JP3676208B2 - Solid-liquid separation tank - Google Patents

Solid-liquid separation tank Download PDF

Info

Publication number
JP3676208B2
JP3676208B2 JP2000251550A JP2000251550A JP3676208B2 JP 3676208 B2 JP3676208 B2 JP 3676208B2 JP 2000251550 A JP2000251550 A JP 2000251550A JP 2000251550 A JP2000251550 A JP 2000251550A JP 3676208 B2 JP3676208 B2 JP 3676208B2
Authority
JP
Japan
Prior art keywords
diameter
solid
flow
liquid separation
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000251550A
Other languages
Japanese (ja)
Other versions
JP2002058914A (en
Inventor
裕明 岡島
司 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishihara Environmental Technology Co Ltd
Original Assignee
Nishihara Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishihara Environmental Technology Co Ltd filed Critical Nishihara Environmental Technology Co Ltd
Priority to JP2000251550A priority Critical patent/JP3676208B2/en
Publication of JP2002058914A publication Critical patent/JP2002058914A/en
Application granted granted Critical
Publication of JP3676208B2 publication Critical patent/JP3676208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cyclones (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、活性汚泥処理用の沈殿槽や汚泥処理用の汚泥濃縮槽、微細粒子群の重力沈降分離装置、凝集沈殿処理槽などの水相と固相の分離処理全般に適用可能な固液分離に関するものである。
【0002】
【従来の技術】
微細粒子群(懸濁物質:SS)を含む希薄懸濁液を流入原水とし、その微細粒子群の分離や濃縮を行って大容量の流入原水を連続的に浄化処理する装置として、薬品無添加の条件下で自然沈降分離や濾過分離等を行う固液分離装置があるが、いずれも固液分離速度が遅く、かつ、原水の流入量や水質の変動に対応できないなどの課題があり、その対策として装置を大型にせざるを得ないという問題があった。
【0003】
そこで、原水の流入量や水質の変動にある程度は対応できる処理装置として、流入原水を槽内で旋回させ、その旋回流を利用して原水中の微細粒子群を慣性力で分離するスワール槽を適用することは既に知られている。
【0004】
図8は従来のスワール槽タイプの固液分離装置を示す概略的な断面図である。同図において、1はスワール槽タイプの固液分離槽であり、この固液分離槽1は、全長が同一径の円筒状をなす周壁部1aとテーパ状の槽底部1bとからなっている。2は前記固液分離槽1内に原水(被処理水)を導入する原水導入管であり、この原水導入管2は前記固液分離槽1の周壁部1aに対して接線方向に開口接続されている。3は前記固液分離槽1内の中央上部に配置された越流堰、4はその越流堰3に接続された分離水導出管、5は前記固液分離槽1の槽底部1bに接続されたスラッジ(沈降性物質)排出管である。
【0005】
次に動作について説明する。
原水導入管2から固液分離槽1内に流入した原水は、該固液分離槽1内を旋回しながら越流堰3の高さまで貯留される。このとき、固液分離槽1内の流入原水に含まれた沈降性物質(SS)は、その流入原水の旋回流に乗って移動し一部は上昇流側に溢流するが、多くは大量に引き抜かれるアンダーフロー側に移り、スラッジ排出管5から排出される。このようにして沈降性物質が分離除去されることにより、固液分離槽1の槽内上部には清澄水(分離水)が上昇し、該清澄水は越流堰3内に流入した後、分離水導出管4から流出する。
【0006】
ここで、上述のようなスワール槽タイプの固液分離槽1による固液分離について、さらに詳しく述べると、固液分離槽1の水平断面積をSとした時の固液分離槽1の分離速度(固液分離槽1内で沈降性物質が分離された清澄水の上昇速度)υは、原水流入量Qと沈降性物質排出量Qによって式(1)で求めることができる。
υ=(Q−Q)/S (1)
【0007】
そこで、スワール槽タイプの固液分離槽1内に、前記分離速度υよりも早い速度の原水旋回流速(以下、単に旋回流速という)υを発生させ、その旋回流に沈降性物質(微細粒子群)を乗せて移動させると、その沈降性物質は、前記旋回流に伴う慣性力によって水平方向に移動しようとするため、前記分離速度υの上昇流に乗り移り難くなり、その分離速度υよりも小さな沈降速度をもつ微細粒子群も上昇せずに、前記旋回流に乗って移動し、やがてアンダーフローとして沈降性物質排出管5から抜き出されることで分離除去される。
【0008】
従って、流入原水の旋回流を利用した慣性力による固液分離を効率よく行うためには、次のような条件を満たす必要がある。
▲1▼ 流入原水の旋回流速υを大きくする。
▲2▼ 分離速度υを小さくする。
▲3▼ 流入原水の旋回流と上昇流の乱れを可及的に少なくして、その旋回流と上昇流を明確に区分する。
▲4▼ 流入原水の旋回流と上昇流の境界付近の微細粒子群を素早く下向流動させて前記旋回流の影響下におく。
▲5▼ 微細粒子群をスムーズに抜き出す。
【0009】
【発明が解決しようとする課題】
従来のスワール槽タイプの固液分離装置は以上のように構成されているので、次のような課題があった。
(a)流入原水の旋回流速υを大きくしようとすると、原水流入量Qが大きくなって上昇速度が増大し固液分離効率が悪くなる。
(b)流入原水の旋回流速υを大きくすると、その影響が上昇流域に及んで流動(旋回流と上昇流)に乱れが生じ、固液分離効率が悪くなる。
(c)そこで、沈降性物質排出量Qを異常に大きく(原水流入量Qの約50%)とって、分離速度υが小さくなるように運転しているが、この場合、希薄なスラッジを多量に引き抜くことになり効率的な固液分離と言えないのが実情である。
【0010】
この発明は上記のような課題を解決するためになされたもので、沈降性物質を含む被処理水の旋回流速υCを大きくとって、分離速度υLを小さく抑えることができ、従来の固液分離槽に比して分離速度と分離効率を大幅に上げることができ、無薬注で機械的稼動手段を必要とせずにランニングコストが非常に安価な大容量処理に対応できる連続式の固液分離を得ることを目的とする。
【0011】
また、この発明は、上槽部と下槽部の水平断面積を変えるだけで、槽内に導入した被処理水の旋回流速υCを早くすることができ、その旋回流を確実かつスムーズに発生させることができる固液分離を得ることを目的とする。
【0012】
さらに、この発明は、被処理水の旋回流と槽中心部近傍に下向きの竜巻竜を確実かつスムーズに自然発生させることができ、固液分離効率を確実に向上させることができる固液分離を得ることを目的とする。
【0013】
さらに、この発明は、被処理水の川柳区域と処理水区域とを多孔整流板によって区分し、その両区域において互いの流動影響をなくすことができ、微細粒子の混入が極めて少ない清澄な分離水を効率よく得ることができる固液分離を提供することを目的とする。
【0014】
【課題を解決するための手段】
請求項1記載の発明に係る固液分離は、沈降性物質を含む被処理水を導入する被処理水導入手段および沈降性物質を排出する沈降性物質排出手段を有する下部狭径流動部と、沈降性物質が分離した処理水を導出する処理水導出手段を有する上部広径分離部と、下部狭径流動部の上端面または該上端面より上方に位置する水平断面に設けられた多孔整流板とを備えた固液分離槽において、被処理水導入手段は、下部狭径流動部に水平方向に周回する旋回流を形成する下部狭径流動部に設けられた導入口または導入管からなり、多孔整流板の下面には、下部狭径流動部内の旋回流を下向流に変換する一枚または二枚以上の案内板が設けられていることを特徴とするものである
【0017】
請求項記載の発明に係る固液分離は、多孔整流板の案内板設置位置に止水手段を設けたことを特徴とするものである。
【0018】
【発明の実施の形態】
以下、この発明の実施の一形態を説明する。
実施の形態1.
図1はこの発明の実施の形態1による固液分離槽を示す断面図、図2は図1の平面図であり、図8と同一または相当部分には同一符号を付して重複説明を省略する。図において、11aは固液分離槽1の上部広径分離部であり、この上部広径分離部11aは、固液分離槽1の全体で水平断面積(直径)が最も大きな円筒状に形成されている。11bは前記上部広径分離部11aの下端に連続形成された中間槽部であり、この中間槽部11bは、上端径が前記上部広径分離部11aと同一径で且つ下端側が漸次小径となるテーパ筒状に形成されている。11cは前記中間槽部11bの下端に連続形成された下部狭径流動部であり、この下部狭径流動部11cは、前記中間槽部11bの下端直径と同一径の円筒状に形成され、下部にテーパ状の槽底部11dを一体に有している。
【0019】
すなわち、この実施の形態1による固液分離槽1は、上槽部を上部広径分離部11aとして形成すると共に、中間槽部11bを下端側が漸次小径となるテーパ筒状に形成し、かつ、下槽部を前記中間槽部11bの小径端に連続する下部狭径流動部11cとして形成し、その下部狭径流動部11cの槽底部11dを下端側が漸次小径となるテーパ状に形成したものである。
【0020】
12は前記下部狭径流動部11cの周壁部に設けられて該周壁部の接線方向に開口し、沈降性物質を含む被処理水を導入する導入口であり、この導入口12に導入管2が接続されている。従って、前記導入管2と導入口12は、沈降性物質を含む被処理水を前記下部狭径流動部11cの内壁に沿って導入し、当該下部狭径流動部11c内で前記被処理水を水平方向に周回させて旋回流を発生させる被処理水導入手段を構成するものである。なお、前記導入口12は前記導入管2自体の原水吐出端であってもよい。
【0021】
13は前記上部口径分離部11aの外周に設けられた越流樋であり、この越流樋13に分離水導出管4が接続されており、その分離水導出管4と前記越流樋13とによって処理水導出手段が構成されている。14は前記上部広径分離部11aと前記中間槽部11bとの境界部に設けられた水平方向の多孔整流板であり、この多孔整流板14としては、金網、パンチングメタル、エキパンドメタル、充填層等の多孔部材が用いられる。
【0022】
14aは前記多孔整流板14の中心部に設けられた無孔部(止水手段)、15はその無孔部14aの下面に設けられた案内板である。この案内板15は、前記下部狭径流動部11c内で形成された旋回流を槽中心部で下向きの竜巻流に効率よく変換させるもので、一枚または二枚以上(図示では4枚)の羽根状板材からなっている。なお、この実施の形態1による固液分離槽1のスラッジ排出管(沈降性物質排出手段)5は、前記下部狭径流動部11cのテーパ状をなす槽底部11dの中心部に接続されている。
【0023】
次に動作について説明する。図3はその動作説明図である。
固液分離槽1の下部狭径流動部11c内に導入管2から原水(沈降性物質を含んだ被処理水)が流入すると、その流入原水は前記下部狭径流動部11cの内周面に沿って水平方向に導入される。従って、前記下部狭径流動部11c内に流入した原水には旋回流Aが生じ、その流入原水は旋回しながら連続して導入され上部広径分離部11aの高さまで貯留される。
【0024】
ここで、前記下部狭径流動部11cおよび中間槽部11bの内部に形成された旋回流Aは、前記多孔整流板14に設けられた案内板15によって下向きの竜巻流(軸流)Bに変化する。そして、原水中の沈降性物質(固相)である微細粒子群は前記竜巻流Bに巻き込まれて下降移動することにより、原水から分離される。一方、上部広径分離部11aでは多孔整流板14により旋回流Aの影響が阻止されるので、一様な上昇流Cとなり、沈降性物質が分離した分離水は均一に上昇することができる。
【0025】
すなわち、固液分離槽1の下部狭径流動部11cおよび中間槽部11bにおいて、流入原水中の微細粒子群は、旋回流Aに乗って運動しているために水平方向の強い慣性力を与えられ、上昇流C側に移りにくくなって水平方向に移動する。この状態において、流入原水の旋回流Aは案内板15で下向きの竜巻流Bに変化させられることにより、上述のように水平方向に移動した微細粒子群はスムーズに下向きの竜巻流に巻き込まれ、原水から分離されると共に下方に移動して槽底部のスラッジ排出管5から排出されるのである。
【0026】
従って、流入原水中の微細粒子群は、多孔整流板14より上部に位置する上部広径分離部11aへ前記多孔整流板14を介して移流する分離水(水相)から分離されやすくなる。このため、一般の重力沈殿に比べ短時間で効率よく固液分離することができる。なお、前記多孔整流板14を通過して上部広径分離部11aに移流した分離水は、原水が連続して導入されることにより、前記上部広径分離部11aの周壁上端を越えて越流樋13内に流入した後、処理水導出手段としての分離水導出管4から導出される。
【0027】
以上説明した実施の形態1によれば、固液分離槽1の上槽域を水平断面積が大きな上部広径分離部11aとして形成し、かつ、前記固液分離槽1の下槽域を水平断面積が小さな下部狭径流動部11cとして形成すると共に、その下部狭径流動部11cの内部に、該下部狭径流動部11cの内周面に沿って水平方向に原水(沈降性物質を含んだ被処理水)を導入するように構成したことにより、水平断面積の小さな下部狭径流動部11cでは流入原水の旋回流速υが速い旋回流Aを形成・維持することができ、かつ、上部広径分離部11aでは分離速度υを遅くすることができるため、固液分離効率が高くなるという効果がある。
【0028】
また、上記実施の形態1によれば、前記上部広径分離部11aと前記下部狭径流動部11cとの間には下端側が漸次小径となるテーパ状の中間槽部11bを連続形成するように構成したので、そのテーパ状の中間槽部11bにより、前記下部狭径流動部11cから上部広径分離部11aに向って流入原水をスムーズに移流させることができるという効果がある。
【0029】
さらに、上記実施の形態1によれば、上部広径分離部11aと中間槽部11bとの境界部に多孔整流板14を設けるように構成したので、その多孔整流板14によって、前記下部狭径流動部11cからの旋回流Aが上部広径分離部11a内を上昇する分離水の流動に影響を及ぼすようなことがなく、固液分離をスムーズに効率よく行うことができるという効果がある。
【0030】
さらに、上記実施の形態1によれば、前記多孔整流板14の中心部に設けられた無孔部14aの下面に案内板15を設け、この案内板15によって、流入原水の旋回流Aを下向きの竜巻流Bに変化させるように構成したので、流入原水中の沈降性物質である微細粒子群を前記竜巻流Bに巻き込んで下向移動させることができ、これによって、流入原水中の微細粒子群が原水から分離されやすくなり、前記多孔整流板14の上部に位置する上部広径分離部11aへの流出を阻止できるため、短時間で効率よく固液分離することができるという効果がある。
【0031】
以上総じて、上記実施の形態1によれば、固液分離効率を高くできると共に、無薬注で機械的稼動手段を必要とせずに、ランニングコストが安価で大容量処理に対応できる連続式の固液分離槽を提供できるという効果がある。
【0032】
実施の形態2.
