JPS6046078A - Photovoltaic element and manufacture thereof - Google Patents

Photovoltaic element and manufacture thereof

Info

Publication number
JPS6046078A
JPS6046078A JP58154446A JP15444683A JPS6046078A JP S6046078 A JPS6046078 A JP S6046078A JP 58154446 A JP58154446 A JP 58154446A JP 15444683 A JP15444683 A JP 15444683A JP S6046078 A JPS6046078 A JP S6046078A
Authority
JP
Japan
Prior art keywords
semiconductor layer
type semiconductor
type
gas
incident light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58154446A
Other languages
Japanese (ja)
Inventor
Takahiro Aoyama
青山 隆浩
Masahiko Nozawa
野澤 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Osaka Transformer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp, Osaka Transformer Co Ltd filed Critical Daihen Corp
Priority to JP58154446A priority Critical patent/JPS6046078A/en
Publication of JPS6046078A publication Critical patent/JPS6046078A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To obtain a high output by interposing a plurality of I type semiconductor layers for absorbing lights of different wavelengths between an N type semiconductor layer and a P type semiconductor layer, thereby enhancing the photoelectric conversion efficiency. CONSTITUTION:A substrate 10 is disposed between discharging electrodes in a vacuum vessel, a mixture gas of SiH and B2H6 is supplied to perform a glow discharge, a P type semiconductor layer P, an I type semiconductor layer I for preferably absorbing radiation energy of incident light of long wavelength, an I type semiconductor layer I2 for preferably absorbing radiation energy of incident of middle wavelength, an I type semiconductor layer I1 for preferably absorbing radiation energy of incident light of short wavelength and an N type semiconductor layer N are sequentially formed on the substrate 10. Eventually, the substrate 10 laminated with these semiconductor layers is contained in another electron beam depositing unit, a mixture of an indium and tin is deposited by an electron beam on the surface of the laminated N type semiconductor layer N at the outermost side to form a transparent electrode 11, and an electrode 12 is formed by suitable means.

Description

【発明の詳細な説明】 本発明は、N型半導体層を複数層積層して、入射光の放
射エネルギーを広範囲の波長にわたる入射光から吸収す
るようにした光起電力素子に関し、特に光電変換効率を
より高めて高出力を得るための光起電力素子及びその製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photovoltaic device in which a plurality of N-type semiconductor layers are laminated to absorb radiant energy of incident light over a wide range of wavelengths. The present invention relates to a photovoltaic device and a method of manufacturing the same for obtaining high output by increasing the power of the photovoltaic device.

最近、太陽電池の如き光起電力素子は光電変換効率を高
めるために、第1図に示したようにP型。
Recently, photovoltaic devices such as solar cells have been converted into P-type devices, as shown in FIG. 1, in order to increase photoelectric conversion efficiency.

■型、N型の各半導体層P、I、Nを繰返し基板1上に
積層して多層構造とし、最外層には透明導電膜2及び電
極3を設けて、入射光の放射エネルギーを入射光の広範
囲の波長にわたり吸収するようにした素子が提案されて
いる。ところで、従来のこの種の光起電力素子は、P型
、N型、N型の各半導体層からなる下部層AのN型半導
体層N上に、P型、■型、N型の各半導体層からなる中
間部層BのP型半導体層Pが積層されている部分、及び
P型、■型、N型の各半導体層からなる中間部層BのN
型土導体層Nに、P型、N型、N型の各半導体層からな
る上部層CのP型土導体層Pが積層されている部分には
夫々接合層Jが存在し素子内部で電力損失が生じている
。また、この種の光起電力素子の従来の製造方法によれ
は、入射光の放射エネルギーを短波長から長波長にわた
る広い波長範囲で略一定量を吸収することができず、光
電変換効率の高い光起電力素子が得られながった。
■ type and N type semiconductor layers P, I, and N are repeatedly laminated on the substrate 1 to form a multilayer structure, and the outermost layer is provided with a transparent conductive film 2 and an electrode 3 to convert the radiant energy of the incident light into Elements that absorb light over a wide range of wavelengths have been proposed. By the way, in a conventional photovoltaic element of this kind, P-type, ■-type, and N-type semiconductors are placed on an N-type semiconductor layer N of a lower layer A consisting of P-type, N-type, and N-type semiconductor layers. The part where the P-type semiconductor layer P of the intermediate layer B consisting of layers is laminated, and the N of the intermediate layer B consisting of P-type, ■-type, and N-type semiconductor layers.
A bonding layer J is present in each part where the P-type conductor layer P of the upper layer C consisting of P-type, N-type, and N-type semiconductor layers is stacked on the molded conductor layer N, and electric power is generated inside the device. There are losses. In addition, the conventional manufacturing method of this type of photovoltaic device is unable to absorb a substantially constant amount of the radiant energy of incident light over a wide wavelength range from short wavelengths to long wavelengths, resulting in a high photoelectric conversion efficiency. A photovoltaic device could not be obtained.

