JPS6348563B2 - - Google Patents

Info

Publication number
JPS6348563B2
JPS6348563B2 JP58150253A JP15025383A JPS6348563B2 JP S6348563 B2 JPS6348563 B2 JP S6348563B2 JP 58150253 A JP58150253 A JP 58150253A JP 15025383 A JP15025383 A JP 15025383A JP S6348563 B2 JPS6348563 B2 JP S6348563B2
Authority
JP
Japan
Prior art keywords
vortex
karman
fine particles
columnar
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58150253A
Other languages
Japanese (ja)
Other versions
JPS6044006A (en
Inventor
Kanichi Ito
Mitsuo Hirayama
Kyoichi Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP15025383A priority Critical patent/JPS6044006A/en
Publication of JPS6044006A publication Critical patent/JPS6044006A/en
Publication of JPS6348563B2 publication Critical patent/JPS6348563B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、上下水や産業廃液に於けるスラジ分
離や油分分離などのような、懸濁液中の微粒子分
離方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for separating fine particles in suspensions, such as sludge separation and oil separation in water and sewage water and industrial waste liquids.

〔従来の技術〕[Conventional technology]

従来よりこの種の懸濁液中の微粒子を分離する
のに、種々の凝集・沈殿装置が用いられている。
Conventionally, various flocculation/sedimentation devices have been used to separate fine particles in this type of suspension.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら従来の方法においては、凝集沈殿
に時間がかかり、また、生成フロツクの密度が小
であり、設備も大型となるという問題点があつ
た。
However, in the conventional method, there were problems in that coagulation and precipitation took time, the density of the produced flocs was small, and the equipment was large.

本発明は、液中微粒子の凝集を高能率に行い凝
集・沈殿装置の小型化を図ると共に、固体粒子の
場合は生成フロツクの密度を大として後端の脱水
操作をも有利とする懸濁液中の微粒子分離方法を
提供することを目的とするものである。
The present invention aims to make the flocculation/sedimentation device more compact by coagulating fine particles in a liquid with high efficiency, and in the case of solid particles, the density of the generated flocs is increased to advantageous for the dewatering operation at the rear end. The purpose of the present invention is to provide a method for separating fine particles in

〔問題点を解決するための手段〕 本発明は、凝集剤を加えた懸濁液と、互に平行
に配備された複数の柱状物体とを、相対的に、前
記柱状物体に対し直角方向に移動せしめて、前記
柱状物体の後方の懸濁液中にカルマン渦を生ぜし
めて懸濁微粒子を凝集せしめることを特徴とする
懸濁液中の微粒子分離方法である。
[Means for Solving the Problems] The present invention provides a method for moving a suspension containing a flocculant and a plurality of columnar objects arranged in parallel to each other in a direction perpendicular to the columnar objects. This is a method for separating fine particles in a suspension, which is characterized in that the columnar object is moved to generate a Karman vortex in the suspension behind the columnar object, thereby agglomerating the suspended fine particles.

〔作用〕[Effect]

前述の目的を達成するために、発明者らは研究
を重ね、その折に得た知見に基づいて本発明がな
された。
In order to achieve the above-mentioned object, the inventors conducted repeated research, and based on the findings obtained at that time, the present invention was made.

即ち、先ず本発明は、次の如き現象に着目され
てなされたものである。
That is, first, the present invention was made by paying attention to the following phenomenon.

(1) レイノルズ数が約60〜5000の範囲で、円柱の
ような柱状物体A(グラブ・ボデイ)に流れが
当ると、第1図に示す如く物体の背後に規則性
のある二列のカルマン渦Cの渦列ができ、渦の
発生サイクルNはN≒0.2V/D(Vは物体と流
体の相対速度、Dは円柱の等価直径)となり、
流体を加振すること。
(1) When the Reynolds number is in the range of approximately 60 to 5000, when a flow hits a columnar object A (grab body) such as a cylinder, two regular rows of Karmans are formed behind the object as shown in Figure 1. A vortex train of vortices C is formed, and the vortex generation cycle N is N≒0.2V/D (V is the relative velocity of the object and fluid, D is the equivalent diameter of the cylinder),
Exciting a fluid.