図4はこの発明の実施の形態2による固液分離槽を示す断面図であり、図1から図3および図8と同一または相当部分には同一符号を付して重複説明を省略する。図4において、16は固液分離槽1の上部広径分離部11a内に収納配置された分離清澄促進用の傾斜板である。
【0033】
図5(a)から図5(e)は前記傾斜板16の様々な変形例を示す斜視図である。図5(a)に示す傾斜板16は、前記上部広径分離部11a内に一定の平行間隔で配置されたパラレルプレートからなり、図5(b)に示す傾斜板16は、同様に配置されたコルゲートプレートからなり、図5(c)の傾斜板16は、内部が平行する複数の通水路に仕切られた角型沈降管からなり、図5(d)の傾斜板16は複数の丸パイプのユニットからなり、図5(e)の傾斜板16は、ラシヒリング等の充填物を通水性部材でパックしたものからなり、そのいずれかの傾斜板16を選択して前記上部広径分離部11a内に収納配置するものである。
【0034】
なお、前記傾斜板16は、図5(a)から図5(e)のものに特定されるものではなく、例えば、短管,れき石,粒状担体などを充填材として適用してもよく、要するに上部広径分離部11aで分離水の清澄促進を図ることができる分離水清澄促進部材であれば、如何なるものであってもよい。
【0035】
以上説明した実施の形態2によれば、上記実施の形態1による固液分離槽1の上部広径分離部11aの内部に傾斜板16を収納配置するように構成したので、前記上部広径分離部11a内に上昇流入した分離水の清澄度を前記傾斜板16によって、さらに処理水質を高めることができるという効果がある。
【0036】
実施の形態3.
図6はこの発明の実施の形態3による固液分離槽を示す断面図である。この実施の形態3では、上記実施の形態1による固液分離槽1で、とくに中間槽部11bを設けず、上部広径分離部11aに、該上部広径分離部11aよりも水平断面積が小さな下部狭径流動部11cを連続形成したものであり、かかる構成の固液分離槽1にあっても上記実施の形態1の場合と同様の効果が得られる。なお、この実施の形態3における上記実施の形態1と同一または相当部分には同一符号を付して重複説明を省略する。
【0037】
実施の形態4.
図7はこの発明の実施の形態4による固液分離槽を示す断面図であり、上記実施の形態1から上記実施の形態3と同一または相当部分には同一符号を付して重複説明を省略する。この実施の形態4では、固液分離槽1の槽全体を下端側が漸次小径となるホッパー状に形成し、下部狭径流動部11cの上端面(つまり上部広径分離部11aの下端面)に多孔整流板14を配置し、この多孔整流板14の上方槽域を上部広径分離部11a、前記多孔整流板14の下方槽域を下部狭径流動部11cとし、かつ、前記多孔整流板14の無孔部14aの下面に案内板15を設けるように構成したものである。このような構成の固液分離槽1とした場合であっても、上記実施の形態1と同様の作用効果を得ることができる。
【0038】
なお、上記各実施の形態では、多孔整流板14における案内板15の設置部位を無孔部14aとしたが、多孔整流板14の案内板設置部位に別部材の止水板を取り付け、その止水板で前記案内板15を支持させるようにしてもよい。要するに、前記多孔整流板14は、下部狭径流動部11c内の旋回流が案内板15により下向き竜巻流に変換される際に、逆向きの上向流が生じないようにする止水手段を有していればよい。
【0039】
また、上記実施の形態1から上記実施の形態3において、固液分離槽1の下部狭径流動部11c内の槽底部11d側には、図示しないがモータで回転駆動されるスラッジ掻寄機を設けてもよい。この場合、前記スラッジ掻寄機によって、前記槽底部11dの中心部(沈降性物質排出管5の導入側開口)に分離後の沈降性物質を掻き寄せて沈降性物質排出管5から速やかに排出することができ、固液分離効率をさらに高めることができるという効果がある。
【0040】
また、上記実施の形態1から上記実施の形態4において、固液分離槽1の上部広径分離部11a内には水面付近に位置するスカム除去装置(図示せず)を設けてもよい。この場合、前記上部広径分離部11aの水面に浮上するスカムが前記スカム除去装置で排出できるため、分離水の清澄度がさらに高くなるという効果がある。
【0041】
さらに、上記実施の形態1から上記実施の形態4において、導入管2の系統で流入原水中に、無機凝集剤,高分子凝集剤,PH調整剤などの薬剤、および砂などの沈降促進物質を必要に応じて添加するようにしてもよい。その薬剤および沈降促進物質などを流入原水中に添加する場合、格別に薬剤混和液槽などを設けずとも、下部狭径流動部11cにおいて、旋回流と下向き竜巻流とによる流動で被処理水と添加薬剤などを効率よく混和することもできる。
【0042】
以上説明したように、この発明によれば、被処理水導入手段および沈降性物質排出手段を有する下部狭径流動部と、沈降性物質が分離した処理水を導出する処理水導出手段を有する上部広径分離部と、前記下部狭径流動部の上端面または該上端面より上方に位置する水平断面に設けられた多孔整流板とを備え、前記被処理水導入手段として、前記下部狭径流動部内に水平方向に周回する旋回流を形成するための導入口または導入管を前記下部狭径流動部に設けると共に、前記多孔整流板の下面には、前記下部狭径流動部内の旋回流を下向流に変換するための一枚または二枚以上の案内板を設けるように構成したので、次のような格別の作用効果を奏する。
すなわち、上部広径分離部に比して水平断面積の小さな下部狭径流動部に設けた導入口または導入管から前記下部狭径流動部内に被処理水が直に導入されるため、前記下部狭径流動部では被処理水の旋回流速が速く、かつ前記上部広径分離部では分離速度を遅くすることができて固液分離を効率よく行うことができるばかりか、前記下部狭径流動部で発生する流入原水の旋回流が、前記上部広径分離部内で上昇する分離水の上昇流に悪影響を及ぼすのを前記多孔整流板で阻止することができるため、前記上部広径分離部では清澄度の高い分離水を得ることができると共に、前記多孔整流板の下面に設けた案内板によって、前記下部狭径流動部に発生した被処理水の旋回流を下向きの竜巻流に変換させることができ、その竜巻流で被処理水中の沈降性物質を巻き込んで下方に移動させることができるため、固液分離をいっそう効率よく行うことができるという効果がある。
【0043】
また、この発明によれば、前記下部狭径流動部の上端面または該上端面より上方に位置する水平断面に多孔整流板を設けるように構成したので、前記下部狭径流動部内で発生する流入原水の旋回流が、前記上部広径分離部内で上昇する分離水の上昇流に悪影響及ばないように、前記旋回流を多孔整流板によって阻止することができ、従って、上部広径分離部では清澄度の高い分離水を得ることができるという効果がある。
【0044】
さらに、この発明によれば、前述のように、下部狭径流動部水平方向に周回する旋回流を形成するための導入口または導入管を被処理水導入手段として前記下部狭径流動部に設けるように構成したので、前記下部狭径流動部内に被処理水の旋回流を確実かつスムーズに発生させることができ、その旋回流によって、被処理水中の沈降性物質に水平方向の大きな慣性力を与えることができ、慣性力分離を効率よく行うことができるという効果がある。
【0045】
さらに、この発明によれば、前述のように、多孔整流板の下面に、下部狭径流動部内の旋回流を下向流に変換する一枚または二枚以上の案内板を設けるように構成したので、前記下部狭径流動部内に発生した被処理水の旋回流を、前記案内板によって下向きの竜巻流に変換させることができ、その竜巻流で被処理中の沈降性物質を巻き込んで下方に移動させることができるため、固液分離を効率よく行うことができるという効果がある。
【0046】
さらに、この発明によれば、多孔整流板の案内板設置位置に止水手段を設けたので、下部狭径流動部内の旋回流が案内板に衝突して下向きの竜巻流に変換される際に、逆向きの上向流が生じるのを防止することができ、このため、上部広径分離部では清澄度の高い分離水を得ることができるという効果がある。
【図面の簡単な説明】
【図1】この発明の実施の形態1による固液分離槽を示す断面図である。
【図2】図1の平面図である。
【図3】この発明の実施の形態1による固液分離槽の動作説明図である。
【図4】この発明の実施の形態2による固液分離槽を示す断面図である。
【図5】図4中の傾斜板の様々な変形例を示す斜視図である。
【図6】この発明の実施の形態3による固液分離槽を示す断面図である。
【図7】この発明の実施の形態4による固液分離槽を示す断面図である。
【図8】従来のスワール槽タイプの固液分離槽を示す概略的な断面図である。
【符号の説明】
1 固液分離槽
2 導入管(被処理水導入手段)
4 分離水導出管(処理水導出手段)
5 スラッジ排出管(沈降性物質排出手段)
11a 上部広径分離部
11b 中間槽部
11c 下部狭径流動部
11d 槽底部
12 導入口(被処理水導入手段)
13 越流樋(処理水導出手段)
14 多孔整流板
14a 無孔部(止水手段)
15 案内板
16 傾斜板
[0001]
BACKGROUND OF THE INVENTION
The present invention, sludge concentration tank for sedimentation tank and sludge treatment for activated sludge treatment, gravity settling separator of fine particles, the solid applicable to the separation process in general aqueous phase and a solid phase, such as coagulating sedimentation treatment tank The present invention relates to a liquid separation tank .
[0002]
[Prior art]
A dilute suspension containing fine particle groups (suspended substance: SS) is used as inflow raw water, and no chemicals are added as a device that continuously purifies large volumes of inflow raw water by separating and concentrating the fine particle groups. There are solid-liquid separation devices that perform natural sedimentation separation, filtration separation, etc. under the above conditions, but all have problems such as slow solid-liquid separation speed and inability to respond to fluctuations in raw water inflow and water quality. As a countermeasure, there was a problem that the apparatus had to be made large.
[0003]
Therefore, as a treatment device that can cope with fluctuations in raw water inflow and water quality to some extent, a swirl tank that swirls inflow raw water in the tank and separates fine particles in the raw water by inertial force using the swirl flow. Applying is already known.
[0004]
FIG. 8 is a schematic sectional view showing a conventional swirl tank type solid-liquid separator. In the figure, reference numeral 1 denotes a swirl tank type solid-liquid separation tank, and this solid-liquid separation tank 1 is composed of a cylindrical peripheral wall 1a and a tapered tank bottom 1b having the same overall length. Reference numeral 2 denotes a raw water introduction pipe for introducing raw water (treated water) into the solid-liquid separation tank 1, and this raw water introduction pipe 2 is openly connected in a tangential direction to the peripheral wall portion 1 a of the solid-liquid separation tank 1. ing. 3 is an overflow weir disposed in the upper center of the solid-liquid separation tank 1, 4 is a separation water outlet pipe connected to the overflow weir 3, and 5 is connected to the tank bottom 1 b of the solid-liquid separation tank 1. This is a sludge (sedimentable material) discharge pipe.
[0005]
Next, the operation will be described.
The raw water flowing into the solid-liquid separation tank 1 from the raw water introduction pipe 2 is stored up to the height of the overflow weir 3 while turning in the solid-liquid separation tank 1. At this time, the sedimentary substance (SS) contained in the inflowing raw water in the solid-liquid separation tank 1 moves on the swirling flow of the inflowing raw water, and partly overflows to the upflow side. It moves to the underflow side where it is pulled out and is discharged from the sludge discharge pipe 5. By separating and removing the sedimentary substance in this way, the clear water (separated water) rises in the upper part of the solid-liquid separation tank 1, and the clear water flows into the overflow weir 3, It flows out from the separated water outlet pipe 4.
[0006]
