JPS6045066A - Manufacture of thin film transistor - Google Patents

Manufacture of thin film transistor

Info

Publication number
JPS6045066A
JPS6045066A JP15281083A JP15281083A JPS6045066A JP S6045066 A JPS6045066 A JP S6045066A JP 15281083 A JP15281083 A JP 15281083A JP 15281083 A JP15281083 A JP 15281083A JP S6045066 A JPS6045066 A JP S6045066A
Authority
JP
Japan
Prior art keywords
film
layer
siox
sinx
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15281083A
Other languages
Japanese (ja)
Inventor
Kenichi Yanai
梁井 健一
Satoru Kawai
悟 川井
Yasuhiro Nasu
安宏 那須
Atsushi Inoue
淳 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15281083A priority Critical patent/JPS6045066A/en
Publication of JPS6045066A publication Critical patent/JPS6045066A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78669Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To improve the yield and the quality by the improvement of the adhesion property with a positive resist by a method wherein an SiNx film is provided on an SiOx film used as the channel protection film for the thin film FET. CONSTITUTION:A gate electrode 4 made of NiCr is formed on an glass substrate 3, and thereafter a gate insulation film 5 made of SiOx, a semiconductor operating layer 6 made of a-Si, the protection film 7 made of SiOx, and an adhesive film 9 made of SiNx are formed by the PCVD method. Exposure is carried out by the use of a photo resist layer 8, and development and dissolution treatment are carried out. An N<+>a-Si layer 10 is formed by PCVD, an NiCr layer 11 being vapor-deposited and then etched, thus forming an electrode pattern, and the photo resist layer 8 is removed. The SiNx film obtained by the PCVD method is transparent and has excellent adhesion property with a positive series resist.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は収率と信頼度を向上したれ9膜トランジスタの
製造方法に51する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention provides a method for manufacturing a nine-film transistor with improved yield and reliability.

(b) 技術の背景 本発明に係る薄膜トランジスタは電界効果トランジスタ
(FET)であってガラス基板上にこの薄膜トランジス
タ素子をマトリックス状に数多く配列し液晶などの表示
素子と組み合わせ、この駆動用として用いるものである
(b) Background of the Technology The thin film transistor according to the present invention is a field effect transistor (FET), and a large number of these thin film transistor elements are arranged in a matrix on a glass substrate and used for driving the display element, such as a liquid crystal, in combination with the display element. be.

か\るトランジスタの%徴は単結晶基板を用いて形成す
る通常のトランジスタと異り半導体動作層や絶縁層をプ
ラズマ化学気相成長法を用いて形成するための、大きさ
に制限がなく、また比較的低温度で形成できる点にあり
、プラズマ化学気相成長法(以後略してPCVD)を用
いて作られる。
Unlike ordinary transistors formed using single crystal substrates, the size of such transistors is not limited because the semiconductor active layer and insulating layer are formed using plasma chemical vapor deposition. Furthermore, it can be formed at a relatively low temperature, and is produced using plasma chemical vapor deposition (hereinafter abbreviated as PCVD).

この方法は基板が置かれた反応室に反応ガスを導入する
と共に排気系を用いて減圧して一定圧に保ち、−刃高周
波コイルまたは平行平板型電極に高周波電力を与えてプ
ラズマを発生させ反応ガスを分解させるものである。
In this method, a reaction gas is introduced into the reaction chamber in which the substrate is placed, and the pressure is reduced using an exhaust system to maintain a constant pressure, and high-frequency power is applied to a -blade high-frequency coil or parallel plate electrode to generate plasma and react. It decomposes gas.