(2) 渦の中心部は急激な圧力降下を惹き起すため
液中の微粒子は圧力差によつて渦の中心部に吸
い寄せられ凝集すると同時に相互に圧着される
こと。
(2) Because the center of the vortex causes a rapid pressure drop, the fine particles in the liquid are attracted to the center of the vortex due to the pressure difference, coagulate, and at the same time are pressed together.

そしてこれらの(1)及び(2)の現象に関して、レイ
ノルズ数はRe=DV/ν(νは流体の動粘性係数)
であるから、柱状物体の等価直径D及び液と物体
との相対速度Vを適宜選定することにより前記の
カルマン渦Cが安定して発生し易い条件を作るよ
うに制御することは容易である。
Regarding these phenomena (1) and (2), the Reynolds number is Re=DV/ν (ν is the dynamic viscosity coefficient of the fluid)
Therefore, by appropriately selecting the equivalent diameter D of the columnar object and the relative velocity V between the liquid and the object, it is easy to control so as to create conditions in which the Karman vortex C is easily generated stably.

柱状物体Aの背後に相次いで発生するカルマン
渦Cは流体よりも遅い速度で移動しながら次第に
減衰していくが、この間に液中の微粒子は低圧の
渦心部に吸い寄せられて急速に凝集し成長すると
同時に、渦心部の急激な圧力降下による加速度で
固体粒子は相互に圧着されるために生成フロツク
の密度が大きくなる。
The Karman vortices C that occur one after another behind the columnar object A gradually attenuate while moving at a slower speed than the fluid, but during this time, the fine particles in the liquid are attracted to the low-pressure vortex center and rapidly aggregate. At the same time as they grow, the solid particles are pressed together by the acceleration caused by the rapid pressure drop at the vortex core, so the density of the generated floc increases.

即ち、粒子の急速な成長とその密度の大きくな
ることとの相乗効果によつてフロツクの沈降速度
は著しく大きくなるので、凝集装置の小型化のみ
ならず沈殿装置も小型化される。
That is, due to the synergistic effect of the rapid growth of particles and the increase in their density, the sedimentation speed of the flocs is significantly increased, so that not only the flocculating device but also the settling device can be downsized.

又、生成フロツクの密度が大きくなることによ
つて後端の脱水操作も有利となるメリツトがあ
る。
Further, the increased density of the produced flocs has the advantage that the dewatering operation at the rear end is also advantageous.

更にカルマン渦による流体の加振作用により粒
子が振動するので、渦外の粒子の凝集も若干促進
される。
Furthermore, since particles are vibrated by the excitation effect of the fluid by the Karman vortex, aggregation of particles outside the vortex is also slightly promoted.

本発明では、このようにカルマン渦の、渦の中
心の圧力降下により吸引が行われ、微粒子を急速
に凝集、成長、圧着する作用、及びカルマン渦の
発生サイクルにより流体を加振する作用を利用し
て高性能の凝集分離を行うのであるが特にこれら
の作用の原動力であるカルマン渦の発生、維持、
再生が安定して行えるようになつている。
The present invention utilizes the effect of the Karman vortex, where suction is performed by the pressure drop at the center of the vortex, rapidly agglomerating, growing, and compressing fine particles, and the effect of exciting the fluid through the generation cycle of the Karman vortex. In particular, the generation and maintenance of Karman vortices, which are the driving force behind these actions, are
Playback is now stable.