Here, the solid-liquid separation by the swirl tank type solid-liquid separation tank 1 as described above will be described in more detail. The separation speed of the solid-liquid separation tank 1 when the horizontal sectional area of the solid-liquid separation tank 1 is S upsilon L (rising speed of the clarified water sedimentary material in the solid-liquid separation tank 1 is separated) can be obtained by equation (1) by the raw water inflow Q F with sedimentary material emissions Q u.
υ L = (Q F -Q u ) / S (1)
[0007]
Therefore, a raw water swirl flow velocity (hereinafter simply referred to as swirl flow velocity) υ C having a speed higher than the separation speed υ L is generated in the swirl tank type solid-liquid separation tank 1, and sedimentary substances (fine particles) are generated in the swirl flow. When the particle group) is moved, the sedimentary substance tends to move in the horizontal direction due to the inertial force accompanying the swirling flow, so that it is difficult to transfer to the upward flow at the separation speed υ L , and the separation speed υ Fine particles having a sedimentation velocity smaller than L do not rise and move along the swirling flow, and are eventually separated and removed by being extracted from the sedimentary substance discharge pipe 5 as underflow.
[0008]
Therefore, in order to efficiently perform solid-liquid separation by inertia force using the swirling flow of inflow raw water, the following conditions must be satisfied.
(1) Increase the swirling flow velocity υ C of the incoming raw water.
(2) Separation speed υ Reduce L.
(3) Reduce the disturbance of the swirling flow and the rising flow as much as possible and clearly distinguish the swirling flow and the rising flow.
{Circle around (4)} The fine particles near the boundary between the swirling flow and the rising flow of the inflowing raw water are quickly caused to flow downward to be under the influence of the swirling flow.
(5) Extract fine particles smoothly.
[0009]
[Problems to be solved by the invention]
Since the conventional swirl tank type solid-liquid separation apparatus is configured as described above, there are the following problems.
(A) when trying to enlarge the turning velocity upsilon C inflow raw water, solid-liquid separation efficiency increase rate becomes raw water inflow Q F is large increases is deteriorated.
(B) When the swirl flow velocity υ C of the inflowing raw water is increased, the influence reaches the upflow region, the flow (swirl flow and upflow) is disturbed, and the solid-liquid separation efficiency is deteriorated.
(C) Therefore, taking large sedimentary material emissions Q u abnormally (approximately 50% of raw water inflow Q F), although separation rate upsilon L is operating so as to decrease, in this case, lean Actually, sludge is extracted in large quantities and cannot be said to be an efficient solid-liquid separation.
[0010]
The present invention has been made to solve the above-described problems, and can increase the swirling flow velocity υ C of the water to be treated containing the sedimentary substance to keep the separation speed υ L small. Compared to liquid separation tanks, the separation speed and separation efficiency can be greatly increased, and continuous solids that can be used for large-capacity processing with no chemical injection and no need for mechanical operation means and running costs are extremely low. The purpose is to obtain a liquid separation tank .
[0011]
In addition, the present invention can increase the swirl flow velocity υ C of the water to be treated introduced into the tank simply by changing the horizontal sectional area of the upper tank section and the lower tank section, and the swirl flow can be reliably and smoothly performed. It aims at obtaining the solid-liquid separation tank which can be generated.
[0012]
Furthermore, the present invention provides a solid-liquid separation tank that can reliably and smoothly naturally generate a swirling flow of water to be treated and a downward tornado dragon in the vicinity of the center of the tank, and can reliably improve solid-liquid separation efficiency. The purpose is to obtain.
[0013]
Further, the present invention divides the water willow area and the treated water area of the water to be treated by a porous rectifying plate, and eliminates the influence of mutual flow in the both areas, so that the clear separated water with very little mixing of fine particles is obtained. An object of the present invention is to provide a solid-liquid separation tank capable of efficiently obtaining the above.
[0014]
[Means for Solving the Problems]
The solid-liquid separation tank according to the first aspect of the present invention includes a lower-diameter fluidized portion having a water-to-be-treated introduction means for introducing the water to be treated containing a sedimentary substance and a sedimentary substance discharge means for discharging the sedimentary substance. And an upper wide-diameter separation portion having treated water deriving means for deriving treated water from which the sedimentary substance has been separated, and a porous rectifier provided on the upper end surface of the lower narrow-diameter fluidized portion or a horizontal cross section located above the upper end surface In the solid- liquid separation tank provided with a plate, the water to be treated introduction means comprises an introduction port or an introduction pipe provided in the lower narrow-diameter flow section that forms a swirling flow that circulates in the horizontal direction around the lower narrow-diameter flow section. , on the lower surface of the porous rectifying plate, and is characterized in that one or two more guide plate for converting a swirl flow in the lower narrow-diameter moving part to downflow is provided.
[0017]
The solid-liquid separation tank according to the invention described in claim 2 is characterized in that a water stop means is provided at the guide plate installation position of the porous rectifying plate .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below.
Embodiment 1 FIG.
1 is a cross-sectional view showing a solid-liquid separation tank according to Embodiment 1 of the present invention. FIG. 2 is a plan view of FIG. 1, and the same or corresponding parts as in FIG. To do. In the figure, 11a is an upper wide-diameter separation part of the solid-liquid separation tank 1, and this upper wide-diameter separation part 11a is formed in a cylindrical shape having the largest horizontal sectional area (diameter) in the entire solid-liquid separation tank 1. ing. 11b is an intermediate tank part formed continuously at the lower end of the upper wide-diameter separating part 11a. The intermediate tank part 11b has the same upper end diameter as the upper wide-diameter separating part 11a, and the lower end side gradually becomes smaller. It is formed in a tapered cylindrical shape. 11c is a lower narrow-diameter flow part formed continuously at the lower end of the intermediate tank part 11b, and the lower narrow-diameter flow part 11c is formed in a cylindrical shape having the same diameter as the lower end diameter of the intermediate tank part 11b. Has a tapered tank bottom 11d.
