JPS6044006A - Separation of fine particle in suspension - Google Patents

Separation of fine particle in suspension

Info

Publication number
JPS6044006A
JPS6044006A JP15025383A JP15025383A JPS6044006A JP S6044006 A JPS6044006 A JP S6044006A JP 15025383 A JP15025383 A JP 15025383A JP 15025383 A JP15025383 A JP 15025383A JP S6044006 A JPS6044006 A JP S6044006A
Authority
JP
Japan
Prior art keywords
suspension
columnar
fine particles
vortex
karman vortex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15025383A
Other languages
Japanese (ja)
Other versions
JPS6348563B2 (en
Inventor
Kanichi Ito
寛一 伊藤
Mitsuo Hirayama
平山 詳郎
Kyoichi Okamoto
恭一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP15025383A priority Critical patent/JPS6044006A/en
Publication of JPS6044006A publication Critical patent/JPS6044006A/en
Publication of JPS6348563B2 publication Critical patent/JPS6348563B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To attain to miniaturize a flocculative precipitation apparatus, by relatively moving a suspension and columnar matter to generate a Karman vortex in the suspension behind the columnar body, and performing flocculation of fine particles in the suspension by a simple addition apparatus. CONSTITUTION:A flocculant (e.g., a high-molecular flocculant) is added to raw water entering through an inlet 1 from a nozzle 2 and columnar matters 4 are set in a flowline formed by flow inhibiting plates 3 at appropriate intervals so as to prepare for the attenuation of a Karman vortex C and to be capable of repeatedly generating the Karman vortex. In this state, flocs are flocculated in the vortex C, densely compacted and rapidly precipitated during the passage of a fluid A through the flowline and the formed sludge is discharged from the sludge withdrawing port 6 provided to the lower part while supernatant treated water is obtained from a fluid outlet 5. When fine particles in raw water are solid particles, the density of formed flocs becomes high and the succeeding dehydrating operation is made favorable.

Description

【発明の詳細な説明】 本発明は、上下水や産業廃液に於けるスラジ分離や油分
分離などのような、懸濁液中の微粒子分離方法に係るも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating fine particles in suspensions, such as sludge separation and oil separation in water, sewage and industrial waste liquids.

従来よりこの種の懸濁液中の微粒子を分離するのに、種
々の凝集・沈殿装置が用いられ℃いるが、凝集沈殿に時
間がかかり、また、生成フロックの密度が小であり、設
備も大型となる欠点があった。
Conventionally, various flocculation/sedimentation devices have been used to separate fine particles in this type of suspension, but coagulation and sedimentation takes time, the density of the flocs produced is small, and equipment is required. It had the disadvantage of being large.

本発明は、簡単な付加装置により液中微粒子の凝集を高
能率に行い得ることによって凝集・沈殿装置の小型化を
図ると共に%固体粒子の場合は生 2− 成フロックの密度を大として後端の脱水操作をも有利な
らしめんとすることを目的とするものである。
The present invention aims to downsize the flocculation/sedimentation apparatus by making it possible to flocculate submerged fine particles with high efficiency using a simple additional device. The purpose of this invention is to make the dehydration operation more advantageous.

この目的を達成するために、発明者らは研究を重ね、そ
の折に得た知見に基づいて本発明がなされた。
In order to achieve this objective, the inventors conducted repeated research, and based on the findings obtained at that time, the present invention was made.

即ち、先ず本発明は、次の如ぎ現象に着目されてなされ
たものである。
That is, first, the present invention was made by paying attention to the following phenomenon.

(1) レイノルズ数が約60〜5000の範囲で、円
柱のような柱状物体A(ブラフ・ボディ)に流れが当る
と、第1図に示す如く物体の背後にカルマン渦0と呼ば
れる規則性のある二列の部列ができ、渦の発生サイクル
NはNキ0.2V/D(Vは物体と流体の相対速度、D
は円柱の等価直径)となり、流体を加振すること。
(1) When a flow hits a columnar object A (bluff body) such as a cylinder in the Reynolds number range of about 60 to 5000, a regular phenomenon called Karman vortex 0 occurs behind the object as shown in Figure 1. A certain two-row partial sequence is formed, and the vortex generation cycle N is 0.2 V/D (V is the relative velocity of the object and the fluid, D
is the equivalent diameter of the cylinder) and excite the fluid.

(2)崎の中心部は急激な圧力降下を惹き起すため液中
の微粒子は圧力差によって渦の中心部に吸い寄せられる
と同時に相互に圧着されること。
(2) Since the center of the vortex causes a rapid pressure drop, the fine particles in the liquid are attracted to the center of the vortex due to the pressure difference and are pressed together at the same time.

レイノルズ数: Re−DV/ν(νは流体の動粘性係
数)であるから、柱状物体の等価直径り及び液−3− と物体との相対速度■を適宜選定して前記のカルマン渦
0の発生条件に合致させることは容易である。
Since Reynolds number: Re-DV/ν (ν is the dynamic viscosity coefficient of the fluid), the equivalent diameter of the columnar object and the relative velocity between the liquid and the object are appropriately selected to obtain the above-mentioned Karman vortex 0. It is easy to match the occurrence conditions.

柱状物体人の背後に相次いで発生するカルマン渦0は流
体よりも遅い速度で移動しながら次第に減衰していくが
、この間に液中の微粒子は低圧の渦心部に吸い寄せられ
て急速に凝集し成長すると同時に、渦心部の急激な圧力
降下による加速度で固体粒子は相互に圧着されるために
生成フロックの密度が大きくなる。
The Karman vortices 0 that occur one after another behind the columnar object and the person gradually attenuate while moving at a slower speed than the fluid, but during this time, the fine particles in the liquid are attracted to the low-pressure vortex center and rapidly aggregate. At the same time as they grow, the solid particles are pressed together by the acceleration caused by the rapid pressure drop at the vortex core, so the density of the generated floc increases.

即ち、粒子の急速な成長とその密度の大きくなることと
の相乗効果によってフロックの沈降速度は著しく大きく
なるので、凝集装置の小型化のみならず沈殿装置も小型
化される。
That is, the synergistic effect of the rapid growth of the particles and the increase in their density significantly increases the sedimentation speed of the flocs, so that not only the flocculating device but also the settling device can be downsized.

又、生成フロックの密度が大きくなることによって後端
の脱水操作も有利となるメリットがある。
Furthermore, the increased density of the produced flocs has the advantage that the dewatering operation at the rear end is also advantageous.

更にカルマン渦による流体の加振作用により粒子が振動
するので、部外の粒子の#!巣も若干促進される。
Furthermore, the particles vibrate due to the excitation effect of the fluid due to the Karman vortex, so the #! Nests are also slightly promoted.

流体と相対運動を行う柱状物体(ブラフ・ボディ)の配
設は簡単であるから、本発明によれば簡単な付加装置に
より、前記のように懸濁液中の微粒子の凝集を高能率に
行うことが出来、凝集・沈殿装置の小屋化ならびに固体
粒子の場合は後端の脱水操作をも有利にできるなど排水
処理その他の液体処理産業上応用可能な範囲は広い。
Since the arrangement of columnar objects (bluff bodies) that move relative to the fluid is simple, according to the present invention, fine particles in suspension can be agglomerated with high efficiency using a simple additional device as described above. It has a wide range of applications in wastewater treatment and other liquid treatment industries, such as making it possible to make a coagulation/sedimentation device into a shed and, in the case of solid particles, also advantageous for dewatering at the rear end.

本発明は、懸濁液と柱状物体とを相対的に移動せしめて
、前記柱状物体の後方の懸濁液中にカルマン渦を生ぜし
めて懸濁微粒子を凝集せしめることをq!i微とする懸
濁液中の微粒子分離方法である。
In the present invention, a suspension liquid and a columnar object are moved relative to each other, a Karman vortex is generated in the suspension liquid behind the columnar object, and suspended fine particles are agglomerated! This is a method for separating fine particles in a suspension.

本発明の実施例を図面により説明する。Embodiments of the present invention will be described with reference to the drawings.

第2図は阻流板方式の実施例で、(a)は平面断面図、
(b)は(a)のX−X断面図を示す。原水は入口1よ
り入り、入口付近でノズル2より凝集剤(例えば高分子
)を添加する。阻流板3で形成される流路内に柱状物体
4を設げ、4はカルマン渦の減衰に備え、くり返しカル
マン渦を発生させ得るように適宜間隔にセットしである
。流体が流路を通過する間に、前記の原理でフロックは
凝集し且つ圧密されて急速に沈殿して下部のスラジ抜出
し口6より排出され、流体出口5から処理水(清澄水)
が得られる。
Figure 2 shows an example of the baffle plate system, where (a) is a plan cross-sectional view;
(b) shows the XX sectional view of (a). Raw water enters from inlet 1, and a flocculant (for example, polymer) is added from nozzle 2 near the inlet. Column-shaped objects 4 are provided in the flow path formed by the baffle plate 3, and are set at appropriate intervals to prepare for attenuation of the Karman vortex and to repeatedly generate Karman vortices. While the fluid passes through the flow path, the flocs are aggregated and consolidated according to the above-mentioned principle, rapidly precipitate, and are discharged from the sludge outlet 6 at the bottom, and treated water (clear water) is released from the fluid outlet 5.
is obtained.

第3図は傾斜板方式の実施例で、側断面図を示す。原水
は入口1′より入り、ノズル2′より凝集剤を添加する
。傾斜板3′で仕切られた平行流路内に前記同様柱状物
体4′を適宜間隔で設けである。流体が流路を上昇する
間に前記同様フロックは急速に沈殿し、傾斜板6′の上
面をスライドして下部のスラジ抜出し口6′より排出さ
れ、流体出口5′から処理水が取り出される。
FIG. 3 shows a side sectional view of an embodiment of the inclined plate system. Raw water enters through inlet 1' and flocculant is added through nozzle 2'. Similarly to the above, columnar objects 4' are provided at appropriate intervals in parallel flow paths partitioned by inclined plates 3'. While the fluid moves up the flow path, the flocs rapidly settle as described above, slide on the upper surface of the inclined plate 6' and are discharged from the lower sludge outlet 6', and the treated water is taken out from the fluid outlet 5'.

第4図は攪拌方式の実施例で、(a)は側断面図、(b
)は(a)のy−y断面図を示す。攪拌方式の場合は柱
状物体を運動させて流体との相対速度を生せしめるケー
スである。原水は入口1“より入り、ノズル2“より凝
集剤を添加して内筒6“で囲まれる凝集室に導かれる。
Figure 4 shows an example of the stirring method, (a) is a side sectional view, (b)
) shows a y-y cross-sectional view of (a). In the case of the stirring method, a columnar object is moved to generate a relative velocity with the fluid. Raw water enters through an inlet 1'', a flocculant is added through a nozzle 2'', and the raw water is led to a flocculation chamber surrounded by an inner cylinder 6''.

凝集室内では、同心円上に配した柱状一体4”が駆動機
7によって回転されられる。
Inside the coagulation chamber, columnar units 4'' arranged concentrically are rotated by a drive machine 7.

此の場合、柱状物体4“の取付半径rに比例して速度■
が変るので、カルマン渦による振動数を一致させ加振作
用による部外の粒子凝集効果も狙う意 6− 味で、柱状物体4“の直径りはrに比例して変化させ、
振動数Nキ0.2V/Dを一定にするとよい(第4図(
b)参照)。凝集室内では、柱状物体4“の背後に発生
するカルマン渦によって、前記原理によりフロックは凝
集し且つ圧密されて急速に沈殿し、外筒タンク8の下部
のスラジ抜出し口6“より排出される。処理水は外筒タ
ンク8の上縁よりオーバーフローして流体出口5“より
取出される。
In this case, the speed ■ is proportional to the installation radius r of the columnar object 4''.
changes, so we aim to match the frequency of the Karman vortices and also aim for the external particle aggregation effect due to the excitation action.
It is best to keep the vibration frequency N and 0.2V/D constant (Figure 4 (
b)). In the flocculation chamber, the flocs are flocculated and consolidated according to the above-mentioned principle by the Karman vortices generated behind the columnar objects 4'', and rapidly settle, and are discharged from the sludge outlet 6'' at the bottom of the outer tank 8. The treated water overflows from the upper edge of the outer cylindrical tank 8 and is taken out from the fluid outlet 5''.

以上液中の固体粒子の分離例として下水処理の場合の実
施例について説明したが、液液分離例として例えば含油
廃水の油分分離の場合も前記の原理によって水中の油分
を凝集させることができる。
An example of sewage treatment has been described above as an example of separation of solid particles in a liquid, but oil in water can also be agglomerated according to the above principle in the case of separation of oil from oil-containing wastewater as an example of liquid-liquid separation.

此の場合、凝集した油のフロックは水よりも軽いので浮
上させて取り出される。
In this case, the flocs of coagulated oil are lighter than water, so they are floated and removed.

本発明により、液中の微粒子の凝集を高能率に行ない、
装置の小型化をはかり、固形粒子に対しては生成フロッ
ク密度を大として後方設備の負担を減少せしめる懸濁液
中の微粒子分離方法を提供することができ実用上極めて
犬なる効果を奏する。
According to the present invention, fine particles in a liquid can be agglomerated with high efficiency,
It is possible to provide a method for separating fine particles in a suspension, which reduces the size of the apparatus and increases the density of generated flocs for solid particles, thereby reducing the burden on rear equipment, which is extremely effective in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

−7− 第1図は本発明の詳細な説明する原理図、第2図は阻流
板方式の実施例で(a)は平面断面図、(b)はX−X
断面図、第3図は傾斜板方式の実施例を示す側断面図、
第4図は攪拌方式の実施例で(a)は側断面図、(b)
はY−Y断面図である。 1.1’、1“・・・入口、2.2’、2“・・・ノズ
ル、6・・・阻流板、6′・・・傾斜板、6“・・・内
筒、4.4’、4“・・・柱状物体、5.5’、5“・
・・流体出口、6 、6’ 、 6“・・・抜出し口。 特許出願人 株式会社荏原製作所 代理人弁理士 高 木 正 行 同 弁理士 千 1) 捻 回 弁理士 丸 山 隆 夫 特開昭GO−44006(3)
-7- Figure 1 is a detailed explanation of the principle of the present invention, Figure 2 is an embodiment of the baffle plate system, (a) is a plan sectional view, and (b) is
A cross-sectional view, FIG. 3 is a side cross-sectional view showing an example of the inclined plate method,
Figure 4 shows an example of the stirring method, (a) is a side sectional view, (b)
is a YY sectional view. 1.1', 1"...inlet, 2.2', 2"...nozzle, 6... baffle plate, 6'... inclined plate, 6"... inner cylinder, 4. 4', 4"...columnar object, 5.5', 5"
...Fluid outlet, 6, 6', 6"...extraction port. Patent applicant: Ebara Corporation Representative Patent Attorney: Tadashi Takagi; Patent Attorney: 1,111) Twisting Patent Attorney: Takao Maruyama, JP-A GO-44006 (3)

Claims (1)

【特許請求の範囲】[Claims] t 懸濁液と柱状物体とを相対的に移動せしめて、前記
柱状物体の後方の懸濁液中にカルマン渦を生せしめて懸
濁微粒子を凝集せしめることを特徴とする懸濁液中の微
粒子分離方法。
t. Fine particles in a suspension, which is characterized in that the suspension and a columnar object are relatively moved to generate a Karman vortex in the suspension behind the columnar object to aggregate the suspended particles. Separation method.
JP15025383A 1983-08-19 1983-08-19 Separation of fine particle in suspension Granted JPS6044006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15025383A JPS6044006A (en) 1983-08-19 1983-08-19 Separation of fine particle in suspension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15025383A JPS6044006A (en) 1983-08-19 1983-08-19 Separation of fine particle in suspension

Publications (2)

Publication Number Publication Date
JPS6044006A true JPS6044006A (en) 1985-03-08
JPS6348563B2 JPS6348563B2 (en) 1988-09-29

Family

ID=15492898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15025383A Granted JPS6044006A (en) 1983-08-19 1983-08-19 Separation of fine particle in suspension

Country Status (1)

Country Link
JP (1) JPS6044006A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263670A (en) * 2005-03-25 2006-10-05 Nishihara Environment Technology Inc Solid-liquid separator
JP2009125695A (en) * 2007-11-26 2009-06-11 Yoshikazu Fukui Turbid water purifying apparatus
JP2011005375A (en) * 2009-06-24 2011-01-13 Nishihara Environment Technology Inc Solid-liquid separator
JP2011005376A (en) * 2009-06-24 2011-01-13 Nishihara Environment Technology Inc Solid/liquid separator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784800A (en) * 1980-11-14 1982-05-27 Hitachi Kiden Kogyo Ltd Addition of flocculant in treatment of sludge and apparatus therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784800A (en) * 1980-11-14 1982-05-27 Hitachi Kiden Kogyo Ltd Addition of flocculant in treatment of sludge and apparatus therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263670A (en) * 2005-03-25 2006-10-05 Nishihara Environment Technology Inc Solid-liquid separator
JP2009125695A (en) * 2007-11-26 2009-06-11 Yoshikazu Fukui Turbid water purifying apparatus
JP2011005375A (en) * 2009-06-24 2011-01-13 Nishihara Environment Technology Inc Solid-liquid separator
JP2011005376A (en) * 2009-06-24 2011-01-13 Nishihara Environment Technology Inc Solid/liquid separator

Also Published As

Publication number Publication date
JPS6348563B2 (en) 1988-09-29

Similar Documents

Publication Publication Date Title
US7037432B2 (en) Buoyant media flotation
CA2266583C (en) Water and wastewater treatment system with internal recirculation
AU2008290085B2 (en) Method of flocculating sedimentation treatment
CN101648086B (en) Rapid precipitating method and rapid precipitating and separating device
KR20040091712A (en) Method and device for clarification of liquids, particularly water, loaded with material in suspension
JP4707752B2 (en) Water treatment method and water treatment system
WO1997035655A1 (en) Water treatment system
US4199451A (en) Split flow water treatment plant
JP3676208B2 (en) Solid-liquid separation tank
JPS6044006A (en) Separation of fine particle in suspension
EP1268027A1 (en) Solid buoyant media induced flotation
CN108726734B (en) Oily sewage suspended sludge filtering and purifying device and sewage treatment process thereof
US2134113A (en) Water purification apparatus and method
US5792363A (en) Method for removing solids from a contaminated liquid
JP2017159213A (en) Flocculation treatment method and apparatus
CN112456671B (en) Mine water treatment method and system
EP0625074A1 (en) Vortex flocculation of solids suspended in liquid
SU912208A1 (en) Thickener
SU1044603A1 (en) Thickening apparatus
US2585808A (en) Water purification apparatus
SU994433A1 (en) Flocculating apparatus
SU1095939A1 (en) Thin layer cone-type thickener
JPS6028887A (en) Process for treating waste water in biological treating apparatus using fluidized carrier provided with cyclone for separating carrier particle
JPH0618562Y2 (en) Solid-liquid separation device using vortex flow
RU2121862C1 (en) Water purification device