即ち、本発明では柱状物体に対し相対的に直角
方向に液を移動せしめるようになつているのでカ
ルマン渦を安定して発生せしめることができる。
また、一度発生して、下流(柱状物体に対して相
対的な流れにおける下流)に移動するカルマン渦
は、その渦の中心軸は柱状物体に平行な方向を保
ちながら移動してゆくが、本発明においては他の
柱状物体も互に平行、即ち、発生したカルマン渦
の渦の軸と平行なので、渦の軸を異なる向きに撹
乱してカルマン渦を消滅させることなくこれを維
持し、また、下流側の柱状物体にて再生されるカ
ルマン渦の渦の軸も皆平行であるので、異なる方
向の軸を持つカルマン渦が衝突し、干渉し合つて
消滅して乱流となるようなことがなく、カルマン
渦の発生、維持及び再生が、常に同じ方向の軸の
渦として安定して行われる。
That is, in the present invention, since the liquid is moved in a direction perpendicular to the columnar object, the Karman vortex can be stably generated.
Additionally, once a Karman vortex is generated and moves downstream (downstream in the flow relative to the columnar object), the central axis of the vortex moves in a direction parallel to the columnar object, but the main axis In the invention, other columnar objects are also parallel to each other, that is, parallel to the axis of the generated Karman vortex, so the axis of the vortex is disturbed in different directions to maintain the Karman vortex without disappearing, and, The axes of the Karman vortices reproduced in the columnar object on the downstream side are all parallel, so Karman vortices with axes in different directions collide, interfere with each other, and disappear, resulting in turbulent flow. Therefore, the generation, maintenance, and reproduction of Karman vortices are always performed stably as vortices with the axis in the same direction.

このように流路のどこでも常に同じ方向のカル
マン渦が維持されるので、渦の中心に保持された
微粒子は積極的に散逸させられることなくカルマ
ン渦の中心に長い時間の間保持され、その間に低
圧の渦の中心部への圧力により凝集及び成長が引
続き行われて促進され、固体粒子は相互に圧着さ
れ続けて生成フロツクの密度が大になる。
In this way, the Karman vortex is always maintained in the same direction everywhere in the flow path, so the particles held at the center of the vortex are not actively dissipated and are held at the center of the Karman vortex for a long time. The low pressure in the center of the vortex continues to promote agglomeration and growth, and the solid particles continue to be pressed together, increasing the density of the resulting floc.

流体と相対運動を行う柱状物体(グラブ・ボデ
イ)の配設は簡単であるから、本発明によれば簡
単な付加装置により、前記のように懸濁液中の微
粒子の凝集を高能率に行うことが出来、凝集・沈
殿装置の小型化ならびに固体粒子の場合は後端の
脱水操作をも有利にできるなど排水処理その他の
液体処理産業上応用可能な範囲は広い。
Since the arrangement of a columnar object (grab body) that moves relative to the fluid is simple, according to the present invention, fine particles in a suspension can be agglomerated with high efficiency using a simple additional device as described above. It has a wide range of applications in wastewater treatment and other liquid treatment industries, such as miniaturization of coagulation/sedimentation equipment and advantageous dewatering operations at the rear end in the case of solid particles.

〔実施例〕〔Example〕

本発明の実施例を図面により説明する。 Embodiments of the present invention will be described with reference to the drawings.

第2図は阻流板方式の実施例で、aは平面断面
図、bはaのX―X断面図を示す。原水は入口1
により、入口付近でノズル2より凝集剤(例えば
高分子)を添加する。阻流板3で形成される流路
内には複数の柱状物体4を互に平行に、かつ流路
内の流れにほぼ直角となるよう垂直に設けてあ
る。柱状物体4はカルマン渦の減衰に備え、くり
返しカルマン渦を発生させ得るように適宜間隔
に、かつ生成されたカルマン渦の軸の方向を乱さ
ないように、互に平行に、垂直にセツトしてあ
る。流体が流路を通過する間に、前記の原理でフ
ロツクは凝集し且つ圧密されて急速に沈殿して下
部のスラジ抜出し口6より排出され、流体出口5
から処理水(清澄水)が得られる。
FIG. 2 shows an embodiment of the baffle plate system, in which a is a plan sectional view and b is a XX sectional view of a. Raw water is inlet 1
Accordingly, a flocculant (for example, a polymer) is added from the nozzle 2 near the inlet. In the flow path formed by the baffle plate 3, a plurality of columnar objects 4 are provided parallel to each other and perpendicularly so as to be substantially perpendicular to the flow within the flow path. In preparation for the attenuation of the Karman vortices, the columnar objects 4 are set at appropriate intervals so as to repeatedly generate Karman vortices, and are set parallel and perpendicular to each other so as not to disturb the direction of the axis of the generated Karman vortices. be. While the fluid passes through the flow path, the flocs are coagulated and consolidated according to the above-mentioned principle, rapidly precipitate, and are discharged from the sludge outlet 6 at the bottom, and are discharged from the fluid outlet 5.
Treated water (clear water) is obtained from

