JPS6045842A - Multiplier circuit - Google Patents

Multiplier circuit

Info

Publication number
JPS6045842A
JPS6045842A JP15357183A JP15357183A JPS6045842A JP S6045842 A JPS6045842 A JP S6045842A JP 15357183 A JP15357183 A JP 15357183A JP 15357183 A JP15357183 A JP 15357183A JP S6045842 A JPS6045842 A JP S6045842A
Authority
JP
Japan
Prior art keywords
circuit
multiplier
input
addition
addition stages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15357183A
Other languages
Japanese (ja)
Inventor
Toshiki Mori
俊樹 森
Haruyasu Yamada
山田 晴保
Kenichi Hasegawa
謙一 長谷川
Kunitoshi Aono
邦年 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15357183A priority Critical patent/JPS6045842A/en
Publication of JPS6045842A publication Critical patent/JPS6045842A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/53Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
    • G06F7/5306Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel with row wise addition of partial products
    • G06F7/5312Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel with row wise addition of partial products using carry save adders

Abstract

PURPOSE:To reduce the power consumption of a multiplier circuit without impairing the high-speed performance of the multiplier circuit, by providing plural input circuits, addition stages, etc. and increasing the circuit current for only the addition stages which are under operation with reduction of the circuit current given to other addition stages. CONSTITUTION:The input signals of a multiplicand (x) and a multiplier (y) are read into input latch circuits 20 and 21 respectively by controlling the phase relation between a read-in clock CPI for input latch circuit and signals A-G. As a result, the circuit current of a basic block for addition stages 45-49 of a multiplier circuit increases. In this case, basic blocks 1-19 and inverters 23-29 have the same delay time, and the signal sum S and a carry C0 of the multiplier circuit are transferred to the next lower addition stage. Thus the circuit current increased for this relevant stage with a high-speed operation. While the circuit current for other addition stages is reduced. As a result, the power consumption is reduced without deteriorating the high-speed performance of the multiplier circuit.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は乗算回路の低消費電力化に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to reducing power consumption of a multiplication circuit.

従来例の構成とその問題点 2進数の乗算は、被乗数Xと乗数Yが(1)、(2)式
で示すような正の整数表示の場合その積P(−1:[3
)式の様になる。
Conventional configuration and problems When multiplying binary numbers, when the multiplicand X and the multiplier Y are expressed as positive integers as shown in equations (1) and (2), the product P
) is as follows.

ここでn、mはそれぞれ被乗数Xおよび乗数Yのビット
語長であり、X□、ylけそれぞれのピノ]・を表すも
のである。
Here, n and m are the bit word lengths of the multiplicand X and the multiplier Y, respectively, and represent the respective pinots of X□ and yl.

(3)式の乗算の過程を示すと、被乗数X2乗数Yのビ
ット語長が4ビツトの場合以下の様になり、4 3 2
 1 ×)”4 ’Y3 Y2 y4 x4°”1 x3°y1x2°y1x1°y1x4°y
2x3°y2x2°”2 xi°y2x4@y3 xダ
y3 x2°y3 xloyろ+)!4°y4 淘°y
4 x2°”4 x1°y4P8P7P6P5P4P5
P2P1 各ビットの部分積x0・y、の総和が積Pとなる。
The multiplication process in equation (3) is as follows when the bit word length of multiplicand X2 multiplier Y is 4 bits, 4 3 2
1 ×)"4 'Y3 Y2 y4 x4°"1 x3°y1x2°y1x1°y1x4°y
2x3°y2x2°"2 xi°y2x4@y3 xdaiy3 x2°y3 xloyro+)!4°y4 昘°y
4 x2°”4 x1°y4P8P7P6P5P4P5
P2P1 The sum of the partial products x0·y of each bit becomes the product P.