本発明は前記の問題に鑑み、N型半導体層とP型半導体
層との間に、短波長の入射光の放射エネルギーを吸収す
るN型半導体層、中波長の入射光の放射エネルギーを吸
収するN型半導体層、長波長の入射光の放射エネルギー
を吸収するN型半導体層を挾みこむことにより光電変換
効率を高め、またN型半導体層の形成過程では、形成さ
れる半導体層の厚さに関連して半導体層を形成させる混
合ガスの濃度比を平均的に増加又は減少させて広い波長
範囲の入射光の放射エネルギーを吸収させることにより
光電変換効率を一段と高め得る光起電力素子及びその製
造方法を提案するものである。
In view of the above problems, the present invention provides an N-type semiconductor layer that absorbs the radiant energy of incident light with a short wavelength, and an N-type semiconductor layer that absorbs the radiant energy of incident light with a medium wavelength, between an N-type semiconductor layer and a P-type semiconductor layer. The photoelectric conversion efficiency is increased by interposing the N-type semiconductor layer, which absorbs the radiant energy of long-wavelength incident light, and in the process of forming the N-type semiconductor layer, the thickness of the formed semiconductor layer is A photovoltaic device capable of further increasing photoelectric conversion efficiency by absorbing radiant energy of incident light in a wide wavelength range by increasing or decreasing on average the concentration ratio of a mixed gas that forms a semiconductor layer, and its production. This paper proposes a method.

以下、図示の実施例を参照して本発明の詳細な説明する
Hereinafter, the present invention will be described in detail with reference to illustrated embodiments.

第2図は本発明の光起電力素子(太陽電池)の描成図で
あって、10はステンレススチールからなる基板、Pは
基板10の表面に積層して形成したP型半導体層である
。このP型土導体層Pの表面には長波長の入射光の放射
エネルギーを吸収するN型半導体層I3が形成されてお
り、このN型半導体層13の表面には中波長の入射光の
放射エネルギーを吸収するN型半導体層I2が形成され
ている。またN型半導体層I2の表面には短波長の入射
光の放射エネルギーを吸収するN型半導体層11を形成
しており、更にこのN型半導体層1.の表面にはN型土
導体層Nが形成されている。更にまた、N型土導体層N
の表面には透明導電膜11が形成されている。12は透
明導電膜11に電気的に接続した電極であって、これら
により光起電力素子が構成されて □いる。
FIG. 2 is a schematic diagram of the photovoltaic device (solar cell) of the present invention, in which 10 is a substrate made of stainless steel, and P is a P-type semiconductor layer laminated on the surface of the substrate 10. On the surface of this P-type soil conductor layer P, an N-type semiconductor layer I3 that absorbs the radiant energy of long-wavelength incident light is formed, and on the surface of this N-type semiconductor layer 13, the radiant energy of medium-wavelength incident light is An N-type semiconductor layer I2 that absorbs energy is formed. Further, on the surface of the N-type semiconductor layer I2, an N-type semiconductor layer 11 that absorbs the radiant energy of short-wavelength incident light is formed, and furthermore, this N-type semiconductor layer 1. An N-type soil conductor layer N is formed on the surface. Furthermore, an N-type soil conductor layer N
A transparent conductive film 11 is formed on the surface. 12 is an electrode electrically connected to the transparent conductive film 11, and these constitute a photovoltaic element.