第3図は傾斜板方式の実施例で、側断面図を示
す。原水は入口1′より入り、ノズル2′より凝集
剤を添加する。傾斜板3′で仕切られた平行流路
内に前記同様複数の柱状物体4′を互に平行にか
つ流れに対し直角になるようほぼ水平に支えて適
宜間隔で設けてある。流体が流路を上昇する間に
各柱状物体4′により繰り返し発生するカルマン
渦により微粒子は凝集、成長、圧着が促進され前
記同様フロツクは急速に沈殿し、傾斜板3′の上
面をスライドして下部のスラジ抜出し口6′より
排出され、流体出口5′から処理水が取り出され
る。
FIG. 3 shows a side sectional view of an embodiment of the inclined plate system. Raw water enters through inlet 1' and flocculant is added through nozzle 2'. Similar to the above, a plurality of columnar objects 4' are supported substantially horizontally in parallel to each other and at right angles to the flow, and are provided at appropriate intervals in parallel flow paths partitioned by inclined plates 3'. While the fluid ascends through the flow path, the Karman vortices repeatedly generated by each columnar object 4' promote agglomeration, growth, and compression of fine particles, and as before, the flocs rapidly settle and slide on the upper surface of the inclined plate 3'. The sludge is discharged from the lower sludge outlet 6', and the treated water is taken out from the fluid outlet 5'.

第4図は撹拌方式の実施例で、aは側断面図、
bはaのY―Y断面図を示す。撹拌方式の場合は
柱物体を運動させて流体との相対速度を生ぜしめ
るケースである。原水は入口1″より入り、ノズ
ル2″より凝集剤を添加して内筒3″で囲まれ流凝
集室に導かれる。凝集室内では、同心円上に互に
平行に垂直に配した複数の柱状物体4″が駆動機
7によつて回転され、原水が各柱状物体4″に対
して直角の方向に相対的に移動する。此の場合、
柱状物体4″の取付半径rに比例して速度Vが変
るので、カルマン渦による振動数を一致させ加振
作用による渦外の粒子凝集降下も狙う意味で、柱
状物体4″の直径Dはrに比例して変化させ、振
動数N≒0.2V/Dを一定にするとよい(第4図
b参照)。凝集室内では、柱状物体4″の背後に発
生するカルマン渦によつて、前記原理によりフロ
ツクは凝集し且つ圧密されて急速に沈殿し、外筒
タンク8の下部のスラジ抜出し口6″より排出さ
れる。処理水は外筒タンク8の上縁よりオーバー
フローして流体出口5″より取出される。
Figure 4 shows an example of the stirring method, where a is a side sectional view;
b shows a YY cross-sectional view of a. In the case of the stirring method, a columnar object is moved to generate a relative velocity with the fluid. Raw water enters through the inlet 1'', adds flocculant through the nozzle 2'', and is surrounded by an inner cylinder 3'' and guided to the flow aggregation chamber.In the aggregation chamber, a plurality of columns arranged vertically in parallel on concentric circles are introduced into the aggregation chamber. The objects 4'' are rotated by the drive machine 7, and the raw water moves relative to each columnar object 4'' in a direction perpendicular to it. In this case,
Since the velocity V changes in proportion to the installation radius r of the columnar object 4'', the diameter D of the columnar object 4'' is r It is preferable to change the frequency N≒0.2V/D and keep it constant (see Figure 4b). In the flocculation chamber, the flocs are flocculated and consolidated according to the above principle by the Karman vortex generated behind the columnar object 4'', and rapidly settle, and are discharged from the sludge outlet 6'' at the bottom of the outer tank 8. Ru. The treated water overflows from the upper edge of the outer cylindrical tank 8 and is taken out from the fluid outlet 5''.