[0019]
That is, in the solid-liquid separation tank 1 according to the first embodiment, the upper tank part is formed as the upper wide-diameter separation part 11a, the intermediate tank part 11b is formed in a tapered cylindrical shape whose lower end side is gradually reduced in diameter, and The lower tank part is formed as a lower narrow-diameter fluid part 11c continuous with the small-diameter end of the intermediate tank part 11b, and the tank bottom part 11d of the lower narrow-diameter fluid part 11c is formed in a tapered shape whose lower end side gradually becomes smaller in diameter. is there.
[0020]
Reference numeral 12 denotes an inlet provided in the peripheral wall portion of the lower narrow-diameter flow portion 11c and opening in a tangential direction of the peripheral wall portion to introduce water to be treated containing a sedimentary substance. Is connected. Therefore, the introduction pipe 2 and the introduction port 12 introduce the treated water containing the sedimentary substance along the inner wall of the lower narrow-diameter fluid part 11c, and the treated water is introduced into the lower narrow-diameter fluid part 11c. The treated water introducing means is configured to generate a swirling flow by circulating in the horizontal direction. The introduction port 12 may be a raw water discharge end of the introduction pipe 2 itself.
[0021]
Reference numeral 13 denotes an overflow basin provided on the outer periphery of the upper caliber separation portion 11a. A separation water outlet pipe 4 is connected to the overflow basin 13, and the separated water outlet pipe 4 and the overflow basin 13 are connected to each other. The treated water derivation means is constituted by the above. 14 is a horizontal porous rectifying plate provided at the boundary between the upper wide-diameter separating portion 11a and the intermediate tank portion 11b. As the porous rectifying plate 14, a metal net, punching metal, expanded metal, filling A porous member such as a layer is used.
[0022]
Reference numeral 14a denotes a non-porous portion (water stop means) provided at the center of the porous rectifying plate 14, and 15 denotes a guide plate provided on the lower surface of the non-porous portion 14a. The guide plate 15 efficiently converts the swirl flow formed in the lower narrow-diameter flow portion 11c into a downward tornado flow at the center of the tank. One or two (four in the drawing) are provided. It consists of a blade-like plate material. In addition, the sludge discharge pipe (sedimentable substance discharge means) 5 of the solid-liquid separation tank 1 according to the first embodiment is connected to the central part of the tank bottom part 11d having a tapered shape of the lower narrow diameter flow part 11c. .
[0023]
Next, the operation will be described. FIG. 3 is a diagram for explaining the operation.
When raw water (treated water containing sedimentary substances) flows from the introduction pipe 2 into the lower narrow-diameter fluid portion 11c of the solid-liquid separation tank 1, the incoming raw water enters the inner peripheral surface of the lower narrow-diameter fluid portion 11c. Along the horizontal direction. Accordingly, a swirling flow A is generated in the raw water flowing into the lower narrow diameter fluidized portion 11c, and the inflowing raw water is continuously introduced while swirling and stored up to the height of the upper wide diameter separating portion 11a.
[0024]
Here, the swirl flow A formed inside the lower narrow-diameter flow portion 11c and the intermediate tank portion 11b is changed to a downward tornado flow (axial flow) B by the guide plate 15 provided on the porous rectifying plate 14. To do. And the fine particle group which is a sedimentation substance (solid phase) in raw | natural water is separated from raw | natural water by being involved in the tornado flow B and moving downward. On the other hand, since the influence of the swirl flow A is prevented by the porous rectifying plate 14 in the upper wide-diameter separation part 11a, the uniform upward flow C is obtained, and the separated water from which the sedimentary substance is separated can rise uniformly.
[0025]
That is, in the lower narrow-diameter flow part 11c and the intermediate tank part 11b of the solid-liquid separation tank 1, since the fine particle group in the inflow raw water is moving on the swirl flow A, it gives a strong inertial force in the horizontal direction. It becomes difficult to move to the upward flow C side and moves in the horizontal direction. In this state, the swirl flow A of the inflowing raw water is changed to the downward tornado flow B by the guide plate 15, so that the fine particles moving in the horizontal direction as described above are smoothly wound into the downward tornado flow, It is separated from the raw water and moves downward to be discharged from the sludge discharge pipe 5 at the bottom of the tank.
[0026]
Therefore, the fine particle group in the inflowing raw water is easily separated from the separated water (water phase) that flows through the porous rectifying plate 14 to the upper wide-diameter separating portion 11 a located above the porous rectifying plate 14. For this reason, solid-liquid separation can be efficiently performed in a short time compared with general gravity precipitation. The separated water that has passed through the porous rectifying plate 14 and transferred to the upper wide-diameter separating portion 11a flows over the upper end of the peripheral wall of the upper wide-diameter separating portion 11a by continuously introducing raw water. After flowing into the tub 13, it is led out from the separated water lead-out pipe 4 as treated water lead-out means.
[0027]
According to the first embodiment described above, the upper tank area of the solid-liquid separation tank 1 is formed as the upper wide-diameter separation portion 11a having a large horizontal cross-sectional area, and the lower tank area of the solid-liquid separation tank 1 is horizontal. The lower narrow-diameter flow portion 11c having a small cross-sectional area is formed, and the raw water (containing sedimentary substances is included) in the lower narrow-diameter flow portion 11c in the horizontal direction along the inner peripheral surface of the lower narrow-diameter flow portion 11c. In the lower narrow-diameter flow portion 11c having a small horizontal cross-sectional area, the swirl flow A having a high swirl flow velocity υ C of the inflow raw water can be formed and maintained, and it is possible to slow the rate of separation upsilon L in upper wide diameter separator unit 11a, there is an effect that the solid-liquid separation efficiency is improved.
[0028]
Further, according to the first embodiment, a tapered intermediate tank portion 11b whose lower end side has a gradually smaller diameter is continuously formed between the upper wide diameter separating portion 11a and the lower narrow diameter flow portion 11c. Since it comprised, there exists an effect that the inflow raw | natural water can be smoothly circulated from the said lower narrow diameter flow part 11c toward the upper wide diameter separation part 11a by the taper-shaped intermediate tank part 11b.
