plant heated by nuclear energy
RU2144994C1 (en) Combined-cycle plant
JPH0440524B2 (en)
JPH0658161B2 (en) Waste heat recovery boiler
CN221032781U (en) Dry quenching system
JP4381242B2 (en) Marine steam turbine plant
JPS61237903A (en) Controller for water level in drain tank for feedwater heater
CN201747417U (en) Power plant backheating type pneumatic cycle pump system and power plant thermodynamic cycle system
JPH04124411A (en) Steam turbine combine generator equipment
CN201851183U (en) Back heating type steam-driven forced draught blower system for power plant and thermal circulation system for power plant
CN108487953B (en) Coal gas synergistic utilization system