こ\でシラン(Sin4)と水素カス(H2)との混合
カスヲ用いる場合はアモルファスシリコン(以下a−3
i)膜を生じ、シラン(SiH4)と亜酸化窒素(N、
O)との混合ガス中で行えば酸化シリコン(SiOx)
膜を生じ、一方シランとアンモニア(NH3)の混合ガ
ス中で行えば窒化シリコン(SiNx)膜を生ずる。
When using a mixture of silane (Sin4) and hydrogen gas (H2), amorphous silicon (hereinafter a-3) is used.
i) forming a film, containing silane (SiH4) and nitrous oxide (N,
silicon oxide (SiOx) if carried out in a mixed gas with
A silicon nitride (SiNx) film is produced when carried out in a mixed gas of silane and ammonia (NH3).

こ\でa −S i膜はシリコン(St)原子のダング
リングボンドが水素(H)原子により飽和された半導体
であり、一方SiOx 、 SiNx膜はそれぞれ絶縁
膜である。
The a-Si film is a semiconductor in which dangling bonds of silicon (St) atoms are saturated with hydrogen (H) atoms, while the SiOx and SiNx films are insulating films.

なお酸化/リコ/および窒化シリコンをS f Ox 
rSiNxで表わしSi 02.5isN4と表わさな
い理由はPCVD法で作られた化合物は取留な化学量論
理的組成で表現するには不適当であるによる。
Note that oxidation/lico/and silicon nitride are S f Ox
The reason why it is expressed as rSiNx and not as Si 02.5isN4 is that the compound produced by the PCVD method is unsuitable to be expressed in terms of a specific stoichiometric composition.

さてI) CV D法による場合は反応ガスの構成を変
えるだけで基板上に半導体ノVと絶縁層とを適宜形成で
きるので薄膜ICの製造には極めて都合がよい。
Now, I) The CVD method is extremely convenient for manufacturing thin film ICs because it is possible to appropriately form a semiconductor layer and an insulating layer on a substrate simply by changing the composition of the reaction gas.

本発明はこの方法でガラス基板」二に形成されるF’ 
E Tの製法についてのものである。
The present invention provides F' formed on a glass substrate by this method.
This is about the manufacturing method of ET.

(c) 従来技術と問題点 第1図d本発明に係るん膜FETの構成図でa−8fか
らなる半導体動作層1をゲート絶縁膜2で絶縁してゲー
ト電極(G)があり、−1反対側の半導体動作層1上に
はソース化ThZ(S)およびドレイン電極(D)が設
けられている。
(c) Prior art and problems FIG. 1d is a block diagram of a film FET according to the present invention, in which a semiconductor active layer 1 consisting of a-8f is insulated by a gate insulating film 2, and a gate electrode (G) is provided. A source ThZ (S) and a drain electrode (D) are provided on the semiconductor active layer 1 on the opposite side.

かXる構成の薄膜F E Tはソース電極(S)とドレ
イン電極(D)との間にドレイン電圧(VD)を印加し
である状態でゲート電極(G)に正の電圧を印加すると
ゲート絶縁膜2と半導体動作層1との界面に印加電圧値
に比例して負の電荷が銹起され、これによりソース電極
(S)とドレインklk (D)間の電導が促進される
In the thin film FET with the above structure, when a drain voltage (VD) is applied between the source electrode (S) and the drain electrode (D), and a positive voltage is applied to the gate electrode (G) in a certain state, the gate Negative charges are generated at the interface between the insulating film 2 and the semiconductor active layer 1 in proportion to the applied voltage value, thereby promoting conduction between the source electrode (S) and the drain klk (D).

こ\でゲート電圧(Vc )の有無に対応するドレイン
電流(ID)の変化が急激であるためスイッチング動作
が可能となる。
Here, switching operation is possible because the drain current (ID) changes rapidly depending on the presence or absence of the gate voltage (Vc).

かXる薄膜FETの作り方としては第2図に示すように
ガラス基板3の上にゲート電極4をニクロム(Ni−C
r)などの金属を用いてパターン形成を行って後、この
上にl) CV D法によりゲート絶縁膜5.半f体動
作J@6.保訛膜7と順次l〆形成しこれにスピンコー
ド法によりホトレジスト層8を被覆し写真蝕刻技術(ホ
トリソクラフイ)を用いてソースおよびドレイン東極形
成のだめの選択エツチングを行っていた。
To make a thin film FET, a gate electrode 4 is placed on a glass substrate 3 using nichrome (Ni-C) as shown in FIG.
After forming a pattern using a metal such as r), a gate insulating film 5.l) is formed on this using a CVD method. Half-f body motion J@6. A protective film 7 and a protective film 7 were sequentially formed, a photoresist layer 8 was coated thereon by a spin code method, and selective etching was performed using photolithography to form source and drain electrodes.

こ\でゲート絶縁膜5は例えばSiOxかSiNxで形
成され半導体動作/fi6はa−8i膜で、保設膜7は
S ioxで才たホトレジスト層8はポジレジストを用
いて形成されている。
Here, the gate insulating film 5 is formed of, for example, SiOx or SiNx, the semiconductor operation/fi 6 is formed of an a-8i film, the storage film 7 is formed of Siox, and the photoresist layer 8 is formed of a positive resist.

次にこの場合のようにガラス基板3を使用するものにつ
いては背面露光によるセルフアライメント法が適用でき
、ガラス基板3の板面より紫外線照射を行うとゲート電
極4がマスクとなりホトレジスト層8に対し高い位置合
わせ精度の露光を行うことができ、現像処理により第3
図に示すようにホトレジスト1ホ8が窓開けされる。
Next, in cases where a glass substrate 3 is used as in this case, a self-alignment method using back exposure can be applied, and when ultraviolet rays are irradiated from the surface of the glass substrate 3, the gate electrode 4 acts as a mask and the height of the photoresist layer 8 is higher than that of the photoresist layer 8. Exposure with alignment accuracy can be performed, and the third
As shown in the figure, the photoresist 1 hole 8 is opened.

次に化学エツチング液例えばF2O3を用いてSi O
xよりなる保豚膜7をエツチングして第4図に示すよう
に半導体動作JftGを露出させ、この上にn ’ a
−8i層を形成すると共にNi−Crなどの金属をに¥
尤しリフトオフ法によりソース電極およびドレイン電極
が形成されている。
Next, use a chemical etching solution such as F2O3 to remove the SiO
The protective membrane 7 consisting of x is etched to expose the semiconductor operation JftG as shown in FIG.
- Forming an 8i layer and adding metals such as Ni-Cr
The source electrode and drain electrode are formed by a lift-off method.

然しF2O3などの化学エツチング液を用いて選択エツ
チングを行う場合ホトレジス[8とSiOxよりなる保
訟膜7との密Ii性が悪く、エツチング液がこの間に浸
みこみパターン形成の精度を損うと云う問題がある。
However, when selective etching is performed using a chemical etching solution such as F2O3, there is a problem in that the adhesiveness between the photoresist [8] and the protective film 7 made of SiOx is poor, and the etching solution permeates between them, impairing the accuracy of pattern formation. There is.

これを解決する方法として5tyx保護膜7の上にホト
レジストとの密着性のよいa−8i層を設けることが行
われているが、この場合はa−8i層の光吸収係数が大
きいためその厚さの分だけ半導体動作層6の厚さを減ら
す必要があり、I” E Tの安定性の点から良い方法
であるとは云えない。
A method to solve this problem is to provide an a-8i layer with good adhesion to the photoresist on the 5tyx protective film 7, but in this case, since the light absorption coefficient of the a-8i layer is large, the thickness of the a-8i layer is Since it is necessary to reduce the thickness of the semiconductor active layer 6 by the same amount, this method cannot be said to be a good method from the viewpoint of stability of I''ET.