[0029]
Furthermore, according to the first embodiment, the porous rectifying plate 14 is provided at the boundary between the upper wide-diameter separating portion 11a and the intermediate tank portion 11b. The swirling flow A from the flow part 11c does not affect the flow of the separation water rising in the upper wide-diameter separation part 11a, and there is an effect that solid-liquid separation can be performed smoothly and efficiently.
[0030]
Furthermore, according to the first embodiment, the guide plate 15 is provided on the lower surface of the non-hole portion 14a provided at the center of the porous rectifying plate 14, and the guide plate 15 causes the swirling flow A of the inflowing raw water to face downward. The tornado flow B is changed so that a group of fine particles, which are sedimentary substances in the inflowing raw water, can be involved in the tornado flow B and moved downward. Since the group is easily separated from the raw water and can be prevented from flowing out to the upper wide-diameter separation part 11a located above the porous rectifying plate 14, there is an effect that the solid-liquid separation can be efficiently performed in a short time.
[0031]
As described above, according to the first embodiment, the solid-liquid separation efficiency can be increased, and no continuous operation can be performed at a low running cost and corresponding to a large-capacity process without requiring any chemical operation means without chemical injection. There is an effect that a liquid separation tank can be provided.
[0032]
Embodiment 2. FIG.
4 is a cross-sectional view showing a solid-liquid separation tank according to Embodiment 2 of the present invention. The same or corresponding parts as those in FIGS. 1 to 3 and FIG. In FIG. 4, reference numeral 16 denotes an inclined plate for promoting the separation and clarification, which is accommodated in the upper wide-diameter separation portion 11 a of the solid-liquid separation tank 1.
[0033]
FIG. 5A to FIG. 5E are perspective views showing various modified examples of the inclined plate 16. The inclined plate 16 shown in FIG. 5 (a) is composed of parallel plates arranged at a constant parallel interval in the upper wide-diameter separating portion 11a, and the inclined plate 16 shown in FIG. 5 (b) is similarly arranged. 5 (c), the inclined plate 16 of FIG. 5 (c) is composed of a rectangular sedimentation pipe partitioned into a plurality of parallel water passages, and the inclined plate 16 of FIG. 5 (d) has a plurality of round pipes. The inclined plate 16 in FIG. 5 (e) is formed by packing a filler such as a Raschig ring with a water-soluble member, and the upper wide-diameter separating portion 11a is selected by selecting one of the inclined plates 16. It is stored and arranged inside.
[0034]
The inclined plate 16 is not limited to that shown in FIGS. 5 (a) to 5 (e). For example, a short tube, a granite, a granular carrier, or the like may be used as a filler. In short, any member may be used as long as it is a separation water clarification promoting member capable of promoting clarification of separated water in the upper wide-diameter separation portion 11a.
[0035]
According to the second embodiment described above, since the inclined plate 16 is housed and arranged inside the upper wide-diameter separation portion 11a of the solid-liquid separation tank 1 according to the first embodiment, the upper wide-diameter separation is performed. There is an effect that the clarification degree of the separated water that has flowed up into the portion 11a can be further improved by the inclined plate 16 to improve the quality of the treated water.
[0036]
Embodiment 3 FIG.
6 is a cross-sectional view showing a solid-liquid separation tank according to Embodiment 3 of the present invention. In the third embodiment, in the solid-liquid separation tank 1 according to the first embodiment, the intermediate tank portion 11b is not provided, and the upper wide-diameter separation portion 11a has a horizontal sectional area larger than that of the upper wide-diameter separation portion 11a. The small lower-diameter flow part 11c is continuously formed, and the same effects as those in the first embodiment can be obtained even in the solid-liquid separation tank 1 having such a configuration. In addition, the same code | symbol is attached | subjected to the same or equivalent part as the said Embodiment 1 in this Embodiment 3, and duplication description is abbreviate | omitted.
[0037]
Embodiment 4 FIG.
FIG. 7 is a cross-sectional view showing a solid-liquid separation tank according to Embodiment 4 of the present invention. The same or corresponding parts as those in Embodiments 1 to 3 are given the same reference numerals, and redundant description is omitted. To do. In this Embodiment 4, the whole tank of the solid-liquid separation tank 1 is formed in a hopper shape in which the lower end side is gradually reduced in diameter, and is formed on the upper end surface of the lower narrow diameter flow portion 11c (that is, the lower end surface of the upper wide diameter separation portion 11a). A porous rectifying plate 14 is disposed, an upper tank area of the porous rectifying plate 14 is an upper wide diameter separating portion 11a, a lower tank area of the porous rectifying plate 14 is a lower narrow diameter flowing portion 11c, and the porous rectifying plate 14 The guide plate 15 is provided on the lower surface of the non-hole portion 14a. Even in the case of the solid-liquid separation tank 1 having such a configuration, the same effects as those of the first embodiment can be obtained.
[0038]
In each of the above-described embodiments, the installation site of the guide plate 15 in the porous rectifying plate 14 is the non-hole portion 14a. The guide plate 15 may be supported by a water plate. In short, the porous rectifying plate 14 is provided with a water stopping means for preventing the upward upward flow in the reverse direction when the swirling flow in the lower narrow diameter flow portion 11c is converted into the downward tornado flow by the guide plate 15. It only has to have.
[0039]
Further, in the first to third embodiments, a sludge scraper that is rotated by a motor (not shown) is provided on the tank bottom 11d side in the lower narrow-diameter flow part 11c of the solid-liquid separation tank 1. It may be provided. In this case, the sludge scraper scrapes the separated sedimentary substance to the central portion of the tank bottom 11d (the introduction side opening of the sedimentary substance discharge pipe 5) and quickly discharges it from the sedimentary substance discharge pipe 5. It is possible to improve the solid-liquid separation efficiency.
[0040]