以上液中の固体粒子の部位例として下水処理の
場合の実施例について説明したが、液液分離例と
して例えば含油廃水の油分分離の場合も前記の原
理によつて水中の油分を凝集させることができ
る。此の場合、凝集した油のフロツクは水より軽
いので浮上させて取り出される。
An example of sewage treatment has been described above as an example of the location of solid particles in a liquid. However, as an example of liquid-liquid separation, for example, in the case of oil separation from oil-containing wastewater, it is possible to coagulate oil in water using the above-mentioned principle. can. In this case, the flocs of coagulated oil are lighter than water, so they are floated and removed.

〔発明の効果〕 本発明により、柱状物体に対して相対的に直角
に液が流れることにより、カルマン渦が安定して
発生し、各柱状物体が互に平行に配備されている
ので発生するカルマン渦の軸は全て平行であり、
軸の方向が異なるために干渉し合つて乱流となり
カルマン渦を消滅させてしまうようなことがな
く、カルマン渦が安定して維持、再生され、微粒
子はカルマン渦の中に長時間保持され、凝集、成
長、圧着が促進され、液中の微粒子の凝集を高能
率に行い、装置の小型化をはかり、固形粒子に対
しては生成フロツク密度を大として後方設備の負
担を減少せしめる懸濁液中の微粒子分離方法を提
供することができ実用上極めて大なる効果を奏す
る。
[Effects of the Invention] According to the present invention, Karman vortices are stably generated by the liquid flowing at right angles to the columnar objects, and Karman vortices are generated because the columnar objects are arranged parallel to each other. The axes of the vortices are all parallel,
The different directions of the axes do not interfere with each other and cause turbulence, which causes the Karman vortex to disappear.The Karman vortex is stably maintained and reproduced, and the particles are retained in the Karman vortex for a long time. A suspension that promotes agglomeration, growth, and compression, highly efficient agglomeration of fine particles in liquid, miniaturizes equipment, and increases the density of produced flocs for solid particles, reducing the burden on rear equipment. The present invention provides a method for separating fine particles in the air, which is extremely effective in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を説明する原理図、第2
図は阻流板方式の実施例でaは平面断面図、bは
X―X断面図、第3図は傾斜板方式の実施例を示
す側断面図、第4図は撹拌方式の実施例でaは側
断面図、bはY―Y断面図である。 1,1′,1″……入口、2,2′,2″……ノズ
ル、3……阻流板、3′……傾斜板、3″……内
筒、4,4′,4″……柱状物体、5,5′,5″…
…流体出口、6,6′,6″……抜出し口。
Figure 1 is a principle diagram explaining the principle of the present invention, Figure 2 is a diagram explaining the principle of the present invention.
The figures show an example of the baffle plate system, where a is a plan sectional view, b is a XX sectional view, Figure 3 is a side sectional view showing an example of the inclined plate system, and Figure 4 is an example of the stirring system. A is a side sectional view, and b is a YY sectional view. 1, 1', 1"...Inlet, 2, 2', 2"...Nozzle, 3...Break plate, 3'...Slanted plate, 3"...Inner cylinder, 4, 4', 4" ...Columnar object, 5, 5', 5''...
...Fluid outlet, 6, 6', 6''...extraction port.

Claims (1)

【特許請求の範囲】[Claims] 1 凝集剤を加えた懸濁液と、互に平行に配備さ
れた複数の柱状物体とを、相対的に、前記柱状物
体に対し直角方向に移動せしめて、前記柱状物体
の後方の懸濁液中にカルマン渦を生ぜしめて懸濁
微粒子を凝集せしめることを特徴とする懸濁液中
の微粒子分離方法。
1. A suspension to which a flocculant has been added and a plurality of columnar objects arranged in parallel to each other are relatively moved in a direction perpendicular to the columnar objects, so that the suspension liquid behind the columnar objects is moved. A method for separating fine particles in a suspension, which is characterized by generating a Karman vortex therein to agglomerate suspended fine particles.
JP15025383A 1983-08-19 1983-08-19 Separation of fine particle in suspension Granted JPS6044006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15025383A JPS6044006A (en) 1983-08-19 1983-08-19 Separation of fine particle in suspension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15025383A JPS6044006A (en) 1983-08-19 1983-08-19 Separation of fine particle in suspension

Publications (2)

Publication Number Publication Date
JPS6044006A JPS6044006A (en) 1985-03-08
JPS6348563B2 true JPS6348563B2 (en) 1988-09-29

Family

ID=15492898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15025383A Granted JPS6044006A (en) 1983-08-19 1983-08-19 Separation of fine particle in suspension

Country Status (1)

Country Link
JP (1) JPS6044006A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4765022B2 (en) * 2005-03-25 2011-09-07 株式会社西原環境 Solid-liquid separator
JP5172294B2 (en) * 2007-11-26 2013-03-27 佳和 福井 Muddy water purification device
JP5468316B2 (en) * 2009-06-24 2014-04-09 株式会社西原環境 Solid-liquid separator
JP5619379B2 (en) * 2009-06-24 2014-11-05 株式会社西原環境 Solid-liquid separator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784800A (en) * 1980-11-14 1982-05-27 Hitachi Kiden Kogyo Ltd Addition of flocculant in treatment of sludge and apparatus therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784800A (en) * 1980-11-14 1982-05-27 Hitachi Kiden Kogyo Ltd Addition of flocculant in treatment of sludge and apparatus therefor

Also Published As

Publication number Publication date
JPS6044006A (en) 1985-03-08

Similar Documents

Publication Publication Date Title
US7037432B2 (en) Buoyant media flotation
AU2008290085B2 (en) Method of flocculating sedimentation treatment
KR20040091712A (en) Method and device for clarification of liquids, particularly water, loaded with material in suspension
WO2006036014A1 (en) Coagulation-separation apparatus
US8808548B2 (en) Magnetic separation apparatus and magnetic separation method, and wastewater treatment apparatus and wastewater treatment method
JP4707752B2 (en) Water treatment method and water treatment system
US4263137A (en) Apparatus and method for the gravity settling of suspended solids
WO1997035655A1 (en) Water treatment system
US4719020A (en) Process for concentrating a suspension of microscopic particles
JPS6348563B2 (en)
EP1268027A1 (en) Solid buoyant media induced flotation
GB2025780A (en) Apparatus and Method for the Gravity Settling of Suspended Solids
KR970074672A (en) Filtration-integrated sedimentation tank and its backwashing method
CN209442764U (en) Oily wastewater suspended sludge filtering and purifying
JP2017176906A (en) Magnetic cyclone device and processing method of the same
EP0625074B1 (en) Vortex flocculation of solids suspended in liquid
CN108726734B (en) Oily sewage suspended sludge filtering and purifying device and sewage treatment process thereof
US7347939B2 (en) Adjustable contaminated liquid mixing apparatus
CN210215012U (en) Spore shifts all-in-one
CN216837365U (en) Waste water treatment device
JP5431559B2 (en) Polluted water purification system and ship
JPH0889711A (en) Flocculating and thickening device and flocculating and thickening method
JPH04193384A (en) Flotation tank
CN114455742A (en) HSSF high-suspended matter sewage rapid treatment device and method
JP2005125178A (en) Flocculating and settling apparatus and method for treating water to be treated by using the same