一方SiOx保股膜7と8i 7FX性のよいホトレジ
ストを選択することも考えられるが、背面露光法を用い
る限りポジ型レジストの使用が必要であり、AZ系のポ
ジレジストである限りSiOx保hψ膜7とは良い密着
性を得ることはできない。
On the other hand, it is possible to select a photoresist with good FX properties for SiOx retention films 7 and 8i, but as long as the back exposure method is used, it is necessary to use a positive resist, and as long as it is an AZ-based positive resist, the SiOx retention film 7, good adhesion cannot be obtained.

(d) 発明の目的 本発明の目的はポジ系のレジストと密着性が良くまた半
導体動作層の厚さを減少でぜ力くて済む薄膜トランジス
タの製造方法を提供するにある。
(d) Object of the Invention An object of the present invention is to provide a method for manufacturing a thin film transistor which has good adhesion to a positive resist and which requires less effort by reducing the thickness of the semiconductor active layer.

(e) 発明のオjt成 本発明の目的はAし膜F E Tのチャネル部保設膜と
して使用するSiOx膜上に更にS iNx膜を設け、
この上に塗布するレジストとの密着性を向上させること
により達成することができる。
(e) Ojt formation of the invention The purpose of the present invention is to further provide a SiNx film on the SiOx film used as a channel part holding film of the aluminum film FET.
This can be achieved by improving the adhesion with the resist applied thereon.

(f) 発明の実施例 本発明はレジストとの密着性のよいSiNxを5tyx
保hφ膜7とホトレジストN8との間に介在させるもの
である。
(f) Embodiments of the invention The present invention uses 5tyx SiNx which has good adhesion to the resist.
It is interposed between the hφ film 7 and the photoresist N8.

こ5で介在層の条件はガラス基板3の背面露光によるセ
ルフアライメントに除して紫外線の吸収が少いI料であ
ることおよびPCVD法で形成できることであるがPC
VD法で得られるSiNx膜は透明であ!2またポジ系
レジストとの密着性もよい0 以下実施例について本発明を説明する。
In this step 5, the conditions for the intervening layer are that it is an I material that absorbs less ultraviolet rays compared to the self-alignment by back exposure of the glass substrate 3, and that it can be formed by the PCVD method.
The SiNx film obtained by the VD method is transparent! 2. Good adhesion to positive resists 0. The present invention will be described below with reference to Examples.

第5図はリフトオフ法により形成される薄膜FETを示
すものでカラス基板3の上にNi−Crよりなるゲート
電極4を形成後、PCVD法によりSiOxよりなるゲ
ート絶縁膜5+ a Siよりなる半導体動作層6. 
SiOxよりなる保礁膜7. SiNxよりなる密着膜
9とlID1次/m形成する。
FIG. 5 shows a thin film FET formed by a lift-off method. After forming a gate electrode 4 made of Ni-Cr on a glass substrate 3, a gate insulating film 5+ made of SiOx is formed by a PCVD method. Layer 6.
Reef preservation film made of SiOx7. An adhesive film 9 made of SiNx and lID primary/m are formed.

次にスビノナを用いてこの上にポジレジストM形成した
る後背面露光を行ってゲート電極4の部分のホトレジス
ト層8を除いて感光させ現像処理により感光部分を溶解
除去させる0 次にこの上にン2ン(Si&)とホスフィン(PH3)
の混合ガスを用いてPCVDを行いn+のa−Si層1
0を形成し、更にこの上にNi−Cr層11を蒸着する
0 なおソース電極とドレイン電極け′このようにして生じ
たN1−Crj梼11とn+のa−Si7mIOに選択
エツチングを施すことにより電極パターンが形成されま
た、SiNx密着膜9の上のホトレジスト層8は溶剤に
より除去されて薄膜トランジスタができ上る。
Next, after forming a positive resist M on this using Subinona, back exposure is performed to expose the photoresist layer 8 except for the gate electrode 4 portion, and the exposed portion is dissolved and removed by a development process. (Si&) and phosphine (PH3)
PCVD is performed using a mixed gas of n+ a-Si layer 1.
Further, a Ni-Cr layer 11 is deposited on the source electrode and the drain electrode. An electrode pattern is formed, and the photoresist layer 8 on the SiNx adhesive film 9 is removed with a solvent to complete a thin film transistor.

(9)発明の効果 本発明は背面露光法によるセルフアライメント法とリフ
トオフ法とを用いて形成される薄膜トランジスタの製造
工程においてSiOx保tム欣と、ポジレジストとの密
九性が悪いため収率および品質が低下する点を改良する
ためになされたもので、S jNx膜を密着膜として用
いる本発明の実施によりこれらの問題点を解決すること
ができる。
(9) Effects of the invention In the manufacturing process of thin film transistors formed using a self-alignment method using a back exposure method and a lift-off method, the yield is low due to poor density between the SiOx film and the positive resist. This was done to improve the problem of deterioration in quality and deterioration of quality.These problems can be solved by implementing the present invention using an SjNx film as an adhesive film.

【図面の簡単な説明】 第1図は薄膜トランジスタの構成図、第2図〜第4図は
従来の製造工程を説明する断面図、また第5図は本発明
に係る工程を説明する断面図である。 図において、 1.6I′i半導体動作層、2,5はゲート絶縁膜、3
はガラス基板、4はゲート電極、7け保護膜、8はホト
レジスト層、9は密着膜。
[Brief Description of the Drawings] Figure 1 is a configuration diagram of a thin film transistor, Figures 2 to 4 are cross-sectional views explaining the conventional manufacturing process, and Figure 5 is a cross-sectional view explaining the process according to the present invention. be. In the figure, 1.6I′i semiconductor operating layer, 2 and 5 are gate insulating films, and 3
4 is a glass substrate, 4 is a gate electrode, 7 is a protective film, 8 is a photoresist layer, and 9 is an adhesive film.

Claims (1)

【特許請求の範囲】[Claims] ガラス基板上にゲート電極をパターン形成した後この上
にゲート絶縁膜、半導体動作層、チャネル部保護膜と順
次層形成し写真蝕刻技術によりゲート電極部を除いて上
記保護膜のエツチングを行い、ソースおよびドレイン電
極をパターン形成してなる薄膜トランジスタにおいて、
保護膜として使用する酸化シリコン膜上に更に窒化シリ
コン膜を設はレジストとの密着性を向上することを特徴
とするドグ膜トランジスタの製造方法。
After patterning a gate electrode on a glass substrate, a gate insulating film, a semiconductor active layer, and a channel protective film are sequentially formed on the glass substrate, and the protective film is etched except for the gate electrode using photolithography, and the source layer is etched. and a thin film transistor formed by patterning the drain electrode,
A method for manufacturing a dog film transistor, characterized in that a silicon nitride film is further provided on a silicon oxide film used as a protective film to improve adhesion to a resist.
JP15281083A 1983-08-22 1983-08-22 Manufacture of thin film transistor Pending JPS6045066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15281083A JPS6045066A (en) 1983-08-22 1983-08-22 Manufacture of thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15281083A JPS6045066A (en) 1983-08-22 1983-08-22 Manufacture of thin film transistor

Publications (1)

Publication Number Publication Date
JPS6045066A true JPS6045066A (en) 1985-03-11

Family

ID=15548643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15281083A Pending JPS6045066A (en) 1983-08-22 1983-08-22 Manufacture of thin film transistor

Country Status (1)

Country Link
JP (1) JPS6045066A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139069A (en) * 1984-12-10 1986-06-26 Fuji Xerox Co Ltd Thin-film transistor and manufacture thereof
JPS61187369A (en) * 1985-02-15 1986-08-21 Hitachi Ltd Manufacture of thin film transistor
JPS62140467A (en) * 1985-12-13 1987-06-24 Sharp Corp Manufacture of thin-film transistor
JPS62259471A (en) * 1986-05-02 1987-11-11 Fuji Xerox Co Ltd Manufacture of thin film transistor
JPS63168052A (en) * 1986-12-29 1988-07-12 Nec Corp Thin film transistor and manufacture thereof
JPS644071A (en) * 1987-06-26 1989-01-09 Nippon Telegraph & Telephone Thin film transistor and manufacture thereof
JPS6450567A (en) * 1987-08-21 1989-02-27 Nec Corp Thin film transistor and manufacture thereof
JPH01173650A (en) * 1987-12-26 1989-07-10 Seikosha Co Ltd Manufacture of amorphous silicon thin-film transistor
JPH06163903A (en) * 1986-05-02 1994-06-10 Fuji Xerox Co Ltd Thin film transistor
US5888855A (en) * 1994-12-14 1999-03-30 Kabushiki Kaisha Toshiba Method of manufacturing active matrix display

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139069A (en) * 1984-12-10 1986-06-26 Fuji Xerox Co Ltd Thin-film transistor and manufacture thereof
JPS61187369A (en) * 1985-02-15 1986-08-21 Hitachi Ltd Manufacture of thin film transistor
JPS62140467A (en) * 1985-12-13 1987-06-24 Sharp Corp Manufacture of thin-film transistor
JPS62259471A (en) * 1986-05-02 1987-11-11 Fuji Xerox Co Ltd Manufacture of thin film transistor
JPH06163903A (en) * 1986-05-02 1994-06-10 Fuji Xerox Co Ltd Thin film transistor
JPS63168052A (en) * 1986-12-29 1988-07-12 Nec Corp Thin film transistor and manufacture thereof
JPS644071A (en) * 1987-06-26 1989-01-09 Nippon Telegraph & Telephone Thin film transistor and manufacture thereof
JPS6450567A (en) * 1987-08-21 1989-02-27 Nec Corp Thin film transistor and manufacture thereof
JPH01173650A (en) * 1987-12-26 1989-07-10 Seikosha Co Ltd Manufacture of amorphous silicon thin-film transistor
US5888855A (en) * 1994-12-14 1999-03-30 Kabushiki Kaisha Toshiba Method of manufacturing active matrix display

Similar Documents

Publication Publication Date Title
US5045487A (en) Process for producing a thin film field-effect transistor
JPS58199564A (en) Semiconductor element
JP2002246310A (en) Method of forming thin semiconductor film, method of manufacturing semiconductor device, device used for executing the methods, and electro-optic device
KR100481835B1 (en) Insulating film formation method, semiconductor device, and production apparatus
JPS6045066A (en) Manufacture of thin film transistor
JPS60117711A (en) Forming apparatus of thin film
JPH05304171A (en) Thin-film transistor
JP2002299238A (en) Polycrystalline semiconductor film-forming method and semiconductor device manufacturing method
TW200302522A (en) Manufacturing apparatus of an insulation film
JP2631476B2 (en) Method for manufacturing thin film transistor
JP3221129B2 (en) Semiconductor device manufacturing method
JPS577972A (en) Insulated gate type thin film transistor
JP2002198311A (en) Method for forming polycrystalline semiconductor thin film and method for manufacturing semiconductor device and equipment and electro-optical system for putting these methods into practice
JPH0282578A (en) Manufacture of thin film transistor
JPS5927575A (en) Manufacture of self-alignment thin film transistor
JPS58148458A (en) Thin film transistor
JP2007103766A (en) Pattern forming method and manufacturing method of thin film transistor
KR100200346B1 (en) Thin film transistor having contact layer and making method thereof
JPH05283693A (en) Manufacture of thin film transistor
JPS63228757A (en) Manufacture of thin-film transistor
JPH01309379A (en) Thin-film semiconductor element
KR100790934B1 (en) Thin Film Transistor and method for fabricating the same
JPH05110088A (en) Manufacture of thin film transistor circuit
JPS62221160A (en) Manufacture of thin film transistor
JPS6088471A (en) Field effect transistor