Moreover, in the said Embodiment 1 to the said Embodiment 4, you may provide the scum removal apparatus (not shown) located in the water surface vicinity in the upper wide diameter separation part 11a of the solid-liquid separation tank 1. FIG. In this case, since the scum that floats on the water surface of the upper wide-diameter separating portion 11a can be discharged by the scum removing device, there is an effect that the clarification of the separated water is further increased.
[0041]
Further, in the first to fourth embodiments, the inflow raw water in the system of the introduction pipe 2 contains an inorganic flocculant, a polymer flocculant, a PH regulator, and a sedimentation promoting substance such as sand. You may make it add as needed. When the chemical and sedimentation promoting substance are added to the inflow raw water, the water to be treated is flown by the swirling flow and the downward tornado flow in the lower narrow-diameter flow section 11c without providing a special chemical mixing tank or the like. Additives can be mixed efficiently.
[0042]
As described above, according to this invention, deriving treated water deriving a lower narrow diameter flow moving parts having a beauty sedimentation material discharge means Oyo treatment water introduction means, the treated water sedimentary material is separated An upper wide-diameter separating portion having means, and a porous rectifying plate provided on the upper end surface of the lower narrow-diameter flow portion or a horizontal cross section located above the upper end surface, and as the treated water introducing means, An inlet or an introduction pipe for forming a swirling flow that circulates in the horizontal direction in the lower narrow-diameter flow section is provided in the lower narrow-diameter flow section, and the lower surface of the porous rectifying plate is provided in the lower narrow-diameter flow section. Since one or more guide plates for converting the swirl flow into the downward flow are provided, the following special effects are achieved.
That is, since the water to be treated is directly introduced into the lower narrow-diameter fluid part from the introduction port or introduction pipe provided in the lower narrow-diameter fluid part having a small horizontal cross-sectional area as compared with the upper wide-diameter separation part, In the narrow diameter flow section, the swirl flow rate of the water to be treated is fast, and in the upper wide diameter separation section, the separation speed can be slowed down so that solid-liquid separation can be performed efficiently. In the upper wide-diameter separation part, the swirling flow of the inflowing raw water generated in the upper wide-diameter separation part can be prevented from adversely affecting the upward flow of the separation water rising in the upper wide-diameter separation part. A high degree of separation water can be obtained, and the swirling flow of the water to be treated generated in the lower narrow-diameter flow part can be converted into a downward tornado flow by the guide plate provided on the lower surface of the porous rectifying plate. In the to-be-treated water For involving the descending material can be moved downwardly, there is an effect that it is possible to perform more efficiently the solid-liquid separation.
[0043]
Further, according to this invention, since it is configured to provide a porous rectifying plate in the horizontal plane positioned above the upper end surface or the upper end surface of the lower narrow-diameter moving part, generated within the lower narrow-diameter moving part swirling flow of the inflow raw water, such adverse effect on the upward flow of separated water to rise in the upper wide diameter separating portion does not reach, the swirling flow can be blocked by a porous rectifying plate, therefore, the upper wide diameter separator unit Then, there is an effect that separated water with high clarity can be obtained.
[0044]
Furthermore, according to this invention, as described above, said inlet or inlet pipe to form a swirling flow circulates in the horizontal direction on the lower narrow diameter flow moving parts as the treatment water introduction means lower Sema径Since it is configured to be provided in the fluidized portion, it is possible to reliably and smoothly generate the swirling flow of the water to be treated in the lower narrow diameter fluidizing portion, and the swirling flow causes the sedimentary substance in the water to be treated in the horizontal direction. A large inertia force can be applied, and there is an effect that the inertia force separation can be performed efficiently.
[0045]
Furthermore, according to this invention, as described above, as the lower surface of the porous rectifying plate is provided with a one or two more guide plate for converting a swirl flow in the lower narrow-diameter moving part to downward flow since it is configured, the swirling flow of the treated water generated in the lower narrow-diameter moving portion, the guide can be converted into downward tornado flow by plate, involving precipitation material to be treated in water at its tornado flow Therefore, there is an effect that the solid-liquid separation can be performed efficiently.
[0046]
Furthermore, according to this invention, since there is provided a water stop means on the guide plate installation position of the perforated rectifier plate, when the swirling flow in the lower narrow-diameter moving part is converted into a downward tornado flow collides with the guide plate In addition, it is possible to prevent the upward flow in the opposite direction from occurring, and for this reason, the upper wide-diameter separation portion has an effect that it is possible to obtain separated water having a high degree of clarity.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a solid-liquid separation tank according to Embodiment 1 of the present invention.
2 is a plan view of FIG. 1. FIG.
FIG. 3 is an operation explanatory diagram of the solid-liquid separation tank according to Embodiment 1 of the present invention.
FIG. 4 is a sectional view showing a solid-liquid separation tank according to Embodiment 2 of the present invention.
5 is a perspective view showing various modified examples of the inclined plate in FIG. 4. FIG.
FIG. 6 is a sectional view showing a solid-liquid separation tank according to Embodiment 3 of the present invention.
FIG. 7 is a sectional view showing a solid-liquid separation tank according to Embodiment 4 of the present invention.
FIG. 8 is a schematic cross-sectional view showing a conventional swirl tank type solid-liquid separation tank.
[Explanation of symbols]
1 Solid-liquid separation tank 2 Introducing pipe (treated water introducing means)
4 Separation water outlet pipe (treated water outlet)
5 Sludge discharge pipe (means for discharging sedimentary substances)
11a Upper wide diameter separation part 11b Intermediate tank part 11c Lower narrow diameter flow part 11d Tank bottom part 12 Inlet (treated water introduction means)
13 Overflow water (means for deriving treated water)
14 Porous flow regulating plate 14a Non-hole part (water stop means)
15 Guide plate 16 Inclined plate