前述した機能を有するN型半導体層N、I型半導体層4
 ’+ 、’2 、’s 及U P ’M 半導体B 
P ハ、CVD (ChcnucalVapor De
position)グロー放電法により形成することが
できる。以下にその光起電力素子の製造方法を説明する
N-type semiconductor layer N and I-type semiconductor layer 4 having the above-described functions
'+,'2,'s and U P 'M semiconductor B
P Ha, CVD (Chcncal Vapor De
position) can be formed by a glow discharge method. The method for manufacturing the photovoltaic device will be explained below.

先ず、基板10を図示しない真空容器内の対向する放電
電極の間に配置し、真空容器内にシランガス(Sin(
、)とジボランガス(B2 H6)との混合ガスを供給
して前記放電電極に高周波電圧を印加して混合ガスをグ
ロー放電させる。このグロー放電により基板10上にP
型土導体層Pを形成させる。続いて今まで供給していた
混合ガスを排出し、新らたにシランガス(S r H4
)とゲルマンガス(GeH4)、又はシランガス(Si
H4)とスタナーガス(S nH4)との混合ガスを供
給してグロー放電させて、P型この場合、混合ガスとし
てシランガス(SiI(4)トゲルマンガス(GeH4
)とを用いる場合には、横軸を混合ガス濃度比、縦軸を
半導体層の厚さで示した第3図(a)の如くN型半導体
層I3を形成する過程で、半導体層の厚さが7.0OO
A に達するまで、シランガス(SiH4)に対するゲ
ルマンガス(Gcl−14)の濃度比を95%から0%
まで平均的に直線I!、の如く減少させてN型半導体層
I3を形成させる。このように混合ガスの濃度比を変化
させて形成したN型半導体層I3は、長波長の入射光と
、長波長に隣接した中波長一部を含む波長範囲の入射光
の散剤エネルギーを良好に吸収させることができる。
First, the substrate 10 is placed between opposing discharge electrodes in a vacuum container (not shown), and silane gas (Sin) is injected into the vacuum container.
, ) and diborane gas (B2 H6) is supplied, and a high frequency voltage is applied to the discharge electrode to cause the mixed gas to glow discharge. This glow discharge causes P to be deposited on the substrate 10.
A mold conductor layer P is formed. Next, the mixed gas that had been supplied until now was discharged, and a new silane gas (S r H4
) and germane gas (GeH4), or silane gas (Si
Glow discharge is performed by supplying a mixed gas of H4) and stunner gas (S nH4), and in this case, the P-type is produced.
), in the process of forming the N-type semiconductor layer I3, the thickness of the semiconductor layer is Saga 7.0OO
The concentration ratio of germane gas (Gcl-14) to silane gas (SiH4) was increased from 95% to 0% until reaching A.
Average straight line I! , to form an N-type semiconductor layer I3. The N-type semiconductor layer I3, which is formed by changing the concentration ratio of the mixed gas in this way, can effectively absorb the powder energy of the incident light with a long wavelength and the incident light with a wavelength range that includes a part of the middle wavelength adjacent to the long wavelength. It can be absorbed.

このN型半導体層■3を形成させた後、N型半導体層I
3を形成するために供給していた混合ガスを排出して、
シランガス(SiH4)の単独ガスを供給して、このガ
スをグロー放電させることによりN型半導体層の表面に
中波長の入射光の放射エネルギーを良く吸収するN型半
導体層I2を形成させる。
After forming this N-type semiconductor layer 3, the N-type semiconductor layer I
Discharge the mixed gas that was supplied to form 3.
By supplying a single gas of silane gas (SiH4) and causing a glow discharge of this gas, an N-type semiconductor layer I2 that absorbs the radiant energy of medium-wavelength incident light well is formed on the surface of the N-type semiconductor layer.

