JPS6042876A - Cloth-like solar battery - Google Patents

Cloth-like solar battery

Info

Publication number
JPS6042876A
JPS6042876A JP58150380A JP15038083A JPS6042876A JP S6042876 A JPS6042876 A JP S6042876A JP 58150380 A JP58150380 A JP 58150380A JP 15038083 A JP15038083 A JP 15038083A JP S6042876 A JPS6042876 A JP S6042876A
Authority
JP
Japan
Prior art keywords
solar cell
layer
fiber
fabric
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58150380A
Other languages
Japanese (ja)
Other versions
JPH0479151B2 (en
Inventor
Masahisa Muroki
室木 政久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58150380A priority Critical patent/JPS6042876A/en
Publication of JPS6042876A publication Critical patent/JPS6042876A/en
Publication of JPH0479151B2 publication Critical patent/JPH0479151B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To contrive to improve the efficiency of power take-out by the alleviation of resistive potential drop by a method wherein the outermost layer of semiconductor inscribed to a transparent insulation layer of the outermost layer is provided with a metallic electrode layer. CONSTITUTION:An N-Si layer 32 is adhered on a glass fiber 30 coated with a transparent conductive film 31, next an I-Si layer 33 on the Si 32, and further a P-Si layer 34 theron. Then, an In ribbon 35 is wound on the layer 34 in close contact, and thus a conductive zone is provided in a spiral form. When it is heated, In-Si alloy is formed and the ribbon 35 welds to the layer 34. The transparent insulation layer 36 is formed on this multilayer-structural fiber. Using this translucent multilayer-structural solar battery fiber as the warp, and the glass fiber as the woof, the title solar battery is manufactured by corsswise-alternate knitting. Thereby, the improvement of the efficiency of power take-out and the reduction of manufacturing cost are enabled.

Description

【発明の詳細な説明】 本願発明は太陽電池に係シ、とくに多層構造を有する太
陽電池繊維を編んで二次元的な広−1ti Dをもたせ
た布状太陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to solar cells, and particularly to a fabric solar cell having a two-dimensional wide-1tiD structure by knitting solar cell fibers having a multilayer structure.

太陽電池はクリーンエネルギー源として期待され、石油
資源の枯渇が心配される中で代替エネルギーとして検討
されてきた。しかし太陽電池の発電コストは王に材料費
が原因して非常に高((j980年で約4000円/W
)一般電力用電源として普及するのはまだ先のことにな
りそうである。ただ、発電効率が市販品でも5〜10チ
に達したため、携帯用電源、離島などの局所発電−とし
ての需要は急速に高ま)つつある。このような段階で太
陽電池に本つとも望まれているのは低コスト化および高
付加価値化である。すなわち、市場を急速に拡大するに
は、電力用電源とは別の意味で「家庭用電源」とし・て
必需品の地位を占める必要がある。高付加価値太陽電池
を念頭において本願発明者は特公昭58−55718号
で多層同軸繊維状太陽電池を開示した。この太陽電池は
従来型太陽電池が平面パネル形状を有しているのに対し
て、可撓性ある多層同軸太陽電池線を編ん、で二次元釣
人がシをもたせた有形状を有しておシ、大面積化が容易
になっただけでなく可撓性にきわめて富み機械的強度も
充分あるため、二次製品への加工が非常に容易であると
いうユニークな特質をもっている。
Solar cells are expected to be a source of clean energy and have been considered as an alternative energy source amid concerns about the depletion of oil resources. However, the power generation cost of solar cells is extremely high due to the cost of materials (approximately 4,000 yen/W in 980).
) It seems likely that it will still be some time before it becomes widespread as a power source for general electricity. However, as the power generation efficiency of commercially available products has reached 5 to 10 inches, demand for portable power sources and local power generation on remote islands is rapidly increasing. At this stage, what is essentially desired for solar cells is lower costs and higher added value. In other words, in order to rapidly expand the market, it is necessary for it to occupy the position of an essential item as a "household power source" in a different sense from a power source for electric power. With high value-added solar cells in mind, the inventor of the present application disclosed a multilayer coaxial fibrous solar cell in Japanese Patent Publication No. 58-55718. While conventional solar cells have a flat panel shape, this solar cell has a two-dimensional shape made of flexible multilayer coaxial solar cell wires. In addition to being easy to increase in area, it has extremely high flexibility and sufficient mechanical strength, making it extremely easy to process into secondary products.

上記した多層同軸繊維状太陽電池の問題点は主に発電コ
ストにある。すなわち可視光を透過しない芯線や導電層
を用いた多層−同軸太陽電池線を編んで二次元釣人が如
をもたせる時、縦横に交互に線が交叉すると交叉点の下
方に位置した個所では遮光されるため発電しない。仮に
隙間なく均等に縦横方向に編成した布を作った場合は、
“裏面も発電に寄与しないため太陽電池縁全表面積のう
ち約/ しか発電能をもたない。さらに数本の太陽電曲
線を撚りあわせた後縦横に編成した構造では、g元面積
割合は一層低下するため太陽電池縁全表面積が発電に寄
与した場合に比べて結果として材料費は約1桁コストア
ップになる。勿論この太陽電池線は薄膜構造なのでイン
ゴットから切出した結晶ウェファ−太陽電池より材料費
は安い。しかし薄膜太陽電池間で比較すると、材料費の
実質的コストアップはこの新型太陽電池の高付加価値を
減殺するものであり好ましくない。、 この問題点を改善するために本発明者が更に検討を重ね
た結果法の如き構造の布状太陽電池を開示するに至った
。すなわち、(1)縦横に交互に編成。
The problem with the above-mentioned multilayer coaxial fibrous solar cell is mainly the power generation cost. In other words, when a two-dimensional fisherman creates a two-dimensional effect by knitting multilayer coaxial solar cell wires using core wires and conductive layers that do not transmit visible light, when the lines intersect alternately in the vertical and horizontal directions, the light is blocked in the area located below the point of intersection. It does not generate electricity due to If you make a cloth that is evenly knitted vertically and horizontally without any gaps,
“Because the back surface also does not contribute to power generation, only about 1/2 of the total surface area of the solar cell edge has power generation capacity.Furthermore, in a structure in which several solar power curves are twisted together and then organized vertically and horizontally, the g-element area ratio is even greater. As a result, the material cost increases by about an order of magnitude compared to the case where the entire surface area of the solar cell edge contributes to power generation.Of course, since this solar cell wire has a thin film structure, the crystalline wafer cut from the ingot - the material from the solar cell. The cost is low. However, when comparing thin-film solar cells, the substantial increase in material costs is undesirable because it reduces the high added value of this new type of solar cell. In order to improve this problem, the inventors of the present invention As a result of further studies, they came to disclose a cloth-like solar cell having the structure as described above.That is, (1) Alternating arrangement in the vertical and horizontal directions.

した布状太陽電池において、多層構造太陽電池繊維は縦
糸又は横糸の一方のみとし、他方は非発電性透明繊維を
用いることにより材料の低減と縦糸横糸交叉点における
非発電個所の消滅を意図した太陽電池。(2)縦横交互
に編成する際、隣接する縦糸或いは横糸間に隙間を設、
けるか或いは非発電性透明繊維との混合繊維を用いるこ
とによって裏面に迄外光を導入し、裏面に散乱性元反射
板を配置することによって表面だけでなく裏面にも発電
能を付与した布状太陽電池である。使用目的によって(
1)、 (2)を単独に用いることも組合せて用いるこ
とも出来ることは自明である。
In the fabric-like solar cell, the multilayer structure solar cell fiber is used only in one of the warp and weft, and the other is made of non-power generating transparent fiber. battery. (2) When knitting vertically and horizontally alternately, create a gap between adjacent warp or weft yarns,
A cloth that allows outside light to be introduced to the back side by using fibers that are transparent or mixed with non-power generating transparent fibers, and that has power generation ability not only on the front side but also on the back side by arranging a scattering reflector on the back side. It is a shaped solar cell. Depending on the purpose of use (
It is obvious that 1) and (2) can be used alone or in combination.

更に本発明者は、前記多層構造太陽電池繊維の発電効率
を検討した結果、長尺繊維における抵抗性電位降下を軽
減するためには最外層の透明な絶縁層に内接した半導体
最外層に金属電極層を設け11することが有効であると
結論した。光電変換用半導体層への入党を妨げないため
に、金属電極層は適当なピッチでらせん状に巻きつけ配
置するか細い線条で太陽電池繊維の長軸に沿って配置す
る。
Furthermore, as a result of studying the power generation efficiency of the multilayer structure solar cell fiber, the present inventor found that in order to reduce the resistive potential drop in the long fiber, it is necessary to add metal to the outermost semiconductor layer inscribed in the outermost transparent insulating layer. It was concluded that it is effective to provide an electrode layer 11. In order not to prevent the metal electrode layer from entering the semiconductor layer for photoelectric conversion, the metal electrode layer is wound spirally at an appropriate pitch or arranged in thin filaments along the long axis of the solar cell fiber.

前記多層構造太陽電池繊維の最外層を構成する透明な絶
縁層は低融点の合成樹脂から成ることが望ましい。これ
は、前記半導体最外層の金属電極層の配置によって表面
に高低差が生じ、また半導体と金属とで材質が異なるた
め透明酸化膜で該太陽電池繊維全表面を核種することは
連続製造工程上困難を伴い結局は製造費の上昇につなが
るためである。300℃以下の低融点をもつ合成樹脂融
液中に浸漬することによシ、容易に透明絶縁被覆をする
ことができる。
It is desirable that the transparent insulating layer constituting the outermost layer of the multilayered solar cell fiber is made of a synthetic resin with a low melting point. This is because there is a difference in height on the surface due to the arrangement of the metal electrode layer of the outermost layer of the semiconductor, and since the materials of the semiconductor and metal are different, it is difficult to cover the entire surface of the solar cell fiber with a transparent oxide film due to the continuous manufacturing process. This is because it is difficult and ultimately leads to an increase in manufacturing costs. A transparent insulating coating can be easily applied by immersing it in a synthetic resin melt having a low melting point of 300° C. or less.

以下本発明を実施例に基ずき詳細に述べる。The present invention will be described in detail below based on examples.

(その1) 直径1 mのNi線を芯線1に用い、これを第1図に示
したごとく窒素ガス雰囲気中で加熱された石英容器3内
に充填され−fcSi飽和Sn溶液4内に浸漬する。石
英容器3の底部には、リンを高濃度にドープした多結晶
シリコン塊2が充填されておシ、多数の小孔をもつ仕切
多板5で抑えられ浴液4と接触している。図示したよう
に溶液4には容器底がより高温であり、容器上部に至る
にしたがって低温になるような温度勾配が設けられてい
る。シリコン塊2は温度TIにおける飽和量だけSn溶
液中にとけ込んでおり、溶液の対流と拡散とによってよ
υ低温の容器上部に運ばれるため、溶液中のリンドープ
S1は溶液上部付近で過飽和状態になっている。Ni芯
IIi!1は該溶液4内の過飽和領域に設け2Gられた
石英回転軸11を図示したように経て溶液4内に浸漬さ
れる。この位置でNi芯線1は回転軸11の温度T* 
(Ta < Tt )近く迄加熱され、TIとT3の温
度差に相当する分だけn −S iがNi芯線1上に析
出可能でるる。実際に析出するfはNi芯線1の浴液4
への浸漬時間、すなわち該芯線1の引張り速度で加減す
ることができる。通常はこの引張シ速度を、1芯線1上
のn−8n層の厚みが約5μmになるよう調節する。こ
の時n −8i層のキャリア濃度が約”’×10”e−
’になるようシリコン塊中のりン磯度を調整しておく。
(Part 1) A Ni wire with a diameter of 1 m is used as the core wire 1, and as shown in FIG. 1, it is filled in a quartz container 3 heated in a nitrogen gas atmosphere and immersed in a -fcSi saturated Sn solution 4. . The bottom of the quartz container 3 is filled with polycrystalline silicon lumps 2 doped with phosphorus at a high concentration, and is held in contact with the bath liquid 4 by partition plates 5 having a large number of small holes. As shown in the figure, the solution 4 is provided with a temperature gradient such that the temperature is higher at the bottom of the container and becomes lower toward the top of the container. The silicon lump 2 is dissolved in the Sn solution in a saturated amount at the temperature TI, and is carried to the upper part of the container at a lower temperature by the convection and diffusion of the solution, so the phosphorus dope S1 in the solution becomes supersaturated near the upper part of the solution. ing. Ni core IIi! 1 is immersed in the solution 4 through a quartz rotating shaft 11 provided in the supersaturated region of the solution 4 and provided with 2G as shown in the figure. At this position, the Ni core wire 1 is at the temperature T* of the rotating shaft 11.
It is heated to a temperature close to (Ta < Tt), and n-Si can be precipitated on the Ni core wire 1 by an amount corresponding to the temperature difference between TI and T3. The actual precipitated f is the bath solution 4 of the Ni core wire 1.
The immersion time can be adjusted by adjusting the immersion time, that is, the pulling speed of the core wire 1. Usually, this tensile speed is adjusted so that the thickness of the n-8n layer on one core wire 1 is about 5 μm. At this time, the carrier concentration of the n-8i layer is approximately ''×10''e-
Adjust the phosphorus level in the silicon lump so that

n −S i層を析出したN1芯線1は、石英回転軸6
を経て第2の81飽和an溶液充填容器7内に石英回転
軸12を巻いて浸漬される。石英容器7の底部には硼素
を高濃度ドープした多結晶シリコン塊8が充填さNてお
シ、多孔性石英仕切シ板10で仕切られている。容器7
の底部にある多結晶シリコン塊8の温度T3はT1よシ
低く、また回転軸12の位置におけるan溶液温度T4
 (<Tl ’)はT8よシ低く保たれているので回転
軸12の位置でp−Stは過飽和状態にあって、がっN
1芯線1上に析出’20 L fc n−81層は溶液
9に浸漬されても溶解することな(n−81層上に結晶
性p−8i層が析出する。
The N1 core wire 1 on which the n-Si layer was deposited is connected to the quartz rotating shaft 6
After that, the quartz rotating shaft 12 is wound and immersed in the second 81 saturated anium solution filling container 7. The bottom of the quartz container 7 is filled with a polycrystalline silicon block 8 doped with boron at a high concentration, and is partitioned by a porous quartz partition plate 10. Container 7
The temperature T3 of the polycrystalline silicon lump 8 at the bottom of the is lower than T1, and the temperature T4 of the an solution at the position of the rotating shaft 12 is
(<Tl') is kept lower than T8, so p-St is in a supersaturated state at the position of the rotating shaft 12, and the gap N
The '20 L fc n-81 layer deposited on the 1-core wire 1 does not dissolve even when immersed in the solution 9 (a crystalline p-8i layer is deposited on the n-81 layer).

この場合、p−8上層の厚みは約4μmでかつそのキャ
リア濃度は約I X’10”(II−’であるように温
度Tsおよびシリコン塊8中に含まれる硼素濃度を調節
する。このようにしてp −n接合を含むSt層を被着
したNi芯線1#′i石英回転11118を経て一旦を
気中に取出され、容器・16内に保持された゛ニカワ溶
液17内に浸漬され薄くニカワ塗布後、その表面に幅3
00μmのanリボン14をらせん状に密着巻きする。
In this case, the temperature Ts and the boron concentration contained in the silicon lump 8 are adjusted so that the thickness of the p-8 upper layer is about 4 μm and the carrier concentration is about IX'10''(II-'). The Ni core wire 1 #'i on which the St layer containing the p-n junction is coated is taken out into the air through the quartz rotation 11118, and then immersed in the glue solution 17 held in the container 16 to form a thin layer of glue. After application, the surface has a width of 3
A 00 μm AN ribbon 14 is tightly wound in a spiral shape.

ピッチは約100mとする。次にこのリボン巻き81層
被MNi芯1Is1を空気または酸素雰囲気の電気炉中
で450℃に加熱するとニカワは酸化されて除去される
がp−st層表面にはSn IJボン14直下で簿いa
n−St金合金形成されてSn IJボン14はp−s
i層に溶着する。このSnリボン層はp−8n層に対す
る良好表金属電極として作用する。n−81層に対する
抵抗性電極としてはN1芯線1がそのまま利用できる。
The pitch will be approximately 100m. Next, when this ribbon-wrapped 81-layer MNi core 1Is1 is heated to 450°C in an electric furnace in an air or oxygen atmosphere, the glue is oxidized and removed, but the Sn glue remains on the surface of the p-st layer directly under the IJ bond 14. a
n-St gold alloy formed Sn IJ bond 14 p-s
Weld to the i-layer. This Sn ribbon layer acts as a good surface metal electrode for the p-8n layer. The N1 core wire 1 can be used as is as a resistive electrode for the N-81 layer.

Snリボン層゛の有効性をテストするために比較試料を
作った。試料Aは直径1m(DNi芯線上に上記例の如
くしてp −n接合を含むsi層を形成後、特公昭58
−35718号実施例同様p −S i層表面に5nC
j4と水蒸気との反応によj) 5nOa膜(厚さ約2
0ODA)を堆積させ、この透明導電層t−’p−8t
層に対する5抵抗性電極としたものである。また試料B
はp −8上層に対する抵抗性電極は設けず、その他は
上記例と全く同じとした。本実施例のsnリボン層打付
太陽電池繊維試料Cとし、長さ5o(至)ずつ各試料を
揃えた。各試料の一端部において酸性エツチング液を用
いて51mずつN1芯線上の被着層を除去しN1芯ll
11を露呈した。試料Aでは最上層の5n(h層に薄く
(厚さ3000A) Auを蒸着、試料Bでは最上層の
p−st層に薄<Auを蒸着してリード線取付は端子と
した。Au蒸着部は前記Nl芯線露呈部の直上約3龍に
とどめまたAu蒸着によってp −n接合が短絡しない
よう配慮した。A、B、C各試料の前記端部において、
露呈したNi芯線およびAu蒸着膜またはSnリボンに
対してリート:舞をハンダ付けし、各試料のプラスマイ
ナスリード線間に電圧計を接続した。各試料を同一条件
下で凝似太陽元発生装置内に設置し、真夏の直射日光に
相当する強度で疑似太陽光線を照射した。この時、試料
Cの開放端電圧は約0.78Vでめったが、試料Aは約
α68v。
A comparative sample was made to test the effectiveness of the Sn ribbon layer. Sample A has a diameter of 1 m (after forming a Si layer including a p-n junction on a DNi core wire as in the above example,
-5nC on the surface of the p-Si layer as in the example of No. 35718
j) 5nOa film (thickness approx. 2
0ODA), and this transparent conductive layer t-'p-8t
There were five resistive electrodes for each layer. Also sample B
No resistive electrode was provided for the p-8 upper layer, and the rest was exactly the same as the above example. Sample C of the sn ribbon layer-strapped solar cell fiber of this example was prepared, and each sample was prepared in lengths of 5o (to). At one end of each sample, remove the adhesion layer on the N1 core wire by 51 m using an acidic etching solution.
11 were exposed. In sample A, a thin layer (thickness 3000A) of Au was evaporated on the top layer 5N (h layer), and in sample B, a thin layer of Au was evaporated on the top p-st layer, and the lead wire was attached as a terminal. Au evaporation part The thickness was kept at about 3 cm directly above the Nl core exposed portion, and care was taken to prevent short-circuiting of the p-n junction due to Au evaporation.At the ends of each sample A, B, and C,
A wire was soldered to the exposed Ni core wire and the Au vapor deposited film or the Sn ribbon, and a voltmeter was connected between the plus and minus lead wires of each sample. Each sample was placed in a simulated solar source generator under the same conditions and irradiated with simulated sunlight at an intensity equivalent to direct sunlight in midsummer. At this time, the open circuit voltage of sample C was approximately 0.78V, but that of sample A was approximately α68V.

試料Bは約0.46Vであり、p−81層に対する金属
電極の優位性が立証された。この発生電圧差は照射光強
度が弱くなるに従って大きくなシ、上記実験条件(真夏
直射日光)の約175の強度では試料Aと試料Cの電位
差はQ、22Vに達した。
Sample B was approximately 0.46V, demonstrating the superiority of the metal electrode over the p-81 layer. This generated voltage difference increases as the irradiation light intensity becomes weaker, and at an intensity of about 175V under the above experimental conditions (direct midsummer sunlight), the potential difference between Sample A and Sample C reached Q, 22V.

さて、本実施例でNi芯線上にn−8i、p−19i。Now, in this example, n-8i and p-19i are placed on the Ni core wire.

リボン状anの各層を連続形成した後、この上に透明プ
ラスチック液を塗布乾燥した。この透明プラスチック層
は透明絶縁層として作用する。この線を一定速度で巻き
とっていけば、石英容器3および7の底部にシリコン塊
2および8が残っている限り一定膜厚のSt元電電変換
層有する糸状繊維が連続的に形成される。巻きとった多
層構造太陽電池繊維は細くて(直径約1 am )可撓
性に富み機械的強度も充分である。
After successively forming each layer of ribbon-like an, a transparent plastic liquid was applied thereon and dried. This transparent plastic layer acts as a transparent insulating layer. By winding this wire at a constant speed, as long as the silicon lumps 2 and 8 remain at the bottoms of the quartz containers 3 and 7, filamentous fibers having a constant thickness of the St source electroelectric conversion layer are continuously formed. The wound multilayer solar cell fiber is thin (about 1 am in diameter), highly flexible, and has sufficient mechanical strength.

この多層構造太陽電池繊維を横糸201に用い、縦糸2
00には直径約1 amの透明合成繊維糸、たとえばナ
イロン糸を用いて縦横交互に編むと二次元的な広が9を
もつ布(編物)ができる。この布を適当な大きさに裁断
し、横糸の一端部だけを有機溶媒に浸漬して表面の絶縁
性プラスチック膜を除去する。プラスチック膜を除去し
た一端部における横糸の直列接続例を示したのが第2図
である。
This multilayer structure solar cell fiber is used for the weft 201, and the warp 201 is used for the weft 201.
In 00, a cloth (knitted fabric) having a two-dimensional spread 9 can be obtained by knitting a transparent synthetic fiber yarn, such as a nylon yarn, with a diameter of about 1 am in alternating length and width directions. This cloth is cut to an appropriate size, and only one end of the weft is immersed in an organic solvent to remove the insulating plastic film on the surface. FIG. 2 shows an example of series connection of weft threads at one end with the plastic film removed.

すなわち、第2図(a)に示した如く、多層構造太陽電
池繊維から成る横糸の一端部(図の右+4)を有機溶媒
に浸漬して最外皮の透明プラスチック膜201を除去す
ると、Snリボン層202 t−らせん状VC溶着した
p−8i層205が露呈する。縦糸は上記のように透明
合成繊維糸200でおって、横糸が該縦糸の下方に位置
するように交叉しても交叉点で可視外光は該縦糸を透過
して横糸に入射するため、表面における非発電領域は8
nリボン層202の直下のみとなる。露呈したP−81
層205の一部を弗硝酸系エツチング液に浸漬するとs
nリボン202. p−8i層203およびn−81層
204が除去されるので第2図(b)に示した如く、N
1芯!11が露呈する。次に、D−8i層203の抵抗
性電極でらるSnリボン層202およびn−8i層20
4の抵抗性電極であるN1芯線1の各々に対して公知の
方法でリード線をハンダ付けし、横糸に太陽電池繊維)
を直列接続すれば第2図(c)の如くなる。簡単のため
図では3本の横糸のみしか示してないが、何本接続して
も同様である。Snリボン層202から引出したリード
線は電池の(+)lIIl端子を形成し、N1芯1!1
からのリード線は(−)側端子を形成する。なお、本例
では図示してないが、この太陽電池繊維を並列接続する
には通常行なわ五るようにSnリボン層202どうし、
N1芯線1どうしを接続すればよいことは自明である。
That is, as shown in FIG. 2(a), when one end of the weft (+4 on the right in the figure) made of multilayer solar cell fiber is immersed in an organic solvent and the outermost transparent plastic film 201 is removed, the Sn ribbon is formed. Layer 202 T-helical VC welded p-8i layer 205 is exposed. As mentioned above, the warp is made of transparent synthetic fiber yarn 200, and even if the weft intersects so that it is located below the warp, visible light passes through the warp and enters the weft at the crossing point, so the surface The non-power generation area is 8
It is only directly under the n-ribbon layer 202. Exposed P-81
When a part of the layer 205 is immersed in a fluoronitric acid etching solution, s
n ribbon 202. Since the p-8i layer 203 and the n-81 layer 204 are removed, as shown in FIG. 2(b), the N
1 core! 11 is exposed. Next, the Sn ribbon layer 202 and the n-8i layer 20 are formed by the resistive electrode of the D-8i layer 203.
Solder lead wires using a known method to each of the N1 core wires 1, which are resistive electrodes of 4, and attach solar cell fibers to the wefts.
If they are connected in series, the result will be as shown in Fig. 2(c). For simplicity, only three weft threads are shown in the figure, but the same effect applies no matter how many weft threads are connected. The lead wire pulled out from the Sn ribbon layer 202 forms the (+)lIIl terminal of the battery, and the N1 core 1!1
The lead wire from forms the (-) side terminal. Although not shown in this example, in order to connect these solar cell fibers in parallel, the Sn ribbon layers 202 are connected in parallel, as is usually done.
It is obvious that it is sufficient to connect the N1 core wires 1 to each other.

また図示した横糸端部と反対側の端部は裁断によって露
呈したままになっているので、この個所を再び透明プラ
スチック液の塗布乾燥によって絶縁処理する。この処理
は端部におい”Cp −n接合の短絡や隣接する太陽電
池繊維導電部との意図せざる接触、使用者の感電事故や
漏電を防止し、かつ端部を機械的に保護するため行なう
もので、本実施例のプラスチック処理だけでなく他の様
々な公知技術、友とえは絶縁ゴムシールやガラスコーチ
インクなど望みの方法で達成できることはいうまでもな
い。
Further, since the end opposite to the illustrated weft end is left exposed by cutting, this part is again insulated by applying and drying a transparent plastic liquid. This treatment is performed at the ends to prevent short circuits at the Cp-n junctions, unintentional contact with adjacent solar cell fiber conductive parts, electric shocks and leakage to the user, and to mechanically protect the ends. Needless to say, this can be achieved not only by the plastic treatment of this embodiment but also by various other known techniques, such as insulating rubber seals, glass coach inks, and other desired methods.

第2図の要領で横糸、すなわち多層構造太陽電池繊維を
全て直並列接続した後、リード線を一本のプラス端子(
p−ss側)と一本のマイナス端子(n−8i側)にま
とめた。外元金吸収すれば、このプラス、マイナス端子
間に起電力を発生し、この端子間に負荷抵抗を接続すれ
ば、電力とし′て外部に取出すことができる。
After connecting all the weft threads, that is, multilayer solar cell fibers in series and parallel as shown in Figure 2, connect the lead wire to one positive terminal (
p-ss side) and one negative terminal (n-8i side). If external capital is absorbed, an electromotive force will be generated between the positive and negative terminals, and if a load resistor is connected between these terminals, it can be taken out as electric power.

隣接する横糸および縦糸をほぼ隙間なく密に編んだ場合
、この布状太陽電池は真夏の直射目元下で約120W/
1rL2の出力を示した。この布状太陽電池はこのよう
な密な状態で編まれているが、特公昭5B−53718
で開示した多層同軸繊維状太陽電池に比べて縦糸に安価
な繊維を用いたため材料費が約172に、低下し、かつ
p−81層打金属電極の採用と表面側非発電領域(縦糸
横糸交叉点の下側に位置した1蔭の繊維部分)の解消に
よって電力取…し効率が約40%向上するという大きな
効果を示した。
When the adjacent weft and warp yarns are tightly knitted with almost no gaps, this fabric solar cell can generate approximately 120 W/W under direct sunlight in midsummer.
The output of 1rL2 was shown. This cloth-like solar cell is woven in such a dense manner, but it is
Compared to the multilayer coaxial fibrous solar cell disclosed in 2006, the material cost was reduced to approximately 172% because cheaper fibers were used for the warp, and the material cost was reduced to about 172, and the use of a p-81 layered metal electrode and the non-power generation area on the surface side (where the warp and weft intersected Elimination of the shaded fiber portion located below the dot showed a significant effect in that the power extraction efficiency was improved by approximately 40%.

勿論先願の太陽電池のもつ利点、すなわち高可撓性、大
量生産性、大面積化容易、多形状加工容易という長所は
そのまま保持されている。
Of course, the advantages of the solar cell of the prior application, that is, high flexibility, mass productivity, easy expansion into a large area, and easy processing into multiple shapes, are retained.

(その2) 透明導電膜Snow 51 を被覆した直径約500μ
mのガラス繊維30上に周知のグロー放電法を用いて非
晶質81層を形成した。高周波放電容器内の圧力は放電
時α1〜10 ’l’orr 、 Haで希釈した濃度
20mot%のSiH4ガスをペースとして、まず8n
Oa31上に、PHsドープn −S 1層32を約1
2pm、次いでn−8152上にアンドープの1−St
層33を約α6pm、更にその上にB、H,ドープp−
st層54を約α3μm被着させた。
(Part 2) Approximately 500μ in diameter covered with transparent conductive film Snow 51
81 amorphous layers were formed on glass fibers 30 of 30 m by using a well-known glow discharge method. The pressure inside the high-frequency discharge vessel was set to α1~10'l'orr during discharge.
On the Oa 31, a PHs-doped n-S 1 layer 32 of about 1
2pm, then undoped 1-St on n-8152
The layer 33 has a thickness of about α6 pm, and furthermore, B, H, doped p-
The st layer 54 was deposited to a thickness of approximately α3 μm.

高周波投入′電力は10−2〜1Q−’ W/(Ilk
2とした。これら多層S1膜の形成は、放電容器内に2
本の回転軸を導入し、片側の軸から他方の回転軸へとフ
ァイバーを少しずつ巻きとシながら行表った。この非晶
質多層81太陽電池は禁制帯幅が1.7〜1.8tVで
あり外光に対して赤褐色半透明である。p−st層34
の上に幅600μmのIn’Jボン65を実施例(その
1)ノ如くシて約3傷のピッチで密着して巻きつけ、ら
せん状に導電Wt−もうけた。これを約200℃に短時
間加熱するとIn −Si合金が形成され、In−!J
ボン35はp−st層64に溶着する。Inリボン35
が溶着した個所は外光に対して不透明になる。またIn
1Jボン35直下のp−81領域は非晶質から結晶化し
て微結晶領域が形成される。この微結晶領域はそれ以外
の非晶質領域に比べて約2桁導電度が高く、発生゛した
キャリアの伝導損失を小さくする上で効果的でおる。
The high frequency input power is 10-2~1Q-' W/(Ilk
It was set as 2. The formation of these multilayer S1 films requires two
A rotating shaft of a book was introduced, and the fiber was wound little by little from one shaft to the other. This amorphous multilayer 81 solar cell has a forbidden band width of 1.7 to 1.8 tV and is reddish brown and translucent to external light. p-st layer 34
An In'J bond 65 having a width of 600 .mu.m was wrapped thereon as in Example (Part 1) and tightly wound at a pitch of about 3 scratches to form a spiral conductive wire. When this is heated to about 200°C for a short time, an In-Si alloy is formed, and In-! J
The bond 35 is welded to the p-st layer 64. In ribbon 35
The welded area becomes opaque to outside light. Also In
The p-81 region immediately below the 1J bond 35 is crystallized from an amorphous state to form a microcrystalline region. This microcrystalline region has a conductivity about two orders of magnitude higher than other amorphous regions, and is effective in reducing conduction loss of generated carriers.

しかる後、この多層構造ファイバーに透明合成樹脂液f
:塗布乾燥し、表面に数μm厚さの透明絶縁層36を形
成した。得られた多層構造太陽電池繊維の構成を第3図
に示した。
After that, a transparent synthetic resin liquid f is applied to this multilayer structure fiber.
: After coating and drying, a transparent insulating layer 36 with a thickness of several μm was formed on the surface. The structure of the obtained multilayer solar cell fiber is shown in FIG.

この半透明多層構造太陽電池繊維を縦糸に用い、横糸に
は直径約500μmのガラスファイバーを用いて縦横交
互に編んで布状太陽電池を作った。この場合隣接する糸
との隙間はほとんどあけずち密に編成した。この布を適
当な大きさに裁断後、縦糸の一端部でのみ前実施例の如
くしてSnug電極層31、In1Jボン層35を露呈
させ、直並列接続して一本のプラース端子、マイナス端
子にまとめた。次いでこの布状電池全体を透明プラスチ
ック溶液中に浸漬して引上げ乾燥し、表面を透明絶縁膜
で被覆した。このような表面保膜は、たとえば5ins
やTi01+ At!Ox どの透明酸化物絶縁膜をス
パッタリング法や化学蒸着法によって形成しても目的に
叶うが、製造コスト、量産性の点で本実施例のような有
機物被覆に劣る。
This translucent multilayer structure solar cell fiber was used as the warp yarn, and glass fibers with a diameter of about 500 μm were used as the weft yarn, and were knitted alternately in the vertical and horizontal directions to produce a cloth-like solar cell. In this case, the yarns were knitted tightly with almost no gaps between adjacent yarns. After cutting this cloth into an appropriate size, the Snug electrode layer 31 and the In1J bond layer 35 are exposed only at one end of the warp as in the previous embodiment, and connected in series and parallel to form one positive terminal and one negative terminal. summarized in. Next, the entire fabric battery was immersed in a transparent plastic solution, pulled up and dried, and the surface was covered with a transparent insulating film. Such surface retention is, for example, 5ins.
YaTi01+ At! Ox Any transparent oxide insulating film formed by sputtering or chemical vapor deposition will serve the purpose, but it is inferior to the organic coating as in this embodiment in terms of manufacturing cost and mass productivity.

全面プラスチック被覆多層構造布状太陽電池は表面のプ
ラスチック層が薄いため充分な可撓性を有している。こ
の躾面に白色不透明合成繊維から成る外光反射布を裏打
ちした。
The fully plastic-coated multilayer fabric solar cell has sufficient flexibility because the plastic layer on the surface is thin. This training surface was lined with an external light reflective cloth made of white opaque synthetic fiber.

真夏の直射口元を照射するとこの布状太陽電池は約12
5 W/m2の電力を発生した。これは外光が半透明な
多層構造太陽電池繊維の裏面に迄侵入し、裏面の反射布
で反射されて太陽電池繊維の全表面が発電に寄与した結
果でおると考えられる。本実施例で用いた非晶質St太
陽電池の太陽光エネルギー変換効率は約6チなので、有
効表面積の増加が者しい発電能の増加を招いたことがわ
かる。
When exposed to direct sunlight in midsummer, this fabric solar cell will produce approximately 12
It generated a power of 5 W/m2. This is thought to be due to the fact that external light penetrates to the back surface of the translucent multilayered solar cell fiber and is reflected by the reflective cloth on the back surface, so that the entire surface of the solar cell fiber contributes to power generation. Since the solar energy conversion efficiency of the amorphous St solar cell used in this example was about 6 cm, it can be seen that an increase in the effective surface area led to a significant increase in power generation capacity.

なお、上ii2災施実施グロー放電によりp型非晶質層
を形成する際ベースへなるガス5IH4にC3ルを混合
すればp−8i1−1Cx層が1−81層上に被着する
。511−xCxは禁制帯幅がStよシ一層広くしたが
ってp層の透明度が一層高まるため太陽光の吸収効率も
増加し、このへテロ接合形多層構造太陽電池繊維のエネ
ルギー変換効率は非晶質Sl太陽電池の6%から8〜9
饅まで向上することが確かめられた。
In addition, when forming the p-type amorphous layer by the glow discharge carried out in the above ii2 disaster, if C3 is mixed with the base gas 5IH4, the p-8i1-1Cx layer is deposited on the layer 1-81. The forbidden band width of 511-xCx is wider than that of St, and the transparency of the p layer is further increased, so the absorption efficiency of sunlight is also increased, and the energy conversion efficiency of this heterojunction type multilayer solar cell fiber is higher than that of amorphous Sl. 8-9 from 6% of solar cells
It was confirmed that the rice was even improved.

(その6) 第1図のごとくして多層構造太陽電池繊維を作った。た
だし、この場合芯線1はNi線ではなく直径約1.2m
のカーボンファイバーを用いた。またp−si層205
上に配置する金属電極は、前実施例のSnリボン層20
2と異なシ直線状Ag層とした。p −Si層203上
にAg1t極層を形成するには、細い溝状タンクに無電
解Agメッキ液を充填加熱しておき、p −n接合を含
むS1層が被着したカーボンファイバー線をp−st層
2030表面一部が該メッキ液に浸漬するようにして溝
状タンクの長手方向に走行せしめればよい。本実施例の
場合、幅約100μm。
(Part 6) A multilayer solar cell fiber was made as shown in Figure 1. However, in this case, the core wire 1 is not a Ni wire but has a diameter of approximately 1.2 m.
carbon fiber was used. Also, the p-si layer 205
The metal electrode placed on top is the Sn ribbon layer 20 of the previous example.
A straight Ag layer was used, which was different from 2. To form the Ag1t electrode layer on the p-Si layer 203, a thin groove-shaped tank is filled with an electroless Ag plating solution and heated, and the carbon fiber wire with the S1 layer including the p-n junction is coated with the p-Si layer 203. - It is sufficient to run the groove-shaped tank in the longitudinal direction so that a part of the surface of the -st layer 2030 is immersed in the plating solution. In this example, the width is approximately 100 μm.

厚さ約200OA (D Ag xドライブ電極カル−
81層205の表面に芯線の長手方向に形成された。電
極幅は浸漬深さで、また電極の厚みはメッキ液濃度、温
度および浸漬時間によって調節することができる。
Thickness approximately 200OA (D Ag x drive electrode cal-
81 was formed on the surface of the layer 205 in the longitudinal direction of the core wire. The electrode width can be adjusted by the immersion depth, and the electrode thickness can be adjusted by the plating solution concentration, temperature, and immersion time.

また電極用金属も紹以外、Au、 Ni、 Sn、 C
uなど多くの種類用いることができる。Ag電極層形成
後は前実施例同様衣面に透明絶縁性プラスチック塗膜を
した。
In addition, the electrode metals are Au, Ni, Sn, and C.
Many types such as u can be used. After forming the Ag electrode layer, a transparent insulating plastic coating was applied to the coating surface as in the previous example.

この多層構造太陽電池繊維201を横糸にし、直径約1
.2mmの透明アミラン繊維200ヲ縦糸に用いて縦横
交互に編んで布状太陽電池を形成した。ただしこの場合
縦糸横糸共に隣接する糸間に約1.2mの隙間をあけて
編みこんだ。適当な大きさに裁断後、横糸の一端部を第
2図の如くして露呈させp−st層203に対するAg
ストライプ電極とn−81層204に対するカーボンフ
ァイバー電極にリード線付けを行なった。なお、カーボ
ンファイバーの場合、イ・ンダ付は前に端部にAgを蒸
着しておき、Agを介してハンダ付けした。横糸すべて
を直並列接続後リード線を一本のプラス端子、マイナス
端子にまとめた。次にこの太陽電池面全体を透明プラス
チック液に浸漬乾燥させ表面全体に透明絶縁膜をつけた
。第4図で部分図を示したように布状太陽電池裏面にや
や間隙を保って乱反射面を有する白色合成繊維布206
を張シ、該布状太陽電池に真夏の直射日光を照射した。
This multilayer structure solar cell fiber 201 is made into a weft thread with a diameter of approximately 1
.. A cloth-like solar cell was formed by using 200 strands of 2 mm transparent amylan fiber as the warp and knitting it alternately in the vertical and horizontal directions. However, in this case, both warp and weft were knitted with a gap of about 1.2 m between adjacent yarns. After cutting to an appropriate size, one end of the weft is exposed as shown in FIG.
Lead wires were attached to the stripe electrode and the carbon fiber electrode for the n-81 layer 204. In the case of carbon fibers, Ag was vapor-deposited on the ends before soldering and soldering was carried out through the Ag. After connecting all the weft threads in series and parallel, the lead wires were combined into one positive and negative terminal. Next, the entire surface of this solar cell was immersed in a transparent plastic liquid and dried to coat the entire surface with a transparent insulating film. As shown in a partial view in FIG. 4, a white synthetic fiber cloth 206 has a diffused reflection surface with a slight gap on the back side of the cloth solar cell.
The fabric solar cell was stretched and exposed to direct midsummer sunlight.

直射日光は布状太陽電池異面で吸収されて光電変換され
るだけでなく、幅約1.2inの横糸間隙からストライ
プ状に上記白色合成繊維布206の乱反射面に入射し散
乱されて布状太陽電池裏面にも吸収される。この結果多
層構造太陽電池繊維はほぼ全表面積が′yt、電変換に
を与する。この布状太陽電池は約100W/m2の出力
を示した。すなわち、実施例(その1)に比べて多層構
造太陽電池繊維の使用量は1/2に減少したにもかかわ
らず発電量の減少は約15%にとどまっている。これは
布状太陽電池全表面発電の効果てらシ、材料コストの低
減に非常に有効な一つの方法といえる。
Direct sunlight is not only absorbed by the different surfaces of the fabric solar cell and converted into electricity, but also enters the diffused reflection surface of the white synthetic fiber cloth 206 in a stripe pattern from the weft gap of approximately 1.2 inches in width and is scattered. It is also absorbed by the back side of solar cells. As a result, almost the entire surface area of the multilayer solar cell fiber contributes to electrical conversion. This fabric solar cell exhibited an output of about 100 W/m2. That is, even though the amount of multilayer solar cell fiber used was reduced to 1/2 compared to Example (Part 1), the reduction in power generation remained at about 15%. This can be said to be a very effective method for increasing the effectiveness of fabric solar cell full-surface power generation and reducing material costs.

また、上記例で横糸間隙を1.2i+凰ずつあけるかわ
シに、ここに縦糸と同質の透明アミラン繊維(直径約1
.2 m )を入れて隙間なく編み込み布の機械的強度
を高めた布状太陽電池では真夏直射日光下における出力
は約95W/m2であった。これは透明アミラン繊維に
よる光反射損失の影響と考えられる。
In addition, in the above example, in addition to opening the weft yarn gap by 1.2 i + 0, transparent amylan fibers (diameter approximately 1
.. In a cloth-like solar cell in which the mechanical strength of the woven cloth was increased by inserting 2 m) without any gaps, the output under direct sunlight in midsummer was about 95 W/m2. This is considered to be the effect of light reflection loss due to the transparent amylan fiber.

(その4) 幅6朋、厚さ200μmの扁平なFe線を芯線1として
用い、第1図で示し71c溶液法によってこの上にp−
n接合を含むInP多結晶薄膜層を晶出させた。この場
合、石英容器3.7にはIn溶媒4.9を充填し、n−
l−ソースにはSnドープ多結晶InP塊2を、ま7’
Cp−InPソースにはZnドープ多結晶InP塊8を
用いた。第1図の如く、Fe芯線1を石英容器充填In
P飽和In溶液4.9内に連続的に浸漬し走行させるこ
とによってFe芯線表面、に厚さ約4pmのn−InP
層、厚さ約6pmのp−InP層がこの順に積層される
゛。この工程はN3雰囲気で行なうが、次いで1050
℃の酸化性雰囲気で5nCtsを含む蒸気を流しながら
この線を走行させるとp −InP層表面に2000〜
5000 A厚みのSnow透明電極層51が形成され
る。次いでこの線を透明プラスチック溶液中に浸漬後引
上げ乾燥すれば、Snow膜61膜面1表面絶縁膜36
が形成される。
(Part 4) A flat Fe wire with a width of 6 mm and a thickness of 200 μm is used as the core wire 1, and p-
An InP polycrystalline thin film layer containing an n-junction was crystallized. In this case, the quartz container 3.7 is filled with In solvent 4.9 and n-
Sn-doped polycrystalline InP block 2 is used as the l-source.
A Zn-doped polycrystalline InP lump 8 was used as the Cp-InP source. As shown in Fig. 1, Fe core wire 1 is filled in a quartz container.
By continuously immersing and running in P-saturated In solution 4.9 mm, n-InP with a thickness of about 4 pm is deposited on the surface of the Fe core wire.
A p-InP layer with a thickness of about 6 pm is laminated in this order. This step is carried out in an N3 atmosphere, and then 1050
When this line is run while flowing steam containing 5 nCts in an oxidizing atmosphere at ℃, 2000 ~
A Snow transparent electrode layer 51 having a thickness of 5000 A is formed. Next, if this wire is immersed in a transparent plastic solution and then pulled up and dried, the Snow film 61 film surface 1 surface insulating film 36 is formed.
is formed.

こうして得られた多層構造太陽電池繊維を縦糸にし、横
糸に−は直径3IImの透明ナイロン糸を用いて縦横に
交互に編んだ。この場合特KM糸は隣接する糸間に隙間
がな−いよう密に編成して布状太陽電池を作った。
The thus obtained multilayer structure solar cell fiber was made into warp threads, and transparent nylon threads having a diameter of 3 IIm were used as weft threads, which were knitted alternately in the vertical and horizontal directions. In this case, the special KM yarn was knitted closely so that there were no gaps between adjacent yarns to create a cloth-like solar cell.

この布を適当な大きさに裁断し、第2図に示したように
縦糸の一端部のみで電極層、すなわち5nO8換および
Fe′X:線を露呈させ、直並列接続して最後に一本の
プラス端子と一本のマイナス端子にまとめた。表面を絶
縁プラスチック膜で処理した後真夏の直射口元下で出力
を測定すると約105 W/TrL2が得られた。多結
晶InP太陽電池のエネルギー変換効率は約12俤でめ
ったが、p−InP電極層5n02膜の抵抗が比較的大
きくやや取出し損失がみられる。しかし、この扁平多層
構造太陽電池繊維を用いた化合物半導体布状太陽電池も
充分な可撓性と機械的強度を有していることが確かめら
れた。
This cloth is cut to an appropriate size, and as shown in Figure 2, the electrode layer, that is, the 5nO8 and Fe'X: wires are exposed only at one end of the warp, and the wires are connected in series and parallel to each other. into one positive terminal and one negative terminal. After the surface was treated with an insulating plastic film, the output was measured under direct sunlight in midsummer, and approximately 105 W/TrL2 was obtained. The energy conversion efficiency of the polycrystalline InP solar cell was about 12 yen, but the resistance of the p-InP electrode layer 5n02 film was relatively large and a slight extraction loss was observed. However, it was confirmed that the compound semiconductor fabric solar cell using this flat multilayer structure solar cell fiber also had sufficient flexibility and mechanical strength.

(その5) 実施例(その1)と全く同じ工程で製造した直径約1龍
の多層構造St太陽電池繊維を密な状態で縦横交互に編
み布状太陽電池を作った。この場合、縦線、横線が共に
太陽電池繊維であるため、適尚な大きさに裁断した後、
縦線側一端部と横線側一端部の各々で第2図のようにし
て各線の直並列接続を行ない、最後に一本のプラス側端
子、一本のマイナス側端子にまとめた。該布状太陽電池
全体を透明プラスチック溶液中に浸漬して引上げ乾燥し
た。この布状太陽電池は真夏の直射日光下で約100W
/m2の出力を示した。実施例(その1)の場合より発
電能が小さいのは縦横交叉点下方の遮光部分が電力取出
し損失を与えているためへ考えられる。しかし、p−s
i層205にanリボン層202を接続して伝導損失を
減らした結果、特公昭58−33718の場合より発電
能は約15%向上している。
(Part 5) A fabric-like solar cell was fabricated by knitting multilayered St solar cell fibers having a diameter of about 1 inch, which were produced in exactly the same process as in Example (Part 1), in a dense state and alternating length and width. In this case, both the vertical and horizontal lines are solar cell fibers, so after cutting them to an appropriate size,
Each wire was connected in series and parallel at one end on the vertical line side and one end on the horizontal line side as shown in Fig. 2, and finally they were combined into one positive side terminal and one negative side terminal. The entire fabric solar cell was immersed in a transparent plastic solution, pulled up and dried. This fabric solar cell produces approximately 100W under direct sunlight in midsummer.
/m2 output. The reason why the power generation capacity is smaller than that of the first embodiment is considered to be because the light-shielding portions below the vertical and horizontal intersections cause power extraction loss. However, p-s
As a result of connecting the an ribbon layer 202 to the i layer 205 to reduce conduction loss, the power generation capacity is improved by about 15% compared to the case of Japanese Patent Publication No. 58-33718.

一方、上記多層構造St太陽電池繊維を縦横に編む場合
、繊維直径と同じI IIK径の透明ナイロン糸を一本
おきに混合して編み、裁断一端部での直並列接続、透明
絶縁処理後該太陽電池布の裏面に光反射性白色合成繊維
布206を配した実施例(その6)の如き2重布構造で
は直射日光下での出方は約88W/m2であった。
On the other hand, when knitting the above multilayer structure St solar cell fiber vertically and horizontally, transparent nylon threads of I IIK diameter, which is the same as the fiber diameter, are mixed and knitted every other thread, cut in series and parallel at one end, and after transparent insulation treatment. In a double cloth structure such as Example (No. 6) in which a light-reflecting white synthetic fiber cloth 206 was arranged on the back side of the solar cell cloth, the output power under direct sunlight was about 88 W/m2.

以上述べてきた布状太陽電池の実施例では多層構造太陽
電池繊維の光電変換層材料としてSl。
In the embodiments of the fabric solar cell described above, Sl is used as the photoelectric conversion layer material of the multilayer solar cell fiber.

811−z CX * InP 、 また製造方法とし
ては、芯線の外側に太陽電池層を構成する「外付は法」
だけを扱った。しかし、この補元電変換層材料としてC
dSやGaAa等の化゛合物半導体材料にも本願発明が
適用できることは自明である。また、「外付は法」以外
にも、たとえば特公昭5.8−55718で述べたよう
な中空芯線の内側に太陽電池層を形成する「肉付は法」
によっても本願発明の布状太陽電池が得られることは、
本願発明の構成から明白である。
811-z CX * InP, and the manufacturing method is the "external attachment method" in which the solar cell layer is formed on the outside of the core wire.
only dealt with. However, as the material for this complementary electric conversion layer, C
It is obvious that the present invention can also be applied to compound semiconductor materials such as dS and GaAa. In addition to ``external attachment is the law,'' for example, as described in Japanese Patent Publication No. 5.8-55718, it is ``the law to attach flesh'' to form a solar cell layer inside the hollow core wire.
The fabric solar cell of the present invention can also be obtained by
This is obvious from the structure of the present invention.

本願発明によって可撓性にきわめて富み機械的強度が充
分あシまた大面積化、量産化、多形状化容易な布状太陽
電池の電力取出し効率の向上と製/ 造コスト1.特に材料コストの大幅な低減が可能となっ
た。
The present invention improves the power extraction efficiency and manufacturing cost of fabric solar cells that are extremely flexible, have sufficient mechanical strength, and are easy to increase in area, mass production, and have multiple shapes.1. In particular, it has become possible to significantly reduce material costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明になる多層構造太陽電池繊維製造工程
の一実施例を示す図、第2図は本発明の布状太陽電池式
おける各線接続の一実施例を示す図であり(a) 、 
(b) 、 (c)は接続のための工程を示している。 第3図は、本発明の別の一実施例における多層構造太陽
電池繊維の構成を示す図、第4図は、本発明になる布状
太陽電池のさらに別の一実施例における布襦成を示す図
である。 図において1は導電性芯線、204は結晶性n−8i層
、203は結晶性p−8i層、202はSnリボン層、
201は多層構造太陽電池繊維、200は透明合成繊維
糸、206は白色合成繊維布、36は透明絶縁層、35
はInリボン層、30はガラスファイノ(−芯線、31
はSn Ox導電膜、32は非晶質n−81層、33は
非晶質i Si層、54は非晶質p−st層である。 特許…願人 室 木 政 久 代理人 弁理士 秋 本 正 実 第1図 第2図 (a) 第2図 (C) 第3図 5 第4■ FDfDすDtD+Dゴ
FIG. 1 is a diagram showing an embodiment of the multilayer structure solar cell fiber manufacturing process according to the present invention, and FIG. 2 is a diagram showing an embodiment of each line connection in the fabric solar cell type of the present invention (a ),
(b) and (c) show the process for connection. FIG. 3 is a diagram showing the structure of a multilayer solar cell fiber in another embodiment of the present invention, and FIG. 4 is a diagram showing the structure of a fabric in still another embodiment of the fabric solar cell of the present invention. FIG. In the figure, 1 is a conductive core wire, 204 is a crystalline n-8i layer, 203 is a crystalline p-8i layer, 202 is a Sn ribbon layer,
201 is a multilayer structure solar cell fiber, 200 is a transparent synthetic fiber thread, 206 is a white synthetic fiber cloth, 36 is a transparent insulating layer, 35
is In ribbon layer, 30 is glass fin (-core wire, 31
32 is an amorphous n-81 layer, 33 is an amorphous iSi layer, and 54 is an amorphous p-st layer. Patent...Applicant Masahisa Muroki Agent Patent Attorney Tadashi Akimoto Figure 1 Figure 2 (a) Figure 2 (C) Figure 3 5 4■ FDfDDtD+Dgo

Claims (1)

【特許請求の範囲】 1、 多層構造を有する可撓性太陽電池繊維を編みこん
で二次元的な広が)をもたせた太陽電池の縦糸横糸のう
ち、どちらか一方を上記多層構造太陽電池繊維か或いは
核太陽電池繊維と非発電性繊維の混合繊維で構成し、他
方を非発電性透明繊維のみで構成し上記多層構造太陽電
池繊維は外光が入射する最外層の透明な電気的絶縁層と
、該絶縁層の内周に設けられたp−n又はP −i −
n接合形光電変換層と、該光電変換層の両側に位置し骸
光電変換層の一部又は全部に設けられた導電部と、核導
電部を介して上記p −n又はp−1−n接合に生ずる
起電力を外部へ取出す手段とより成る布状太陽電池。 2、 多層構造を有する可撓性太陽電池繊維を編み込ん
で二次元的な広がシをもたせた太陽電池布および該太陽
電池布の片面に該太陽電池と密着しないように配置した
光反射板とから成シ、上記太陽電池の縦糸横糸のうち少
なくとも一方は隣接する糸間に適当な隙間をあけるか或
いは透明な非発電性繊維を挿入して編成し、誼本陽電池
布土に照射された外光が一部前記元反射板に到達して反
射され核太陽電池布裏面を照射する機能を有し、上記多
層構造太陽電池繊維は、外巻が入射する最外層の透明な
電気的絶縁層と、核絶縁層の内周に設けられたp−n又
はp −1−n接合形光電変換層と、咳光電変換層の両
側に位置し該光電変換′層の一部又は全部に設けられた
導電部と、咳導電部を介して上記p−n又はp−ト1接
合に生ずる起電力を外部へ取出す手段とより成る布状太
陽電池。 五 多層構造を有する可撓性太陽電池繊維を編みこんで
二次元的な広がシをもたせた太陽電池において、前記太
陽電池繊維は外光が入射する最外層の透明な電気的絶縁
層と、峡絶縁層の内周に設けられたp−n又#1p−1
−n接合形光電変換層と、該p−n又はp −i −n
接合を形成するp型又はn型半導体層のうち上記電気的
絶縁層にょシ近接して位置する半導体層底面に設けられ
たらせん状または直綜状の金属電極層と、該金属電極層
の設けられた半導体層とは逆導電型を有する半導体層表
面の一部又は全部に設けられた導電部と、該導電部およ
び上記金属電極層を介して上記p−n又はp −i −
n接合に生ずる起電力を外部へ取出す手段とより成る布
状太陽電池。
[Scope of Claims] 1. One of the warp and weft of a solar cell, which is made by knitting flexible solar cell fibers having a multilayer structure to give a two-dimensional spread), is connected to the multilayer structure solar cell fiber. Alternatively, the multilayer solar cell fiber may be composed of a mixed fiber of a nuclear solar cell fiber and a non-power-generating fiber, and the other may be composed of only a non-power-generating transparent fiber, and the multilayer solar cell fiber has an outermost transparent electrically insulating layer through which external light enters. and p-n or P-i- provided on the inner periphery of the insulating layer.
The n-junction photoelectric conversion layer, the conductive parts located on both sides of the photoelectric conversion layer and provided in part or all of the skeleton photoelectric conversion layer, and the above p-n or p-1-n through the nuclear conductive part. A fabric solar cell consisting of a means for extracting the electromotive force generated by the bonding to the outside. 2. A solar cell cloth having a two-dimensional spread by weaving flexible solar cell fibers having a multilayer structure, and a light reflecting plate disposed on one side of the solar cell cloth so as not to come into close contact with the solar cell. At least one of the warp and weft of the solar cell is knitted with an appropriate gap between adjacent threads or transparent non-power generating fibers are inserted, and the solar cell fabric is irradiated with light. Part of the outside light reaches the original reflector and is reflected to illuminate the back side of the nuclear solar cell fabric. a p-n or p-1-n junction type photoelectric conversion layer provided on the inner periphery of the core insulating layer; A fabric solar cell comprising: a conductive part; and means for extracting the electromotive force generated at the p-n or p-to-1 junction to the outside via the conductive part. (5) In a solar cell in which flexible solar cell fibers having a multilayer structure are woven together to provide a two-dimensional spread, the solar cell fibers include an outermost transparent electrically insulating layer through which external light enters; p-n or #1p-1 provided on the inner periphery of the insulating layer
-n junction type photoelectric conversion layer, and the p-n or p-i-n
A spiral or straight helical metal electrode layer provided on the bottom surface of the semiconductor layer located close to the electrically insulating layer among the p-type or n-type semiconductor layers forming the junction, and the provision of the metal electrode layer. A conductive portion provided on a part or all of the surface of the semiconductor layer having a conductivity type opposite to that of the semiconductor layer, and the p-n or p-i-
A fabric solar cell comprising means for extracting electromotive force generated at an n-junction to the outside.
JP58150380A 1983-08-19 1983-08-19 Cloth-like solar battery Granted JPS6042876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58150380A JPS6042876A (en) 1983-08-19 1983-08-19 Cloth-like solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58150380A JPS6042876A (en) 1983-08-19 1983-08-19 Cloth-like solar battery

Publications (2)

Publication Number Publication Date
JPS6042876A true JPS6042876A (en) 1985-03-07
JPH0479151B2 JPH0479151B2 (en) 1992-12-15

Family

ID=15495728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58150380A Granted JPS6042876A (en) 1983-08-19 1983-08-19 Cloth-like solar battery

Country Status (1)

Country Link
JP (1) JPS6042876A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913744A (en) * 1987-01-13 1990-04-03 Helmut Hoegl Solar cell arrangement
DE4328868A1 (en) * 1993-08-27 1995-03-02 Twin Solar Technik Entwicklung Element of a photovoltaic solar cell and method for its production as well as its arrangement in a solar cell
US5437736A (en) * 1994-02-15 1995-08-01 Cole; Eric D. Semiconductor fiber solar cells and modules
JPH10256579A (en) * 1997-03-13 1998-09-25 Toshiba Corp Photoelectric conversion element
WO2002037577A2 (en) * 2000-10-31 2002-05-10 Universität Stuttgart Fiber, electronic circuit and textile product
JP2003309278A (en) * 2002-04-16 2003-10-31 Japan Science & Technology Corp Electronic device formed of three-dimensional textile structure
WO2005029657A1 (en) * 2003-09-19 2005-03-31 The Furukawa Electric Co., Ltd. Solar cell module and its element
WO2005050745A1 (en) * 2003-11-20 2005-06-02 Ideal Star Inc. Columnar electric device and its manufacturing method
JP2009099751A (en) * 2007-10-17 2009-05-07 Hokkaido Univ Fibrous photoelectric conversion element, method of using the same and method of manufacturing the same, textile, method of using the same, clothing, and wallpaper
US7535019B1 (en) * 2003-02-18 2009-05-19 Nanosolar, Inc. Optoelectronic fiber
JP2012186233A (en) * 2011-03-03 2012-09-27 Jsr Corp Device and manufacturing method therefor
JP2012234959A (en) * 2011-04-28 2012-11-29 Suminoe Textile Co Ltd Photovoltaic thread covered with thermoplastic resin, and method for manufacturing the same
JP2012253149A (en) * 2011-06-01 2012-12-20 Taiyo Kogyo Corp Shroud-like photovoltaic power generation device
JP2017017136A (en) * 2015-06-30 2017-01-19 住江織物株式会社 Cloth-like solar cell
DE102016110464A1 (en) * 2016-06-07 2017-12-07 Gunter Erfurt Solar cell structure and process for producing a solar cell structure
JP2019186258A (en) * 2018-04-02 2019-10-24 住江織物株式会社 Series connection structure of fibrous photovoltaic elements and cloth type solar cell including fibrous photovoltaic elements connected in series connection structure
US10665730B2 (en) * 2017-10-20 2020-05-26 Pepin Technologies Llc. Photovoltaic fabric with woven bus architecture
CN117673185A (en) * 2024-02-02 2024-03-08 西安电子科技大学 Laminated battery assembly packaged by core spun yarn process, preparation method and wearable fabric

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254391A (en) * 1975-10-29 1977-05-02 Yuuji Yamaguchi Fibrous photocell
JPS5430786A (en) * 1977-08-11 1979-03-07 Japan Solar Energy Optical generator
JPS56152275A (en) * 1980-04-25 1981-11-25 Teijin Ltd Thin film type solar cell
JPS5833718A (en) * 1981-08-20 1983-02-28 Nagoyashi Inducing device for mobile body using information tile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254391A (en) * 1975-10-29 1977-05-02 Yuuji Yamaguchi Fibrous photocell
JPS5430786A (en) * 1977-08-11 1979-03-07 Japan Solar Energy Optical generator
JPS56152275A (en) * 1980-04-25 1981-11-25 Teijin Ltd Thin film type solar cell
JPS5833718A (en) * 1981-08-20 1983-02-28 Nagoyashi Inducing device for mobile body using information tile

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913744A (en) * 1987-01-13 1990-04-03 Helmut Hoegl Solar cell arrangement
DE4328868A1 (en) * 1993-08-27 1995-03-02 Twin Solar Technik Entwicklung Element of a photovoltaic solar cell and method for its production as well as its arrangement in a solar cell
US5437736A (en) * 1994-02-15 1995-08-01 Cole; Eric D. Semiconductor fiber solar cells and modules
WO1995022177A1 (en) * 1994-02-15 1995-08-17 Cole Eric D Semiconductor fiber solar cells and modules
JPH10256579A (en) * 1997-03-13 1998-09-25 Toshiba Corp Photoelectric conversion element
WO2002037577A2 (en) * 2000-10-31 2002-05-10 Universität Stuttgart Fiber, electronic circuit and textile product
WO2002037577A3 (en) * 2000-10-31 2002-09-12 Univ Stuttgart Fiber, electronic circuit and textile product
JP2003309278A (en) * 2002-04-16 2003-10-31 Japan Science & Technology Corp Electronic device formed of three-dimensional textile structure
US7535019B1 (en) * 2003-02-18 2009-05-19 Nanosolar, Inc. Optoelectronic fiber
JPWO2005029657A1 (en) * 2003-09-19 2007-11-15 古河電気工業株式会社 Solar cell module and its elements
WO2005029657A1 (en) * 2003-09-19 2005-03-31 The Furukawa Electric Co., Ltd. Solar cell module and its element
JP4609856B2 (en) * 2003-09-19 2011-01-12 古河電気工業株式会社 One-dimensional solar cell, solar cell module, and solar cell power generation system
WO2005050745A1 (en) * 2003-11-20 2005-06-02 Ideal Star Inc. Columnar electric device and its manufacturing method
US7495307B2 (en) 2003-11-20 2009-02-24 Ideal Star Inc. Columnar electric device
JP2016139815A (en) * 2003-11-20 2016-08-04 株式会社イデアルスター Structure and method of manufacturing the same
JP2009099979A (en) * 2003-11-20 2009-05-07 Ideal Star Inc Columnar electric device, and its manufacturing method
US7763912B2 (en) 2003-11-20 2010-07-27 Ideal Star Inc. Columnar electric device and production method thereof
JP2014170948A (en) * 2003-11-20 2014-09-18 Ideal Star Inc Structure, and method of manufacturing the same
JP2013093585A (en) * 2003-11-20 2013-05-16 Ideal Star Inc Columnar electric element and manufacturing method therefor
JP2009099751A (en) * 2007-10-17 2009-05-07 Hokkaido Univ Fibrous photoelectric conversion element, method of using the same and method of manufacturing the same, textile, method of using the same, clothing, and wallpaper
JP2012186233A (en) * 2011-03-03 2012-09-27 Jsr Corp Device and manufacturing method therefor
JP2012234959A (en) * 2011-04-28 2012-11-29 Suminoe Textile Co Ltd Photovoltaic thread covered with thermoplastic resin, and method for manufacturing the same
JP2012253149A (en) * 2011-06-01 2012-12-20 Taiyo Kogyo Corp Shroud-like photovoltaic power generation device
JP2017017136A (en) * 2015-06-30 2017-01-19 住江織物株式会社 Cloth-like solar cell
DE102016110464A1 (en) * 2016-06-07 2017-12-07 Gunter Erfurt Solar cell structure and process for producing a solar cell structure
WO2017211629A1 (en) 2016-06-07 2017-12-14 Ingenieurbüro Für Thermische Prozesse Dr. Erfurt Method for producing a solar cell structure
US10665730B2 (en) * 2017-10-20 2020-05-26 Pepin Technologies Llc. Photovoltaic fabric with woven bus architecture
JP2019186258A (en) * 2018-04-02 2019-10-24 住江織物株式会社 Series connection structure of fibrous photovoltaic elements and cloth type solar cell including fibrous photovoltaic elements connected in series connection structure
CN117673185A (en) * 2024-02-02 2024-03-08 西安电子科技大学 Laminated battery assembly packaged by core spun yarn process, preparation method and wearable fabric
CN117673185B (en) * 2024-02-02 2024-05-03 西安电子科技大学 Laminated battery assembly packaged by core spun yarn process, preparation method and wearable fabric

Also Published As

Publication number Publication date
JPH0479151B2 (en) 1992-12-15

Similar Documents

Publication Publication Date Title
JPS6042876A (en) Cloth-like solar battery
US4690717A (en) Method of making semiconductor device
CN104576778B (en) Without main grid high efficiency back contact solar cell, component and its preparation technology
WO2022068350A1 (en) Heterojunction battery, preparation method therefor, and application thereof
CN107527964A (en) Photovoltaic module with flexible wires interconnection
US6803513B2 (en) Series connected photovoltaic module and method for its manufacture
WO2014002249A1 (en) Solar cell, solar cell module, and method for producing solar cell
US5043772A (en) Semiconductor photo-electrically-sensitive device
TW200952193A (en) Solar module and system composed of a solar cell with a novel rear surface structure
JPH0621501A (en) Solar cell module and manufacture thereof
CN106449796B (en) A kind of electrode for solar cell
WO2015104793A1 (en) Solar cell production method, printing mask, solar cell, and solar cell module
US20240304738A1 (en) Heterojunction cell, and photovoltaic module cell string and manufacturing method therefor
JPH09162434A (en) Solar battery and its manufacture
TW201222846A (en) Use of a uniform layer of insulating material in back-contact solar cells
JP5162052B2 (en) Solar cell module
US4612559A (en) Solar cell of amorphous silicon
JP2006165149A (en) Photovolatic element, photovolatic element aggregate, photovolatic element module and manufacturing method of the same
CN214898458U (en) Back contact solar cell string, assembly and system
CN108767045A (en) Photovoltaic welding belt and manufacturing method, solar cell string and solar cell module
KR20200014756A (en) Photovoltaic cells and their manufacturing method
CN216015391U (en) A conducting structure and photovoltaic module for photovoltaic module
CN107706249A (en) Solar cell blade unit, photovoltaic cell module and its preparation technology
JPS5963774A (en) Thin-film silicon solar cell
CN112768547A (en) A conducting structure and photovoltaic module for photovoltaic module