Claims (2)

沈降性物質を含む被処理水を導入する被処理水導入手段および沈降性物質を排出する沈降性物質排出手段を有する下部狭径流動部と、
沈降性物質が分離した処理水を導出する処理水導出手段を有する上部広径分離部と、
下部狭径流動部の上端面または該上端面より上方に位置する水平断面に設けられた多孔整流板とを備えた固液分離槽において、
被処理水導入手段は、下部狭径流動部に水平方向に周回する旋回流を形成する下部狭径流動部に設けられた導入口または導入管であり、
多孔整流板の下面には、下部狭径流動部内の旋回流を下向流に変換する一枚または二枚以上の案内板が設けられている
ことを特徴とする固液分離槽。
A lower-narrow-diameter flow section having treated water introduction means for introducing treated water containing a sedimentable substance and a sedimentable substance discharge means for discharging sedimentary substances;
An upper wide-diameter separation unit having treated water deriving means for deriving treated water from which sedimentation substances have been separated;
In a solid- liquid separation tank provided with an upper end surface of a lower narrow diameter fluidized portion or a porous rectifying plate provided in a horizontal section located above the upper end surface ,
The treated water introduction means is an introduction port or an introduction pipe provided in the lower narrow-diameter flow section that forms a swirling flow that circulates in the horizontal direction in the lower narrow-diameter flow section,
One or more guide plates for converting the swirling flow in the lower narrow-diameter flow portion into a downward flow are provided on the lower surface of the porous rectifying plate.
A solid-liquid separation tank characterized by that.
多孔整流板の案内板設置位置には、止水手段が設けられていることを特徴とする請求項1記載の固液分離槽。 The guide plate installation position of the perforated rectifier plate is solid-liquid separation tank according to claim 1 Symbol mounting, characterized in that the water stop means.
JP2000251550A 2000-08-22 2000-08-22 Solid-liquid separation tank Expired - Fee Related JP3676208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000251550A JP3676208B2 (en) 2000-08-22 2000-08-22 Solid-liquid separation tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000251550A JP3676208B2 (en) 2000-08-22 2000-08-22 Solid-liquid separation tank