その後、今まで供給していた混合ガスを排出した後、シ
ランガス(SiI(4)にメタンガス(CH4)、又は
シランガス(S iH< )にアンモニアガス(Nl−
13)を加えた混合ガスを供給してこれをグロー放電さ
せ、N型半導体層I2の表面に短波長の入射光の放射エ
ネルギーを良く吸収するI型半導体層■1を形成させる
。この場合、混合ガスとしてシランガス(Si”’<)
トメタンガス(CI−14)とを用いる場合には、横軸
を混合ガス濃度比、縦軸を半導体の厚さて示した第3図
(blの如く■型半導体層■1を形成する過程で、半導
体層の厚さが700人に達するまで、シランカス(Si
l−I4)に対するメタンガス(CI−I、)の濃度比
を0%から75%まで平均的に直線12に示す如く増加
させて■型半導体層■1を形成させる。このように混合
ガスの濃度比を増加させて形成したI型半導体層■3は
、短波長の入射光と短波長に隣接した中波長の一部を含
む波長範囲の入射光の放射エネルギーを良好に吸収させ
ることができる。更にこのl型半導体層11を形成させ
た後、今まで供給していた混合ガスを排出して、シラン
ガス(SiII4)とメタンガス(C1(4)とホスフ
ィンガス(1’1−I3)とを加えた混合ガスを供給し
てグロー放電させ、l型半導体層11の表面にN型半導
体層Nを形成させる。最後にこれらの半導体層が積層さ
れた基板10を真空容器から取り出して図示しない別の
電子ビーム蒸着装置に収容し、そして電子ビームにより
インジュームと錫との混合物を、基板10J二に積層し
た最外側のN型半導体層Nの表面に蒸着させて透明電極
11を形成させる。その後に適宜手段で電極12を設け
て本発明に係る光起電力素子を得る。
After that, after discharging the mixed gas that had been supplied until now, silane gas (SiI(4) and methane gas (CH4), or silane gas (SiH<) and ammonia gas (Nl-
13) is supplied to generate a glow discharge, thereby forming an I-type semiconductor layer (1) on the surface of the N-type semiconductor layer I2, which absorbs the radiant energy of short-wavelength incident light well. In this case, silane gas (Si"'<) is used as the mixed gas.
When tomethane gas (CI-14) is used, in the process of forming the ■-type semiconductor layer ■1 as shown in Figure 3 (bl), where the horizontal axis shows the mixed gas concentration ratio and the vertical axis shows the semiconductor thickness, Silancus (Si) until the thickness of the semiconductor layer reaches 700
The concentration ratio of methane gas (CI-I, ) to l-I4) is increased on average from 0% to 75% as shown by a straight line 12 to form a ■-type semiconductor layer ■1. The I-type semiconductor layer 3 formed by increasing the concentration ratio of the mixed gas in this way can effectively absorb the radiant energy of incident light in a wavelength range that includes short-wavelength incident light and a part of medium-wavelength adjacent to the short wavelength. can be absorbed into. Furthermore, after this l-type semiconductor layer 11 was formed, the mixed gas that had been supplied so far was discharged, and silane gas (SiII4), methane gas (C1 (4), and phosphine gas (1'1-I3) were added). A mixed gas is supplied to cause glow discharge, and an N-type semiconductor layer N is formed on the surface of the L-type semiconductor layer 11.Finally, the substrate 10 on which these semiconductor layers are stacked is taken out from the vacuum container and subjected to another process (not shown). It is housed in an electron beam evaporation device, and a mixture of indium and tin is evaporated by the electron beam onto the surface of the outermost N-type semiconductor layer N laminated on the substrate 10J2 to form the transparent electrode 11. Thereafter, the transparent electrode 11 is formed. Electrodes 12 are provided by appropriate means to obtain a photovoltaic device according to the present invention.

このように構成された光起電力素子は、透明導電膜11
側から太陽光線等の光を入射させることにに到達する。
The photovoltaic element configured in this way has a transparent conductive film 11
The goal is to let light such as sunlight enter from the side.

この光線の通過時にI型半導体層■1は短波長と短波長
に隣接した中波長の一部を含む波長範囲の入射光の放射
エネルギーを最も良く吸収し、l型半導体層12は中波
長の入射光の放射エネルギーを最も良く吸収する。また
l型半導体層13は長波長と長波長に隣接した中波長の
一部を含む波長範囲の入射光の放射エネルギーを最も良
く吸収する。そのため第4図に示すように、■型半導体
農工□と12とて得られる放射エネルギー吸収量 1性
曲線IAとIBにより形成される谷部V、の減衰特性は
、前記混合ガスの濃度比を変化させたことにより放射エ
ネルギーの吸収量が高められて、谷部■1は点線て示す
曲線Xの如くレベルアップされる。
During the passage of this light beam, the I-type semiconductor layer 1 best absorbs the radiant energy of the incident light in the wavelength range that includes the short wavelength and a part of the medium wavelength adjacent to the short wavelength, and the I-type semiconductor layer 12 Best absorbs the radiant energy of the incident light. Further, the l-type semiconductor layer 13 best absorbs the radiation energy of incident light in a wavelength range including a long wavelength and a part of a medium wavelength adjacent to the long wavelength. Therefore, as shown in FIG. Due to this change, the amount of radiant energy absorbed is increased, and the level of the valley part (1) is raised as shown by the dotted curve X.

またI型半導体層I2と工。とで得られる放射エネルギ
ーの吸収特性曲線113とIGとにより形成される谷部
■2の減衰特性は、前記混合ガスの濃度比を変化させた
ことにより放射エネルギーの吸収量か高められて谷部■
2は点線で示す曲線Yの如くレベルアップされる。それ
故、入射光は短波長の範囲から長波長の範囲にわたり第
5図に示すような略一定した放射エネルギー吸収特性と
なる。従って、入射光から多量の放射エネルギーを無駄
な(吸収して光電変換効率の高い光起電力素子か得られ
る。
In addition, the I-type semiconductor layer I2 is formed. The attenuation characteristic of the valley part (2) formed by the radiant energy absorption characteristic curve 113 obtained by ■
2 is leveled up as shown by a curve Y indicated by a dotted line. Therefore, the incident light has a substantially constant radiant energy absorption characteristic as shown in FIG. 5 from a short wavelength range to a long wavelength range. Therefore, a photovoltaic element with high photoelectric conversion efficiency can be obtained by absorbing a large amount of radiant energy from the incident light.

また、本発明の光起電力素子は、P型半導体層PとN型
半導体層Nとの接合部Jが存在しないので、それらの半
導体層の接合部による素子内部での電力損失は生じない
。また入射光は積層された■型半導体層■I+I2.■
3により、入射光の短波長から長波長にわたる広い波長
範囲を略一定した放射エネルギー量を得て光電変換効率
を一段と上昇させることができる。
Further, in the photovoltaic device of the present invention, since there is no junction J between the P-type semiconductor layer P and the N-type semiconductor layer N, no power loss occurs inside the device due to the junction between these semiconductor layers. In addition, the incident light is applied to the laminated ■ type semiconductor layer ■I+I2. ■
3, it is possible to obtain a substantially constant amount of radiant energy over a wide wavelength range from short wavelengths to long wavelengths of incident light, thereby further increasing the photoelectric conversion efficiency.

なお本実施例では基板10にステンレススチールを用い
たが、第6図に示すようにガラス板Gを使用することも
できる。ガラス板Gを基板10とした場合には積層した
I型半導体層I、 、 I2. I3の光入射側にガラ
ス板G、透明導電膜11及びP型半導体層Pを形成して
光入射側と反対側にN型半導体層N及び金属(電極)M
を設けれはよい。一方、混合ガスの濃度比は直線状で増
加又は減少させても良く、あるいは階段状で増加又は減
少させてもよい。更には直線状又は階段状で増加又は減
少させる途中で一時的に停滞する状態があってもよく、
これらのような平均的増加又は減少の場合はいずれも同
様の効果を得ることができる。
Although stainless steel is used for the substrate 10 in this embodiment, a glass plate G can also be used as shown in FIG. When the glass plate G is used as the substrate 10, the laminated I-type semiconductor layers I, , I2. A glass plate G, a transparent conductive film 11, and a P-type semiconductor layer P are formed on the light incidence side of I3, and an N-type semiconductor layer N and a metal (electrode) M are formed on the opposite side to the light incidence side.
It is good to have a On the other hand, the concentration ratio of the mixed gas may be increased or decreased linearly, or may be increased or decreased stepwise. Furthermore, there may be a state in which there is a temporary stagnation while increasing or decreasing in a linear or stepwise manner,
Similar effects can be obtained in both cases of average increase or decrease.

以上詳述したように、本発明の光起電力素子には、P型
半導体層とN型半導体層の接合部か存在しないので、そ
の接合部による素子内部での電力損失は生じない。また
■型半導体層は、夫々か異なる波長の入射光の放射エネ
ルギーを吸収する複数のI型半導体層が積層されたもの
からなっているので、短波長から長波長にわたる広い波
長範囲の入射光の放射エネルギーを略一定して吸収する
ことができ、光電変換効率が高い高出力の光起電力素子
を提供できる。また本発明の光起電力素子の製造方法に
よれば、I型半導体層を形成する過程で、形成される半
導体層の厚さに追随して混合ガスの濃度比を平均的に増
加又は減少させることにより、放射エネルギーの吸収量
を大幅に増加させることができ、製造設備に大きな変更
を加えず、且つ簡単なガス量の操作により達成が可能と
なり、経済的に光起電力素子の光電変換効率を向上させ
ることができる等、産業上の利益は大きい。
As described in detail above, since the photovoltaic device of the present invention does not have a junction between the P-type semiconductor layer and the N-type semiconductor layer, no power loss occurs inside the device due to the junction. In addition, the ■-type semiconductor layer is made up of a stack of multiple I-type semiconductor layers that absorb the radiant energy of incident light of different wavelengths, so it absorbs incident light in a wide wavelength range from short wavelengths to long wavelengths. It is possible to provide a high-output photovoltaic element that can absorb radiant energy substantially constantly and has high photoelectric conversion efficiency. Further, according to the method for manufacturing a photovoltaic device of the present invention, in the process of forming an I-type semiconductor layer, the concentration ratio of the mixed gas is increased or decreased on average in accordance with the thickness of the semiconductor layer to be formed. As a result, the amount of absorbed radiant energy can be significantly increased, and this can be achieved without making major changes to the manufacturing equipment and by simply controlling the gas amount, thereby economically increasing the photoelectric conversion efficiency of photovoltaic elements. The industrial benefits are significant, such as the ability to improve

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光起電力素子の断面構造図、第2図は本
発明に係る光起電力素子の断面構造図、第3図はI型半
導体層形成時の半導体層厚さと混合ガスの濃度比の関係
を示す特性図、第4図は本発明の光起電力素子の各I型
半導体層の放射エネルギー吸収特性曲線図、第5図はI
型半導体層の放射エネルギー総合吸収特性図、第6図は
本発明に係る光起電力素子の他の実施例を示した断面構
造図である。 10・・・基板(ステンレス反チール)11・・・透明
導電膜 12・・・電極 P・・・P型半導体層 i、
・・・短波長の入射光の放射エネルギーを吸収するIy
!1半容体層、■2・・中波長の入射光の放射エネルギ
ーを吸収する■型半導体層 ■、・・・長波長の入射光の放射エネルギーを吸収する
■型半導体層 N・・・N型半導体層 J・・・P型半導体層とN型半導体層との接合部代理人
 弁理士 中 井 宏 第2図 第1図 第8図 第8図 六佑倣1皮カー〆り!x噌OO シラン力λ令メタ)吠C入 第4図 一抵長N杭り液長 上疫長− 1(
FIG. 1 is a cross-sectional structural diagram of a conventional photovoltaic device, FIG. 2 is a cross-sectional structural diagram of a photovoltaic device according to the present invention, and FIG. FIG. 4 is a characteristic diagram showing the relationship between concentration ratios, FIG.
FIG. 6 is a cross-sectional structural diagram showing another embodiment of the photovoltaic device according to the present invention. 10... Substrate (stainless steel anti-teal) 11... Transparent conductive film 12... Electrode P... P-type semiconductor layer i,
...Iy that absorbs the radiant energy of short wavelength incident light
! 1 Half volume layer, ■2... ■-type semiconductor layer that absorbs the radiant energy of incident light with a medium wavelength ■,... ■-type semiconductor layer that absorbs the radiant energy of long-wavelength incident light N... N-type Semiconductor layer J: Agent for the junction between the P-type semiconductor layer and the N-type semiconductor layer Patent attorney Hiroshi Nakai Figure 2 Figure 1 Figure 8 Figure 8 x OO Silan force

Claims (1)

【特許請求の範囲】 1、N型又はP型層の第1の半導体層上に異なる波長の
光を吸収する複数のN型半導体層を順次に積層し、さら
に積層した最終N型半導体層上に、前記第1の半導体層
と異なるP型又はN型層の第2の半導体層を積層した光
起電力素子。 2、 プラズマCVD法により形成されて、N型半導体
層とP型半導体層との間に夫々が異なる波長の光を吸収
する複数のN型半導体層を積層させてなる光起電力素子
の製造方法において、前記N型半導体層は該半導体層を
形成する過程で、シランガスとゲルマンガスとを用いる
場合は形成される半導体層の厚さが700OA までゲ
ルマンガスの濃度比を95%から0%まで平均的に減少
させ、またシランガスとメタンガスとからなる混合ガス
を用いる場合は、形成される半導体層の厚さが70o久
まてメタンガスの濃度比を0%から75%まで平均的に
増加させる光起電力素子の製造方法。
[Claims] 1. A plurality of N-type semiconductor layers absorbing light of different wavelengths are sequentially laminated on a first semiconductor layer of an N-type or P-type layer, and a final N-type semiconductor layer is further laminated. A photovoltaic element in which a second semiconductor layer, which is a P-type or an N-type layer different from the first semiconductor layer, is laminated thereon. 2. A method for manufacturing a photovoltaic element formed by a plasma CVD method, in which a plurality of N-type semiconductor layers are stacked between an N-type semiconductor layer and a P-type semiconductor layer, each of which absorbs light of a different wavelength. In the process of forming the N-type semiconductor layer, when using silane gas and germane gas, the concentration ratio of germane gas is adjusted from 95% to 0% on average until the thickness of the formed semiconductor layer is 700 OA. In addition, when using a mixed gas consisting of silane gas and methane gas, the thickness of the semiconductor layer formed increases by 70 degrees, and photoactivation increases the concentration ratio of methane gas from 0% to 75% on average. A method of manufacturing a power device.
JP58154446A 1983-08-23 1983-08-23 Photovoltaic element and manufacture thereof Pending JPS6046078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58154446A JPS6046078A (en) 1983-08-23 1983-08-23 Photovoltaic element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58154446A JPS6046078A (en) 1983-08-23 1983-08-23 Photovoltaic element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6046078A true JPS6046078A (en) 1985-03-12

Family

ID=15584383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58154446A Pending JPS6046078A (en) 1983-08-23 1983-08-23 Photovoltaic element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6046078A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195770U (en) * 1987-12-17 1989-06-26

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100486A (en) * 1980-01-14 1981-08-12 Fuji Photo Film Co Ltd Photoelectric conversion element
JPS5779672A (en) * 1980-09-09 1982-05-18 Energy Conversion Devices Inc Photoresponsive amorphous alloy and method of producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100486A (en) * 1980-01-14 1981-08-12 Fuji Photo Film Co Ltd Photoelectric conversion element
JPS5779672A (en) * 1980-09-09 1982-05-18 Energy Conversion Devices Inc Photoresponsive amorphous alloy and method of producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195770U (en) * 1987-12-17 1989-06-26

Similar Documents

Publication Publication Date Title
US6288325B1 (en) Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts
US6784361B2 (en) Amorphous silicon photovoltaic devices
US5032884A (en) Semiconductor pin device with interlayer or dopant gradient
EP0673550B1 (en) Method for the manufacture of improved efficiency tandem photovoltaic device and device manufactured thereby
US6121541A (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US5071490A (en) Tandem stacked amorphous solar cell device
US4271328A (en) Photovoltaic device
US5977476A (en) High efficiency photovoltaic device
US4599482A (en) Semiconductor photoelectric conversion device and method of making the same
JPS58139478A (en) Amorphous solar battery
JPH0125235B2 (en)
US4857115A (en) Photovoltaic device
JPS6046078A (en) Photovoltaic element and manufacture thereof
JPS6225275B2 (en)
JPS59161081A (en) Thin-film solar cell
JPS62256481A (en) Semiconductor device
JPS58116779A (en) Photovoltaic device
JP2757896B2 (en) Photovoltaic device
JPS6046079A (en) Manufacture of photovoltaic element
JPS6154680A (en) Thin-film solar cell
JP2003046108A (en) Thin film solar battery and method for installing the same
JPS6312397B2 (en)
JPH0597413A (en) Amorphous multicomponent semiconductor and device using the same
JPS62115785A (en) Semiconductor device
JPS62189764A (en) Photoelectric conversion device