この様な乗算を行うための回路構成を第1図に示す。こ
の第1図に示す乗算方式はキャリーセーブ方式と呼ばれ
るものである。同図において、x1〜x4は被乗数Xの
各ビット入力端子、20は入力ラッチ回路、y1〜y4
は乗数Yの各ビットの入力端子、21は入力ラッチ回路
であり、CPIは入力ラッチ回路20.21への読与込
みクロックである。22は出力ランチ回路、P1〜P8
け積Pの各ビット出力端子、CPOは出力ラノチ回路へ
の読み込みクロックである。1〜7はANDゲートであ
り、第2図に示す入出力関係となっている。
A circuit configuration for performing such multiplication is shown in FIG. The multiplication method shown in FIG. 1 is called a carry-save method. In the figure, x1 to x4 are respective bit input terminals of the multiplicand X, 20 is an input latch circuit, and y1 to y4
are input terminals for each bit of the multiplier Y, 21 is an input latch circuit, and CPI is a read clock to the input latch circuits 20 and 21. 22 is an output launch circuit, P1 to P8
Each bit output terminal of the signal P, CPO, is a read clock to the output Lanochi circuit. 1 to 7 are AND gates, and have the input/output relationship shown in FIG.

同図において201はANDゲートである。8〜10は
ANDゲートと半加算器で第3図に示すように構成され
たものである。同図において30111S1:ANDゲ
ート、302は半加算器であり、Sは半加算器のサム出
力、COはキャリー出力である。
In the figure, 201 is an AND gate. 8 to 10 are AND gates and half adders constructed as shown in FIG. In the figure, 30111S1 is an AND gate, 302 is a half adder, S is the sum output of the half adder, and CO is the carry output.

11〜1dはANDゲートと全加算器で第4図に示すよ
うに構成されたものである。同図において401はAN
Dゲート、402は全加算器であり、Ciは全加算器の
キャリー人カ、Sはサム出力、COはキャリー出−カで
ある。17は半加算器であり、K、Ciは入力端子、S
はサム出力、Coはキャリー出力端子である。18.1
9は全加鐘−器でありa、には入力端子、Ciはキャリ
ー人カ、Sはサム出力、Coはキャリー出カ端子である
11 to 1d are AND gates and full adders constructed as shown in FIG. In the same figure, 401 is AN
The D gate 402 is a full adder, Ci is the carry output of the full adder, S is the sum output, and CO is the carry output. 17 is a half adder, K and Ci are input terminals, and S
is a sum output terminal, and Co is a carry output terminal. 18.1
Reference numeral 9 denotes a total adder, where a is an input terminal, Ci is a carry input terminal, S is a sum output, and Co is a carry output terminal.

この様な回路構成によってANDゲートで部分積を生成
し、加算器で加算することにより前述の乗X過程で示し
た被乗数と乗数の乗算を行うことができる。
With such a circuit configuration, by generating partial products using an AND gate and adding them using an adder, it is possible to perform the multiplication of the multiplicand and the multiplier shown in the multiplication X process described above.

以上説明した様に、並列型乗算器は部分積の生成と加算
により構成される。したがって、第1図に示すように、
ANDゲート1〜7と全加算器18゜19で構成される
ブロックの繰り返しが全んどである。このANDゲート
1〜7と全加算器18.19で構成されるブロックの回
路を第5図に示す。トランジスタQ 、Q で負論理の
ANDゲートを構 3 成し、X□・Y、の積を生成する。
As explained above, the parallel multiplier is configured by generating and adding partial products. Therefore, as shown in Figure 1,
The block consisting of AND gates 1 to 7 and full adders 18 and 19 is completely repeated. FIG. 5 shows a block circuit consisting of AND gates 1 to 7 and full adders 18 and 19. The transistors Q and Q form a negative logic AND gate to generate the product of X□・Y.

トランジスタQ4〜Q23および抵抗R2〜R7で全加
算器18.19を構成している。Ci、RおよびAND
ゲート出力x−y’7全加算器の入力信号であり、Sは
サム出力、COはキャリー出力である。
Transistors Q4 to Q23 and resistors R2 to R7 constitute a full adder 18.19. Ci, R and AND
The gate output x-y'7 is the input signal of the full adder, S is the sum output, and CO is the carry output.

■Rは定電圧バイアス電源であり、トランジスタQ1.
Q4.Q13および抵抗R1,R2,R5とにょシ定電
流(ロ)路を構成しておりトランジスタQ1.Q4゜Q
13に一定電流を流している。
■R is a constant voltage bias power supply, and transistors Q1.
Q4. Q13 and resistors R1, R2, and R5 form a constant current path. Q4゜Q
A constant current is flowing through 13.

VB1〜■B3は基準バイアス源である。VB1 to B3 are reference bias sources.

この第5図に示す回路ブロックの動作速度は、回路を構
成するデバイス特性に依存するが、トランジスタQ1 
”41013に流す電流値に犬゛きく依存し、電流値が
大きく々るほど速度は早くなる。したがって高速乗算器
を実現するには、この定電流の値を大きく設定する必要
があり、消費電力も大きくなる。この様な高速乗算器で
は被乗数Xおよび乗数Yのビット語長が長い場合には第
5図に示すANDゲートと全加算器で構成されるブロッ
クの繰り返しが多くなり、消費電力も膨大となり、集積
回路化する場合には、パッケージの放熱等の点で問題を
有していた。
The operating speed of the circuit block shown in FIG. 5 depends on the characteristics of the devices that make up the circuit, but the transistor Q1
”41013, and the larger the current value, the faster the speed becomes. Therefore, in order to realize a high-speed multiplier, it is necessary to set a large value for this constant current, which reduces power consumption. In such a high-speed multiplier, if the bit word length of the multiplicand The size of the circuit becomes enormous, and when it is integrated into an integrated circuit, there are problems in terms of heat dissipation from the package, etc.

発明の目的 本発明は上記欠点に鑑み、回路の高速性を損うとと々し
に、低消費電力の乗算器を提供するものである。
OBJECTS OF THE INVENTION In view of the above-mentioned drawbacks, the present invention provides a multiplier that consumes less power without sacrificing the high-speed performance of the circuit.

発明の構成 上記目的を達成するだめ本発明の乗算器は、乗算信号が
入力される第1の入力回1”と、被乗算信号が入力され
る第2の入力回路と、論理回路から構成され、かつ、前
記第1.第2の入力回路からの信号を処理する複数の加
算段と、前記複数の加算段に電流を供給する電流供給回
路と、前記複数の加算段からの信号を処理する出力ラッ
チ回路とを有し、前記電流供給回路は前記複数の加算段
のうち演算が行なわれている加算段に対して他の加算段
より犬なる電流を供給する構成としている。
Structure of the Invention In order to achieve the above object, the multiplier of the present invention is comprised of a first input circuit 1" into which a multiplied signal is input, a second input circuit into which a multiplicable signal is input, and a logic circuit. , and a plurality of addition stages that process signals from the first and second input circuits, a current supply circuit that supplies current to the plurality of addition stages, and a current supply circuit that processes signals from the plurality of addition stages. and an output latch circuit, and the current supply circuit is configured to supply a higher current to the addition stage in which an operation is being performed among the plurality of addition stages than the other addition stages.

以上の構成によって本発明は、高性能を損うことなく低
消費電力化が図れる乗算器を得ることとなる。
With the above configuration, the present invention provides a multiplier that can achieve low power consumption without sacrificing high performance.

実施例の説明 以下、本発明の一実施例について説明する。第6図は、
本発明の一実施例における乗算器のブロツク結線図であ
る。第1図と同一物には同一番号を付し、説明を省略す
る。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below. Figure 6 shows
FIG. 3 is a block diagram of a multiplier in an embodiment of the present invention. Components that are the same as those in FIG. 1 are given the same numbers and their explanations will be omitted.

同図において、23〜29は乗算器を構成する基本ブロ
ック1〜19と同一の遅延時間で構成され/こインバー
タであ゛す、このインバータ23〜29を環状接続して
リングオシレータを構成している。
In the figure, 23 to 29 are inverters each having the same delay time as the basic blocks 1 to 19 constituting the multiplier.The inverters 23 to 29 are connected in a ring to form a ring oscillator. There is.

各インバニタの、出力A〜Gの波形は第7図A−Gに示
す様に、インバータ1段の遅延時間tpdだけ位相がず
れだ波形となる。このA−Gの波形をインバータ30〜
36およびANDゲート3ア〜43で取り出ずことによ
りANDゲートの出力H〜Nには第7図H−Hに示す様
に、1tpdの間だけ”High”′となり位相が異る
多相クロックが得られる。このH−Nの信号で各加算段
45〜49毎に第5図に示すvRの値を制御することに
よりトランジスタQ1.Q4.Q13 を流れる定電流
の値を制御することができる。
The waveforms of the outputs A to G of each inverter are out of phase by the delay time tpd of one stage of inverter, as shown in FIG. 7A to G. This A-G waveform is transferred to the inverter 30~
36 and AND gates 3A to 43, the outputs H to N of the AND gates are multiphase clocks that are "High" only during 1 tpd and have different phases, as shown in FIG. 7 H-H. is obtained. By controlling the value of vR shown in FIG. 5 for each addition stage 45 to 49 using this H-N signal, transistors Q1. Q4. The value of the constant current flowing through Q13 can be controlled.

今、入力ラノチ回路読み込与クロックCPIとA〜Gの
信号との位相関係を第7図に示すように制御すると、被
乗数Xと乗数Yの入力信号が入力ラッチ回路29.21
に読み込まれてから、第7図H−Kに示す波形に応じて
、順次乗算回路の各加算段45〜49の基本ブロックの
回路電流が増えていく。
Now, if the phase relationship between the input Lanochi circuit read clock CPI and the signals A to G is controlled as shown in FIG. 7, the input signals of the multiplicand
7, the circuit currents of the basic blocks of each addition stage 45 to 49 of the multiplication circuit increase sequentially in accordance with the waveforms shown in FIG. 7H-K.

ここで、乗算回路のサムSおよびキャIJ−Co−信号
は1段下の加算段に転送されており、基本ブロック1〜
19とリングオシレータのインバータ23〜29は同一
の遅延時間となっているので、サムSおよびキャI)−
Co信号が転送されて演算を行っている加算段のみ回路
電流が増加しており、演算は高速に行われる。尚、最終
の加算段49はキャIJ−Coが横方向に転送するため
、ANDゲ7)4.2 、43 、37の出力り、M、
Hの信号の和をORゲート44で取っており、出力信号
0で示すように、最終の加算段490回路電流を増やし
ている期間をキャリーCoが転送する時間に対応させて
長くしている。
Here, the sum S and carry IJ-Co- signals of the multiplication circuit are transferred to the addition stage one stage below, and are sent to the basic blocks 1 to 1.
19 and the inverters 23 to 29 of the ring oscillator have the same delay time, so Sam S and CA I)-
The circuit current increases only in the adding stage where the Co signal is transferred and the calculation is performed, and the calculation is performed at high speed. Note that the final addition stage 49 receives the outputs of AND gate 7) 4.2, 43, 37, M,
The sum of the H signals is calculated by the OR gate 44, and as shown by the output signal 0, the period during which the circuit current of the final addition stage 490 is increased is made longer in accordance with the time during which the carry Co is transferred.

発明の詳細 な説明したように、本発明によればキャリーセーブ方式
乗算器において、サムおよびキャリー信号が転送され演
算を行っている加算段のみ回路電流を増−やし、高速演
算を行っており、他の加算段の回路電流は減らしている
だめ、低消費電力で高速の乗算回路が可能となり、特に
入力信号のビット語長が長く回路規模の大きな乗算回路
においてに、集積回路化が容易になるという効果を有す
る。
As described in detail, according to the present invention, in a carry-save type multiplier, the circuit current is increased only in the adding stage where sum and carry signals are transferred and calculations are performed, thereby performing high-speed calculations. Since the circuit current of other addition stages is reduced, it is possible to create a high-speed multiplication circuit with low power consumption, and it is easy to integrate the multiplication circuit, especially in a multiplication circuit with a long input signal bit word length and a large circuit scale. It has the effect of becoming.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図iJ従来の乗算器のブロック結線図、第2図、第
3図および第4図は第1図の要部ブロック図、第5図は
従来の乗算器の回路構成図、第6図d本発明の一実施例
における乗算器のブロック結線図、第7図は同乗算器の
動作波形図で−ある。 20.21 入力ラッチ回路、22 出力ラノチ回路、
45.46.47,48.49・ ・加算段。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第3図 第4図 第5図
Figure 1 is a block diagram of a conventional multiplier; Figures 2, 3, and 4 are block diagrams of the main parts of Figure 1; Figure 5 is a circuit diagram of a conventional multiplier; Figure 6 d A block wiring diagram of a multiplier in an embodiment of the present invention, and FIG. 7 is an operating waveform diagram of the multiplier. 20.21 Input latch circuit, 22 Output lanotch circuit,
45.46.47,48.49・Addition stage. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 乗数信号が入力される第1の入力回路と、被乗数信号か
入力される第2の入力回路よ、論理回路から構成され、
かつ、前記第1.第2の入力回路からの信号を処理する
複数の加算段と、前記複数の加算段に電流を供給する電
流供給回路と、前記複数の加算段からの信号を処理する
出力ラノチ回路とを有し、前記電流供給回路は前記複数
の加算段のうち演算が行なわれている加算段に対して他
の加算段より犬なる電流を供給することを特徴とする乗
算回路。
Consisting of logic circuits, a first input circuit to which a multiplier signal is input, and a second input circuit to which a multiplicand signal is input,
And the above-mentioned No. 1. It has a plurality of addition stages that process signals from the second input circuit, a current supply circuit that supplies current to the plurality of addition stages, and an output Lanochi circuit that processes the signals from the plurality of addition stages. . A multiplication circuit, wherein the current supply circuit supplies a current equal to that of the other addition stages to the addition stage in which an operation is being performed among the plurality of addition stages.
JP15357183A 1983-08-23 1983-08-23 Multiplier circuit Pending JPS6045842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15357183A JPS6045842A (en) 1983-08-23 1983-08-23 Multiplier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15357183A JPS6045842A (en) 1983-08-23 1983-08-23 Multiplier circuit

Publications (1)

Publication Number Publication Date
JPS6045842A true JPS6045842A (en) 1985-03-12

Family

ID=15565401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15357183A Pending JPS6045842A (en) 1983-08-23 1983-08-23 Multiplier circuit

Country Status (1)

Country Link
JP (1) JPS6045842A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105042A (en) * 1983-08-05 1985-06-10 テキサス インスツルメンツ インコ−ポレイテツド Multilevel logic circuit
JPH01189724A (en) * 1988-01-25 1989-07-28 Oki Electric Ind Co Ltd Parallel multiplier
US4887233A (en) * 1986-03-31 1989-12-12 American Telephone And Telegraph Company, At&T Bell Laboratories Pipeline arithmetic adder and multiplier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105042A (en) * 1983-08-05 1985-06-10 テキサス インスツルメンツ インコ−ポレイテツド Multilevel logic circuit
JPH0475542B2 (en) * 1983-08-05 1992-12-01 Texas Instruments Inc
US4887233A (en) * 1986-03-31 1989-12-12 American Telephone And Telegraph Company, At&T Bell Laboratories Pipeline arithmetic adder and multiplier
JPH01189724A (en) * 1988-01-25 1989-07-28 Oki Electric Ind Co Ltd Parallel multiplier

Similar Documents

Publication Publication Date Title
US5333119A (en) Digital signal processor with delayed-evaluation array multipliers and low-power memory addressing
JPS588009B2 (en) digital multiplier
US3947670A (en) Signed multiplication logic
JP2005218094A (en) 4:2 csa cell and 4:2 carry save adding method
JP2530070B2 (en) Adder
JPS6045842A (en) Multiplier circuit
JPH04223525A (en) Sum comparing device of binary number
TWI240199B (en) Interstitial product generator, multiplication circuit and multiplication method for bit segments
JP4157141B2 (en) Carry ripple adder
Hiasat RNS arithmetic multiplier for medium and large moduli
US6571269B1 (en) Noise-tolerant digital adder circuit and method
Manjunatha et al. Low Power VLSI Design for Power and Area Effective Utilisation of Carry Select Adder
EP0610259B1 (en) 1-bit adder
JP3240713B2 (en) Polyphase clock generation circuit
Al-Ibadi Hardware implementation for high-speed parallel adder for QSD 2D data arrays
JP2000232346A (en) Pulse width modulation waveform generation circuit
US3413454A (en) High speed data processing system
Mounika A 5V 124MW 64–Bit Advanced Comparator for DSP Processor
JP3155026B2 (en) Accumulator
JPH05150949A (en) Method and device for executing digital multiplication
JPS61156434A (en) Digital multiplier for series operation
Raut et al. Design of Carry Select Adder for FIR Filter
Ravibabu Design of 16-Bit Low Power Carry Select Adder using D-Flip Flop.
МАРТИНОВИЧ et al. DESIGN AND SYNTHESIS OF TERNARY LOGIC ELEMENTS
JPS5911939B2 (en) Fugoutukikakezanronrisouchi