Publications (2)

Publication Number Publication Date
JP2002058914A JP2002058914A (en) 2002-02-26
JP3676208B2 true JP3676208B2 (en) 2005-07-27

Family

ID=18740935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000251550A Expired - Fee Related JP3676208B2 (en) 2000-08-22 2000-08-22 Solid-liquid separation tank

Country Status (1)

Country Link
JP (1) JP3676208B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101226906B1 (en) * 2012-07-10 2013-02-07 한국과학기술원 Apparatus for separating solids from food wastes and night soils
CN110180228A (en) * 2019-06-28 2019-08-30 上海化工研究院有限公司 A kind of anti-gravity formula precipitation separation device for water treatment procedure

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000763A (en) * 2004-06-18 2006-01-05 Sanei Kogyo Kk Separator and using method therefor
JP4625291B2 (en) * 2004-08-31 2011-02-02 パナソニック株式会社 Sludge treatment equipment
JP2006299509A (en) * 2005-04-15 2006-11-02 Nippon Kosui Kogyo Kk Rainwater storing device
JP4901637B2 (en) * 2007-08-10 2012-03-21 日立造船株式会社 Method and apparatus for settling and separating slurry and waste incineration equipment
JP5583914B2 (en) * 2009-03-11 2014-09-03 株式会社神鋼環境ソリューション Water treatment apparatus and water treatment method
WO2010055776A1 (en) * 2008-11-11 2010-05-20 株式会社神鋼環境ソリューション Water treatment device and water treatment method
JP5466864B2 (en) * 2009-03-11 2014-04-09 株式会社神鋼環境ソリューション Water treatment apparatus and water treatment method
JP5469947B2 (en) * 2009-07-28 2014-04-16 株式会社神鋼環境ソリューション Wastewater treatment method
JP5782221B2 (en) * 2008-11-11 2015-09-24 株式会社神鋼環境ソリューション Membrane separation activated sludge treatment equipment
JP4955714B2 (en) * 2009-01-30 2012-06-20 株式会社森松総合研究所 Impurity sedimentation tank
CN114431809B (en) * 2020-11-05 2024-07-12 广东美的白色家电技术创新中心有限公司 Cyclone separator
JPWO2023026624A1 (en) * 2021-08-23 2023-03-02

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101226906B1 (en) * 2012-07-10 2013-02-07 한국과학기술원 Apparatus for separating solids from food wastes and night soils
CN110180228A (en) * 2019-06-28 2019-08-30 上海化工研究院有限公司 A kind of anti-gravity formula precipitation separation device for water treatment procedure

Also Published As

Publication number Publication date
JP2002058914A (en) 2002-02-26

Similar Documents

Publication Publication Date Title
JP3676208B2 (en) Solid-liquid separation tank
US4146468A (en) Apparatus and method of classifying solids and liquids
WO2022105698A1 (en) Processing system and method for offshore gas field complex production fluid
AU2012296191B2 (en) Deaeration apparatus and method
US20030173289A1 (en) Self diluting feedwell including a vertical eduction mechanism and method of dilution employing same
CN215855430U (en) High-efficiency rotational flow sewage purification device
JP3676659B2 (en) Solid-liquid separator having stirring flow forming means
EP0016690B1 (en) Apparatus for separating solids from suspensions in a liquid influent
EP0566792A1 (en) Separator
WO1997035655A1 (en) Water treatment system
KR200220590Y1 (en) Sewage treatment centrifuge with separation of suspended solids
US2411386A (en) Apparatus for clarifying and purifying liquids
US6719911B2 (en) Apparatus and method for the treatment of a contaminated fluid
JP6536657B2 (en) Settling tank
KR20200127747A (en) Solid-liquid separator using settling and dissolved air flotation
JP2002058912A (en) Whirling flow type flocculating/separation equipment
JP2000117005A (en) Flocculating and settling method and device
JP2000117005A5 (en)
WO1997035654A1 (en) Wastewater treatment system
CN213221092U (en) High-efficient whirl deposits water purifier
EP0625074B1 (en) Vortex flocculation of solids suspended in liquid
KR200300515Y1 (en) A vortex separator equipped with a circular screen for protecting the sewer overflow
JPH0299106A (en) Solid-liquid separator
KR20030044443A (en) Venturi type precipitation device
JP2739320B2 (en) Polluted water flocculation equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050427

R150 Certificate of patent or registration of utility model

Ref document number: 3676208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees