JPH0479151B2 - - Google Patents

Info

Publication number
JPH0479151B2
JPH0479151B2 JP58150380A JP15038083A JPH0479151B2 JP H0479151 B2 JPH0479151 B2 JP H0479151B2 JP 58150380 A JP58150380 A JP 58150380A JP 15038083 A JP15038083 A JP 15038083A JP H0479151 B2 JPH0479151 B2 JP H0479151B2
Authority
JP
Japan
Prior art keywords
solar cell
layer
fiber
transparent
weft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58150380A
Other languages
Japanese (ja)
Other versions
JPS6042876A (en
Inventor
Masahisa Muroki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58150380A priority Critical patent/JPS6042876A/en
Publication of JPS6042876A publication Critical patent/JPS6042876A/en
Publication of JPH0479151B2 publication Critical patent/JPH0479151B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 本願発明は太陽電池に係り、とくに多層構造を
有する太陽電池繊維を編んで二次元的な広がりを
もたせた布状太陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar cell, and particularly to a fabric solar cell in which solar cell fibers having a multilayer structure are knitted to have a two-dimensional spread.

太陽電池はクリーンエネルギー源として期待さ
れ、石油資源の枯渇が心配される中で代替エネル
ギーとして検討されてきた。しかし太陽電池の発
電コストは主に材料費が原因して非常に高く
(1980年で約4000円/W)一般電力用電源として
普及するのはまだ先のことになりそうである。た
だ、発電効率が市販品でも5〜10%に達したた
め、携帯用電源、離島などの局所発電源としての
需要は急速に高まりつつある。このような段階で
太陽電池にもつとも望まれているのは低コスト化
および高付加価値化である。すなわち、市場を急
速に拡大するには、電力用電源とは別の意味で
「家庭用電源」として必需品の地位を占める必要
がある。高付加価値太陽電池を念頭において本願
発明者は特公昭58−33718号で多層同軸繊維太陽
電池を開示した。この太陽電池は従来型太陽電池
が平面パネル形状を有しているのに対して、可撓
性ある多層同軸太陽電池線を編んで二次元的な広
がりをもたせた布状形状を有しており、大面積化
が容易になつただけでなく可撓性にきわめて富み
機械的強度も充分あるため、二次製品への加工が
非常に容易であるというユニークな特質をもつて
いる。
Solar cells are expected to be a source of clean energy and have been considered as an alternative energy source amid concerns about the depletion of oil resources. However, the power generation cost of solar cells is extremely high (approximately 4,000 yen/W in 1980), mainly due to the cost of materials, and it seems likely that it will be a long time before they become widespread as a power source for general electricity. However, as the power generation efficiency has reached 5-10% even for commercially available products, demand is rapidly increasing for portable power sources and local power sources such as on remote islands. At this stage, what is desired for solar cells is lower costs and higher added value. In other words, in order to rapidly expand the market, it is necessary for the battery to occupy the position of an essential item as a "household power source" in a sense different from a power source for electric power. With high value-added solar cells in mind, the inventor of the present invention disclosed a multilayer coaxial fiber solar cell in Japanese Patent Publication No. 33718/1983. Unlike conventional solar cells, which have a flat panel shape, this solar cell has a cloth-like shape made by weaving flexible multilayer coaxial solar cell wires to give it a two-dimensional spread. It has the unique property of not only being easily made into a large area, but also extremely flexible and having sufficient mechanical strength, making it extremely easy to process into secondary products.

上記した多層同軸繊維状太陽電池の問題点は主
に発電コストにある。すなわち可視光を透過しな
い芯線や導電層を用いた多層同軸太陽電池線を編
んで、二次元的広がりをもたせる時、縦横に交互
に線が交叉すると交叉点の下方に位置した個所で
は遮光されるため発電しない。仮に隙間なく均等
に縦横方向に編成した布を作つた場合は、裏面も
発電に寄与しないため太陽電池線全表面積のうち
約1/4しか発電能をもたない。さらに数本の太陽
電池線を撚りあわせた後縦横に編成した構造で
は、露光面積割合は一層低下するため太陽電池線
全表面積が発電に寄与した場合に比べて結果とし
て材料費は約1桁コストアツプになる。勿論この
太陽電池線は薄膜構造なのでインゴツトから切出
した結晶ウエフアー太陽電池より材料費は安い。
しかし薄膜太陽電池間で比較すると、材料費の実
質的コストアツプはこの新型太陽電池の高付加価
値を減殺するものであり好ましくない。
The problem with the above-mentioned multilayer coaxial fibrous solar cell is mainly the power generation cost. In other words, when weaving multilayer coaxial solar cell wires using core wires and conductive layers that do not transmit visible light to create a two-dimensional spread, if the wires intersect alternately in the vertical and horizontal directions, light will be blocked at the location below the point of intersection. Therefore, it does not generate electricity. If a cloth were made that was knitted evenly in the vertical and horizontal directions without any gaps, the back side would not contribute to power generation, so only about 1/4 of the total surface area of the solar cell wire would have power generation capacity. Furthermore, in a structure in which several solar cell wires are twisted together and then organized vertically and horizontally, the exposed area ratio is further reduced, resulting in an approximately one-digit increase in material costs compared to when the entire surface area of the solar cell wires contributes to power generation. become. Of course, since this solar cell wire has a thin film structure, the material cost is lower than that of a crystalline wafer solar cell cut from an ingot.
However, when comparing thin-film solar cells, the substantial increase in material costs is undesirable because it reduces the high added value of this new type of solar cell.

この問題点を改善するために本発明者が更に検
討を重ねた結果次の如き構造の布状太陽電池を開
示するに至つた。すなわち、(1)縦横に交互に編成
した布状太陽電池において、多層構造太陽電池繊
維は縦糸又は横糸の一方のみとし、他方は非発電
性透明繊維を用いることにより材料の低減と縦糸
横糸交叉点における非発電個所の消滅を意図した
太陽電池。(2)縦横交互に編成する際、隣接する縦
糸或いは横糸間に隙間を設けるか或いは非発電性
透明繊維との混合繊維を用いることによつて裏面
に迄外光を導入し、裏面に散乱性光反射板を配置
することによつて表面だけでなく裏面にも発電能
を付与した布状太陽電池である。使用目的によつ
て(1)、(2)を単独に用いることも組合せて用いるこ
とも出来ることは自明である。
In order to improve this problem, the inventors of the present invention have conducted further studies and as a result have come to disclose a cloth-like solar cell having the following structure. In other words, (1) in a fabric solar cell that is alternately knitted vertically and horizontally, the multilayer solar cell fiber is used in only one of the warp or weft, and the other is made of non-power-generating transparent fiber, thereby reducing the amount of material and reducing the intersection of the warp and weft. Solar cells intended to eliminate non-generating sites in the world. (2) When knitting alternately vertically and horizontally, by creating gaps between adjacent warp or weft yarns or by using fibers mixed with non-power-generating transparent fibers, external light can be introduced to the back side and scattering properties can be applied to the back side. This is a cloth-like solar cell that has power generation capability not only on the front side but also on the back side by arranging a light reflecting plate. It is obvious that (1) and (2) can be used alone or in combination depending on the purpose of use.

更に本発明者は、前記多層構造太陽電池繊維の
発電効率を検討した結果、長尺繊維における抵抗
性電位降下を軽減するためには最外層の透明な絶
縁層に内接した半導体最外層に金属電極層を設け
ることが有効であると結論した。光電変換用半導
体層への入光を妨げないために、金属電極層は適
当なピツチでらせん状に巻きつけ配置するか細い
線条で太陽電池繊維の長軸に沿つて配置する。
Furthermore, as a result of studying the power generation efficiency of the multilayer structure solar cell fiber, the present inventor found that in order to reduce the resistive potential drop in the long fiber, it is necessary to add metal to the outermost semiconductor layer inscribed in the outermost transparent insulating layer. It was concluded that providing an electrode layer is effective. In order not to obstruct light entering the photoelectric conversion semiconductor layer, the metal electrode layer is wound spirally at an appropriate pitch or arranged in thin filaments along the long axis of the solar cell fiber.

前記多層構造太陽電池繊維の最外層を構成する
透明な絶縁層は低融点の合成樹脂から成ることが
望ましい。これは、前記半導体最外層の金属電極
層の配置によつて表面に高低差が生じ、また半導
体と金属とで材質が異なるため透明酸化膜で該太
陽電池繊維全表面を被覆することは連続製造工程
上困難を伴い結局は製造費の上昇につながるため
である。300℃以下の低融点をもつ合成樹脂融液
中に浸漬することにより、容易に透明絶縁被覆を
することができる。
The transparent insulating layer constituting the outermost layer of the multilayered solar cell fiber is preferably made of a low-melting point synthetic resin. This is because there is a difference in height on the surface due to the arrangement of the metal electrode layer of the outermost semiconductor layer, and since the materials of the semiconductor and metal are different, it is difficult to cover the entire surface of the solar cell fiber with a transparent oxide film in continuous manufacturing. This is because the process is difficult and ultimately leads to an increase in manufacturing costs. A transparent insulating coating can be easily applied by immersing the material in a synthetic resin melt having a low melting point of 300°C or less.

以下本発明を実施例に基ずき詳細に述べる。 The present invention will be described in detail below based on examples.

(その1) 直径1mmのNi線を芯線1に用い、これを第1
図に示したごとく窒素ガス雰囲気中で加熱された
石英容器3内に充填されたSi飽和Sn溶液4内に
浸漬する。石英容器3の底部には、リンを高濃度
にドープした多結晶シリコン塊2が充填されてお
り、多数の小孔をもつ仕切り板5で抑えられ溶液
4と接触している。図示したように溶液4には容
器底がより高温であり、容器上部に至るにしたが
つて低温になるように温度勾配が設けられてい
る。シリコン塊2は温度T1における飽和量だけ
Sn溶液中にとけ込んでおり、溶液の対流と拡散
とによつてより低温の容器上部に運ばれるため、
溶液中のリンドープSiは溶液上部付近で過飽和状
態になつている。Ni芯線1は該溶液4内の過飽
和領域に設けられた石英回転軸11を図示したよ
うに経て溶液4内に浸漬される。この位置でNi
芯線1は回転軸11の温度T2(T2<T1)近く迄
加熱され、T1とT2の温度差に相当する分だけn
−SiがNi芯線1上に析出可能である。実際に析
出する量はNi芯線1の溶液4への浸漬時間、す
なわち該芯線1の引張り速度で加減することがで
きる。通常はこの引張り速度を、芯線1上のn−
Si層の厚みが約5μmになるよう調節する。この時
n−Si層のキヤリア濃度が約5×1017cm-3になる
ようラリコン塊中のリン濃度を調整しておく。n
−Si層を析出したNi芯線1は、石英回転軸6を
経て第2のSi飽和Sn溶液充填容器7内に石英回
転軸12を巻いて浸漬される。石英容器7の底部
には硼素を高濃度ドープした多結晶シリコン塊8
が充填されており、多孔性石英仕切り板10で仕
切られている。容器7の底部にある多結晶シリコ
ン塊8の温度T3はT1より低く、また回転軸12
の位置におけるSn溶液温度T4(<T3)はT2より
低く保たれているので回転軸12の位置でp−Si
は過飽和状態にあつて、かつNi芯線1上に析出
したn−Si層は溶液9に浸漬されても溶解するこ
となくn−Si層上に結晶性p−Si層が析出する。
この場合、p−Si層の厚みは約4μmでかつそのキ
ヤリア濃度は約1×1017cm-3であるように温度T3
およびシリコン塊8中に含まれる硼素濃度を調節
する。このようにしてp−n接合を含むSi層を被
着したNi芯線1は石英回転軸18を経て一旦空
気中に取出され、容器16内に保持されたニカワ
溶液17内に浸漬され薄くニカワ塗布後、その表
面に幅300μmのSnリボン14をらせん状に密着
巻きする。ピツチは約10cmとする。次にこのリボ
ン巻きSi層被覆Ni芯線1を空気または酸素雰囲
気の電気炉中で450℃に加熱するとニカワは酸化
されて除去されるがp−Si層表面にはSnリボン
14直下で薄いSn−Si合金が形成されてSnリボ
ン14はp−Si層に溶着する。このSnリボン層
はp−Si層に対する良好な金属電極として作用す
る。n−Si層に対する抵抗性電極としてはNi芯
線1がそのまま利用できる。
(Part 1) A Ni wire with a diameter of 1 mm is used as the core wire 1, and this is
As shown in the figure, it is immersed in a Si-saturated Sn solution 4 filled in a quartz container 3 heated in a nitrogen gas atmosphere. The bottom of the quartz container 3 is filled with a polycrystalline silicon mass 2 doped with phosphorus at a high concentration, and is held in contact with the solution 4 by a partition plate 5 having a large number of small holes. As shown in the figure, the solution 4 is provided with a temperature gradient such that the temperature is higher at the bottom of the container and becomes lower toward the top of the container. Silicon lump 2 has only the saturated amount at temperature T 1
It is dissolved in the Sn solution and is carried to the upper part of the container where it is colder by convection and diffusion of the solution.
The phosphorus-doped Si in the solution is supersaturated near the top of the solution. The Ni core wire 1 is immersed in the solution 4 through a quartz rotating shaft 11 provided in a supersaturated region within the solution 4 as shown. Ni at this position
The core wire 1 is heated to a temperature close to the temperature T 2 (T 2 < T 1 ) of the rotating shaft 11, and n is heated by an amount corresponding to the temperature difference between T 1 and T 2 .
-Si can be precipitated on the Ni core wire 1. The amount actually deposited can be adjusted by adjusting the immersion time of the Ni core wire 1 in the solution 4, that is, the pulling speed of the core wire 1. Normally, this tensile speed is set to n-
Adjust the thickness of the Si layer to approximately 5 μm. At this time, the phosphorus concentration in the lalicon mass is adjusted so that the carrier concentration of the n-Si layer is approximately 5×10 17 cm −3 . n
- The Ni core wire 1 on which the Si layer has been deposited is passed through the quartz rotating shaft 6 and immersed in the second Si-saturated Sn solution filling container 7 with the quartz rotating shaft 12 wrapped around it. At the bottom of the quartz container 7 is a polycrystalline silicon block 8 doped with boron at a high concentration.
are filled and partitioned by porous quartz partition plates 10. The temperature T 3 of the polycrystalline silicon lump 8 at the bottom of the container 7 is lower than T 1 , and the rotation axis 12
Since the Sn solution temperature T 4 (<T 3 ) at the position is kept lower than T 2 , the p-Si
is in a supersaturated state, and the n-Si layer deposited on the Ni core wire 1 does not dissolve even when immersed in the solution 9, and a crystalline p-Si layer is deposited on the n-Si layer.
In this case, the temperature T 3 is such that the thickness of the p-Si layer is about 4 μm and its carrier concentration is about 1×10 17 cm -3.
And the boron concentration contained in the silicon lump 8 is adjusted. The Ni core wire 1 coated with the Si layer including the p-n junction in this way is once taken out into the air via the quartz rotating shaft 18, and immersed in the glue solution 17 held in the container 16 to apply a thin layer of glue. After that, a Sn ribbon 14 having a width of 300 μm is tightly wound in a spiral shape on the surface. The pitch should be approximately 10cm. Next, when this ribbon-wound Si layer-covered Ni core wire 1 is heated to 450°C in an electric furnace in an air or oxygen atmosphere, the glue is oxidized and removed, but a thin Sn- A Si alloy is formed and the Sn ribbon 14 is welded to the p-Si layer. This Sn ribbon layer acts as a good metal electrode for the p-Si layer. The Ni core wire 1 can be used as is as a resistive electrode for the n-Si layer.

Snリボン層の有効性をテストするために比較
試料を作つた。試料Aは直径1mmのNi芯線上に
上記例の如くしてp−n接合を含むSi層を形成
後、特公昭58−33718号実施例同様p−Si層表面
にSnCl2と水蒸気との反応によりSnO2膜(厚さ約
2000A)を堆積させ、この透明導電層をp−Si層
に対する抵抗性電極としたものである。また試料
Bはp−Si層に対する抵抗性電極は設けず、その
他は上記例と全く同じとした。本実施例のSnリ
ボン層付太陽電池繊維を試料Cとし、長さ50cmず
つ各試料を揃えた。各試料の一端部において酸性
エツチング液を用いて5mmずつNi芯線上の披着
層を除去しNi芯線1を露呈した。試料Aでは最
上層のSnO2層に薄く(厚さ3000A)Auを蒸着、
試料Bでは最上層のp−Si層に薄くAuを蒸着し
てリード線取付け端子とした。Au蒸着部は前記
Ni芯線露呈部の直上約3mmにとどめまたAu蒸着
によつてp−n接合が短絡しないよう配慮した。
A、B、C各試料の前記端部において、露呈した
Ni芯線およびAu蒸着膜またはSnリボンに対して
リード線をハンダ付けし、各試料のプラスマイナ
スリード線間に電圧計を接続した。各試料を同一
条件下で凝似太陽光発生装置内に設置し、真夏の
直射日光に相当する強度で凝似太陽光線を照射し
た。この時、試料Cの開放端電圧は約0.78Vであ
つたが、試料Aは約0.68V、試料Bは約0.46であ
り、p−Si層に対する金属電極の優位性が立証さ
れた。この発生電圧差は照射光強度が弱くなるに
従つて大きくなり、上記実験条件(真夏直射日
光)の約1/3の強度では試料Aと試料Cの電位差
は0.22Vに達した。
A comparative sample was made to test the effectiveness of the Sn ribbon layer. In sample A, after forming a Si layer including a p-n junction on a Ni core wire with a diameter of 1 mm as in the above example, a reaction between SnCl 2 and water vapor was applied to the surface of the p-Si layer as in the example of Japanese Patent Publication No. 58-33718. The SnO 2 film (thickness approx.
2000A) was deposited, and this transparent conductive layer was used as a resistive electrode for the p-Si layer. In addition, sample B was not provided with a resistive electrode for the p-Si layer, and was otherwise completely the same as the above example. The Sn ribbon layered solar cell fiber of this example was designated as sample C, and each sample was prepared in a length of 50 cm. At one end of each sample, the deposited layer on the Ni core wire was removed by 5 mm using an acidic etching solution to expose the Ni core wire 1. In sample A, a thin layer (3000A thick) of Au was deposited on the top two SnO layers.
In sample B, a thin layer of Au was deposited on the uppermost p-Si layer to form a lead wire attachment terminal. The Au evaporation part is
Care was taken to limit the thickness to approximately 3 mm directly above the exposed portion of the Ni core wire, and to prevent short-circuiting of the p-n junction due to Au evaporation.
At the end of each sample A, B, C, exposed
Lead wires were soldered to the Ni core wire and the Au vapor-deposited film or the Sn ribbon, and a voltmeter was connected between the positive and negative lead wires of each sample. Each sample was placed in a condensed solar generator under the same conditions, and irradiated with condensed sunlight at an intensity equivalent to direct sunlight in midsummer. At this time, the open circuit voltage of Sample C was about 0.78V, while that of Sample A was about 0.68V and that of Sample B was about 0.46, proving the superiority of the metal electrode over the p-Si layer. This generated voltage difference becomes larger as the intensity of the irradiated light becomes weaker, and the potential difference between Sample A and Sample C reached 0.22 V at about 1/3 of the intensity of the above experimental conditions (direct sunlight in midsummer).

さて、本実施例でNi芯線上にn−Si、p−Si、
リボン状Snの各層を連続形成した後、この上に
透明プラスチツク液を塗布乾燥した。この透明プ
ラスチツク層は透明絶縁層として作用する。この
線を一定速度で巻きとつていけば、石英容器3お
よび7の底部にシリコン塊2および8が残つてい
る限り一定膜厚のSi光電変換層を有する糸状繊維
が連続的に形成される。巻きとつた多層構造太陽
電池繊維は細くて(直径約1mm)可撓性に富み機
械的強度も充分である。
Now, in this example, n-Si, p-Si,
After each layer of ribbon-shaped Sn was successively formed, a transparent plastic liquid was applied thereon and dried. This transparent plastic layer acts as a transparent insulating layer. By winding this wire at a constant speed, as long as the silicon lumps 2 and 8 remain at the bottoms of the quartz containers 3 and 7, thread-like fibers having a Si photoelectric conversion layer of a constant thickness are continuously formed. The wound multilayer solar cell fiber is thin (about 1 mm in diameter), highly flexible, and has sufficient mechanical strength.

この多層構造太陽電池繊維を横糸201に用
い、縦糸200には直径約1mmの透明合成繊維
糸、たとえばナイロン糸を用いて縦横交互に編む
と二次元的な広がりをもつ布(編物)ができる。
この布を適当な大きさに裁断し、横糸の一端部だ
けを有機溶媒に浸漬して表面の絶縁性プラスチツ
ク膜を除去する。プラスチツク膜を除去した一端
部における横糸の直列接続例を示したのが第2図
である。すなわち、第2図aに示した如く、多層
構造太陽電池繊維から成る横糸の一端部(図の右
端)を有機溶媒に浸漬して最外皮の透明プラスチ
ツク膜201を除去すると、Snリボン層202
をらせん状に溶着したp−Sj層203が露呈す
る。縦糸は上記のように透明合成繊維糸200で
あつて、横糸が該縦糸の下方に位置するように交
叉しても交叉点で可視外光は該縦糸を透過して横
糸に入射するため、表面における非発電領域は
Snリボン層202の直下のみとなる。露呈した
p−Si層203の一部を弗硝酸系エツチング液に
浸漬するとSnリボン202、p−Si層203お
よびn−Si層204が除去されるので第2図bに
示した如く、Ni芯線1が露呈する。次に、p−
Si層203の抵抗性電極であるSnリボン層20
2およびn−Si層204の抵抗性電極であるNi
芯線1の各々に対して公知の方法でリード線をハ
ンダ付けし、横糸(太陽電池繊維)を直列接続す
れば第2図cの如くなる。簡単のため図では3本
の横糸のみしか示してないが、何本接続しても同
様である。Snリボン層202から引出したリー
ド線は電池の(+)側端子を形成し、Ni芯線1
からのリード線は(−)側端子を形成する。な
お、本例では図示してないが、この太陽電池繊維
を並列接続するには通常行なわれるようにSnリ
ボン層202どうし、Ni芯線1どうしを接続す
ればよいことは自明である。また図示した横糸端
部と反対側の端部は裁断によつて露呈したままに
なつているので、この個所を再び透明プラスチツ
ク液の塗布乾燥によつて絶縁処理する。この処理
は端部においてp−n接合の短絡や隣接する太陽
電池繊維導電部との意図せざる接触、使用者の感
電事故や漏電を防止し、かつ端部を機械的に保護
するため行なうもので、本実施例のプラスチツク
処理だけでなく他の様々な公知技術、たとえば絶
縁ゴムシールやガラスコーテイングなど望みの方
法で達成できることはいうまでもない。
When this multilayer structure solar cell fiber is used for the weft 201 and a transparent synthetic fiber thread having a diameter of about 1 mm, such as nylon thread, for the warp thread 200 and knitted alternately in the vertical and horizontal directions, a cloth (knitted fabric) with two-dimensional expanse can be obtained.
This cloth is cut to an appropriate size, and only one end of the weft is immersed in an organic solvent to remove the insulating plastic film on the surface. FIG. 2 shows an example of series connection of weft threads at one end with the plastic film removed. That is, as shown in FIG. 2a, when one end (right end in the figure) of the weft made of multilayer solar cell fiber is immersed in an organic solvent to remove the outermost transparent plastic film 201, the Sn ribbon layer 202 is removed.
The p-Sj layer 203, which is spirally welded, is exposed. As mentioned above, the warp is a transparent synthetic fiber yarn 200, and even if the weft intersects so that it is located below the warp, visible light passes through the warp and enters the weft at the crossing point, so the surface The non-power generation area in
It is only directly under the Sn ribbon layer 202. When a part of the exposed p-Si layer 203 is immersed in a fluoronitric acid-based etching solution, the Sn ribbon 202, the p-Si layer 203, and the n-Si layer 204 are removed, so that the Ni core wire is removed as shown in FIG. 1 is exposed. Next, p-
Sn ribbon layer 20 which is a resistive electrode of Si layer 203
2 and the resistive electrode of the n-Si layer 204.
If lead wires are soldered to each of the core wires 1 by a known method and the wefts (solar cell fibers) are connected in series, the result will be as shown in FIG. 2c. For simplicity, only three weft threads are shown in the figure, but the same effect applies no matter how many weft threads are connected. The lead wire pulled out from the Sn ribbon layer 202 forms the (+) side terminal of the battery, and the Ni core wire 1
The lead wire from forms the (-) side terminal. Although not shown in this example, it is obvious that in order to connect these solar cell fibers in parallel, the Sn ribbon layers 202 and the Ni core wires 1 may be connected together as is usually done. Further, since the end opposite to the illustrated weft end is left exposed due to cutting, this part is again insulated by coating and drying a transparent plastic liquid. This treatment is performed at the end to prevent short-circuiting of the p-n junction, unintentional contact with the adjacent solar cell fiber conductive part, electric shock to the user, and leakage, and to mechanically protect the end. It goes without saying that this can be achieved not only by the plastic treatment of this embodiment but also by various other known techniques, such as insulating rubber seals and glass coating.

第2図の要領で横糸、すなわち多層構造太陽電
池繊維を全て直並列接続した後、リード線を一本
のプラス端子(p−Si側)と一本のマイナス端子
(n−Si側)にまとめた。外光を吸収すれば、こ
のプラス、マイナス端子間に起電力を発生し、こ
の端子間に負荷抵抗を接続すれば、電力として外
部に取出すことができる。
After connecting all the weft threads, that is, multilayer solar cell fibers in series and parallel as shown in Figure 2, the lead wires are combined into one positive terminal (p-Si side) and one negative terminal (n-Si side). Ta. When external light is absorbed, an electromotive force is generated between the positive and negative terminals, and if a load resistor is connected between these terminals, it can be taken out as electric power.

隣接する横糸および縦糸をほぼ隙間なく密に編
んだ場合、この布状太陽電池は真夏の直射日光下
で約120W/m2の出力を示した。この布状太陽電
池はこのような密な状態で編まれているが、特公
昭58−33718で開示した多層同軸繊維状太陽電池
に比べて縦糸に安価な繊維を用いたため材料費が
約1/2に低下し、かつp−Si層側金属電極の採用
と表面側非発電領域(縦糸横糸交叉点の下側に位
置した日蔭の繊維部分)の解消によつて電力取出
し効率が約40%向上するという大きな効果を示し
た。勿論先願の太陽電池のもつ利点、すなわち高
可撓性、大量生産性、大面積化容易、多形状加工
容易という長所はそのまま保持されている。
When the adjacent weft and warp yarns were closely knitted with almost no gaps, this fabric solar cell exhibited an output of approximately 120 W/m 2 under direct sunlight in midsummer. This fabric solar cell is woven in such a dense manner, but compared to the multilayer coaxial fibrous solar cell disclosed in Japanese Patent Publication No. 58-33718, the material cost is approximately 1/100% due to the use of cheaper fibers for the warp. 2, and by adopting a metal electrode on the p-Si layer side and eliminating the non-power generation area on the surface side (the shaded fiber part located below the warp and weft intersection), the power extraction efficiency is approximately 40%. It showed a significant improvement. Of course, the advantages of the solar cell of the prior application, that is, high flexibility, mass productivity, easy expansion into a large area, and easy processing into multiple shapes, are retained.

(その2) 透明導電膜SnO231を被覆した直径約500μm
のガラス繊維30上に周知のグロー放電法を用い
て非晶質Si層を形成した。高周波放電容器内の圧
力は放電時0.1〜10Torr、H2で希釈した濃度
20mol%のSiH4ガスをベースとして、まずSnO2
31上にPH2ドープn−Si層32を約0.2μm、次
いでn−Si32上にアンドープのi−Si層33を
約0.6μm、更にその上にB2H6ドープp−Si層3
4を約0.3μm被着させた。高周波投入電力は10-2
〜10-1W/cm2とした。これら多層Si層の形成は、
放電容器内に2本の回転軸を導入し、片側の軸か
ら他方の回転軸へとフアイバーを少しずつ巻きと
りながら行なつた。この非晶質多層Si太陽電池は
禁制帯幅が1.7〜1.8Vであり外光に対して赤褐
色半透明である。p−Si層34の上に幅300μmの
Inリボン35を実施例(その1)の如くして後3
cmのピツチで密着して巻きつけ、らせん状に導電
帯をもうけた。これを約200℃に短時間加熱する
とIn−Si合金が形成され、Inリボン35はp−Si
層34に溶着する。Inリボン35が溶着した個所
は外光に対して不透明になる。またInリボン35
直下のp−Si領域は非晶質から結晶化して微結晶
領域が形成される。この微結晶領域はそれ以外の
非晶質領域に比べて約2桁導電度が高く、発生し
たキヤリアの伝導損失を小さくする上で効果的で
ある。
(Part 2) Approximately 500 μm in diameter covered with transparent conductive film SnO 2 31
An amorphous Si layer was formed on the glass fiber 30 using a well-known glow discharge method. The pressure inside the high frequency discharge vessel is 0.1~10Torr during discharge, the concentration diluted with H2
Based on 20 mol% SiH 4 gas, first SnO 2
31, a PH 2 doped n-Si layer 32 of about 0.2 μm, an undoped i-Si layer 33 of about 0.6 μm on the n-Si 32, and a B 2 H 6 doped p-Si layer 3 on top of that.
4 was deposited to a thickness of about 0.3 μm. High frequency input power is 10 -2
~10 -1 W/cm 2 . The formation of these multilayer Si layers is
Two rotating shafts were introduced into the discharge vessel, and the fiber was wound little by little from one shaft to the other. This amorphous multilayer Si solar cell has a forbidden band width of 1.7 to 1.8 V and is reddish brown and translucent to external light. 300 μm wide on the p-Si layer 34
After applying In ribbon 35 as in Example (Part 1),
They were wrapped closely together with a pitch of cm to create a spiral conductive band. When this is heated to about 200°C for a short time, an In-Si alloy is formed, and the In ribbon 35 is made of p-Si
Weld to layer 34. The part where the In ribbon 35 is welded becomes opaque to external light. Also In Ribbon 35
The p-Si region immediately below is crystallized from an amorphous state to form a microcrystalline region. This microcrystalline region has a conductivity that is about two orders of magnitude higher than other amorphous regions, and is effective in reducing the conduction loss of generated carriers.

しかる後、この多層構造フアイバーに透明合成
樹脂液を塗布乾燥し、表面に数μm厚さの透明絶
縁層36を形成した。得られた多層構造太陽電池
繊維の構成を第3図に示した。
Thereafter, a transparent synthetic resin liquid was applied to this multilayered fiber and dried to form a transparent insulating layer 36 with a thickness of several μm on the surface. The structure of the obtained multilayer solar cell fiber is shown in FIG.

この半透明多層構造太陽電池繊維を縦糸に用
い、横糸には直径約500μmのガラスフアイバー
を用いて縦横交互に編んで布状太陽電池を作つ
た。この場合隣接する糸との隙間はほとんどあけ
ずち密に編成した。この布を適当な大きさに裁断
後、縦糸の一端部でのみ前実施例の如くして
SnO2電極層31、Inリボン層35を露呈させ、
直並列接続して一本のプラス端子、マイナス端子
にまとめた。次いでこの布状電池全体を透明プラ
スチツク溶液中に浸漬して引上げ乾燥し、表面を
透明絶縁膜で被覆した。このような表面保護は、
たとえばSiO2やTiO2、Al2O3など透明酸化物絶
縁膜をスパツタリング法や化学蒸着法によつて形
成しても目的に叶うが、製造コスト、量産性の点
で本実施例のような有機物被覆に劣る。
This translucent multilayered solar cell fiber was used as the warp yarn, and glass fibers with a diameter of about 500 μm were used as the weft yarn, and were knitted alternately in the vertical and horizontal directions to create a cloth-like solar cell. In this case, the yarns were knitted tightly with almost no gaps between adjacent yarns. After cutting this cloth to an appropriate size, cut only one end of the warp as in the previous example.
exposing the SnO 2 electrode layer 31 and the In ribbon layer 35;
Connected in series and parallel to form one positive and negative terminal. Next, the entire fabric battery was immersed in a transparent plastic solution, pulled up and dried, and the surface was covered with a transparent insulating film. Such surface protection is
For example, forming a transparent oxide insulating film such as SiO 2 , TiO 2 , or Al 2 O 3 by sputtering or chemical vapor deposition can also achieve the purpose, but from the viewpoint of manufacturing cost and mass productivity, it is not possible to form a transparent oxide insulating film such as SiO 2 , TiO 2 , or Al 2 O 3 . Inferior to organic coating.

全面プラスチツク被覆多層構造布状太陽電池は
表面のプラスチツク層が薄いため充分な可撓性を
有している。この裏面に白色不透明合成繊維から
成る外光反射布を裏打ちした。
Fully plastic-coated multilayer fabric solar cells have sufficient flexibility because the plastic layer on the surface is thin. This back surface was lined with an external light reflective cloth made of white opaque synthetic fiber.

真夏の直射日光を照射するとこの布状太陽電池
は約125W/m2の電力を発生した。これは外光が
半透明な多層構造太陽電池繊維の裏面に迄侵入
し、裏面の反射布で反射されて太陽電池繊維の全
表面が発電に寄与した結果であると考えられる。
本実施例で用いた非晶質Si太陽電池の太陽光エネ
ルギー変換効率は約6%なので、有効表面積の増
加が著しい発電能の増加を招いたことがわかる。
When exposed to direct sunlight in midsummer, this fabric solar cell generated approximately 125 W/m 2 of power. This is thought to be the result of external light penetrating the back surface of the translucent multilayered solar cell fiber and being reflected by the reflective cloth on the back surface, making the entire surface of the solar cell fiber contribute to power generation.
Since the solar energy conversion efficiency of the amorphous Si solar cell used in this example is about 6%, it can be seen that the increase in effective surface area resulted in a significant increase in power generation capacity.

なお、上記実施例でグロー放電によりp型非晶
質層を形成する際ベースとなるガスSiH4にC2H6
を混合すればp−Si-xCx層がi−Si層上に被着す
る。Si1-xCxは禁制帯幅がSiより一層広くしたが
つてp層の透明度が一層高まるため太陽光の吸収
効率も増加し、このヘテロ接合形多層構造太陽電
池繊維のエネルギー変換効率は非晶質Si太陽電池
の6%から8〜9%まで向上することが確かめら
れた。
In addition, in the above example, C 2 H 6 was added to the base gas SiH 4 when forming the p-type amorphous layer by glow discharge.
When mixed, a p-Si -x C x layer is deposited on the i-Si layer. The forbidden band width of Si 1-x C x is wider than that of Si, so the transparency of the p-layer is further increased, so the absorption efficiency of sunlight is also increased, and the energy conversion efficiency of this heterojunction type multilayer solar cell fiber is very low. It was confirmed that the improvement was achieved from 6% of crystalline Si solar cells to 8-9%.

(その3) 第1図のごとくして多層構造太陽電池繊維を作
つた。ただし、この場合芯線1はNi線ではなく
直径約1.2mmのカーボンフアイバーを用いた。ま
たp−Si層203上に配置する金属電極は、前実
施例のSnリボン層202と異なり直線状Ag層と
した。p−Si層203上にAg電極層を形成する
には、細い溝状タンクに無電解Agメツキ液を充
填加熱しておき、p−n接合を含むSi層が被着し
たカーボンフアイバー線をp−Si層203の表面
一部が該メツキ液に浸漬するようにして溝状タン
クの長手方向に走行せしめればよい。本実施例の
場合、幅約100μm、厚さ約2000AのAgストライ
プ電極がp−Si層203の表面に芯線の長手方向
に形成された。電極幅は浸漬深さで、また電極の
厚みはメツキ液濃度、温度および浸漬時間によつ
て調節することができる。また電極用金属もAg
以外、Au、Ni、Sn、Cuなど多くの種類用いるこ
とができる。Ag電極層形成後は前実施例同様表
面に透明絶縁性プラスチツク塗膜をした。
(Part 3) A multilayer structure solar cell fiber was made as shown in Figure 1. However, in this case, the core wire 1 was not a Ni wire but a carbon fiber with a diameter of about 1.2 mm. Further, the metal electrode disposed on the p-Si layer 203 was a linear Ag layer, unlike the Sn ribbon layer 202 of the previous example. To form an Ag electrode layer on the p-Si layer 203, a thin groove-shaped tank is filled with an electroless Ag plating solution and heated. - It is sufficient if the surface of the Si layer 203 is partially immersed in the plating liquid, and the plating liquid is caused to run in the longitudinal direction of the groove-shaped tank. In this example, an Ag stripe electrode with a width of about 100 μm and a thickness of about 2000 Å was formed on the surface of the p-Si layer 203 in the longitudinal direction of the core wire. The electrode width can be adjusted by the immersion depth, and the electrode thickness can be adjusted by the plating solution concentration, temperature, and immersion time. Also, the electrode metal is Ag.
In addition, many types such as Au, Ni, Sn, and Cu can be used. After forming the Ag electrode layer, a transparent insulating plastic coating was applied to the surface as in the previous example.

この多層構造太陽電池繊維201を横糸にし、
直径約1.2mmの透明アミラン繊維200を縦糸に
用いて縦横交互に編んで布状太陽電池を形成し
た。ただしこの場合縦糸横糸に隣接する糸間に約
1.2mmの隙間をあけて編みこんだ。適当な大きさ
に裁断後、横糸の一端部を第2図に如くして露呈
させp−Si層203に対するAgストライプ電極
とn−Si層204に対するカーボンフアイバー電
極にリード線付けを行なつた。なお、カーボンフ
アイバーの場合、ハンダ付け前に端部にAgを蒸
着しておき、Agを介してハンダ付けした。横糸
すべてを直並列接続後リード線を一本のプラス端
子、マイナス端子にまとめた。次にこの太陽電池
布全体を透明プラスチツク液に浸漬乾燥させ表面
全体に透明絶縁膜をつけた。第4図で部分図を示
したように布状太陽電池裏面にやや間隙を保つて
乱反射面を有する白色合成繊維布206を張り、
該布状太陽電池に真夏の直射日光を照射した。直
射日光は布状太陽電池表面で吸収されて光電変換
されるだけでなく、幅約1.2mmの横糸間隙からス
トライプ状に上記白色合成繊維布206の乱反射
面に入射し散乱されて布状太陽電池裏面にも吸収
される。この結果多層構造太陽電池繊維はほぼ全
表面積が光電変換に寄与する。この布状太陽電池
は約100W/m2の出力を示した。すなわち、実施
例(その1)に比べて多層構造太陽電池繊維の使
用量は1/2に減少したにもかかわらず発電量の減
少は約15%にとどまつている。これは布状太陽電
池全表面発電の効果であり、材料コストの低減に
非常に有効な一つの方法といえる。
This multilayer structure solar cell fiber 201 is made into a weft,
Transparent amylan fiber 200 with a diameter of about 1.2 mm was used as warp threads and knitted alternately in the vertical and horizontal directions to form a cloth-like solar cell. However, in this case, approximately
I knitted it with a gap of 1.2mm. After cutting to an appropriate size, one end of the weft was exposed as shown in FIG. 2, and lead wires were attached to the Ag stripe electrode for the p-Si layer 203 and the carbon fiber electrode for the n-Si layer 204. In the case of carbon fiber, Ag was vapor-deposited on the end before soldering, and soldering was performed via Ag. After connecting all the weft threads in series and parallel, the lead wires were combined into one positive and negative terminal. Next, the entire solar cell cloth was immersed in a transparent plastic solution and dried to coat the entire surface with a transparent insulating film. As shown in a partial view in FIG. 4, a white synthetic fiber cloth 206 having a diffused reflection surface is placed on the back surface of the cloth-like solar cell with a slight gap,
The fabric solar cell was irradiated with direct midsummer sunlight. Direct sunlight is not only absorbed on the surface of the fabric solar cell and converted into electricity, but also enters the diffuse reflection surface of the white synthetic fiber cloth 206 in stripes through the weft gap of approximately 1.2 mm in width and is scattered. It is also absorbed on the back side. As a result, almost the entire surface area of the multilayer solar cell fiber contributes to photoelectric conversion. This fabric solar cell exhibited an output of approximately 100W/m 2 . That is, even though the amount of multilayer solar cell fiber used was reduced by half compared to Example (Part 1), the reduction in power generation remained at about 15%. This is an effect of full-surface power generation in fabric solar cells, and can be said to be a very effective method for reducing material costs.

また、上記例で横糸間隙を1.2mmずつあけるか
わりに、ここに縦糸と同質の透明アミラン繊維
(直径約1.2mm)を入れて隙間なく編み込み布の機
械的強度を高めた布状太陽電池では真夏直射日光
下における出力は約93W/m2であつた。これは透
明アミラン繊維による光反射損失の影響と考えら
れる。
In addition, in the above example, instead of leaving gaps between the weft yarns of 1.2 mm each, transparent amylan fibers (diameter of about 1.2 mm), which are the same as the warp yarns, are inserted here to increase the mechanical strength of the woven cloth without any gaps. The output under direct sunlight was approximately 93 W/m 2 . This is considered to be the effect of light reflection loss due to the transparent amylan fiber.

(その4) 幅3mm、厚さ200μmの扁平なFe線を芯線1と
して用い、第1図で示した溶液法によつてこの上
にp−n接合を含むInP多結晶薄膜層を晶出させ
た。この場合、石英容器3,7にはIn溶媒4,9
を充填し、n−InPソースにはSnドープ多結晶
InP塊2を、またp−InPソースにはZnドープ多
結晶InP塊8を用いた。第1図の如く、Fe芯線1
を石英容器充填InP飽和In溶液4,9内に連続的
に浸漬し走行させることによつてFe芯線表面に
厚さ約4μmのn−InP層、厚さ約6μmのp−InP
層がこの順に積層される。この工程はN2雰囲気
で行なうが、次いで1050℃の酸化性雰囲気で
SnCl2を含む蒸気を流しながらこの線を走行させ
るとp−InP層表面に2000〜5000A厚みのSnO2
明電極層31が形成される。次いでこの線を透明
プラスチツク溶液中に浸漬後引上げ乾燥すれば、
SnO2膜31表面に透明絶縁膜36が形成される。
(Part 4) A flat Fe wire with a width of 3 mm and a thickness of 200 μm was used as the core wire 1, and an InP polycrystalline thin film layer containing a p-n junction was crystallized thereon by the solution method shown in Figure 1. Ta. In this case, the In solvents 4 and 9 are in the quartz containers 3 and 7.
The n-InP source is filled with Sn-doped polycrystal.
InP lump 2 was used, and Zn-doped polycrystalline InP lump 8 was used as the p-InP source. As shown in Figure 1, Fe core wire 1
By continuously immersing and running InP in a quartz container-filled InP saturated In solution 4, 9, an n-InP layer with a thickness of approximately 4 μm and a p-InP layer with a thickness of approximately 6 μm are formed on the surface of the Fe core wire.
The layers are stacked in this order. This process is carried out in an N2 atmosphere, but then in an oxidizing atmosphere at 1050℃.
When this line is run while flowing vapor containing SnCl 2 , a SnO 2 transparent electrode layer 31 with a thickness of 2000 to 5000 Å is formed on the surface of the p-InP layer. Then, if this wire is immersed in a transparent plastic solution and then pulled out and dried,
A transparent insulating film 36 is formed on the surface of the SnO 2 film 31.

こうして得られた多層構造太陽電池繊維を縦糸
にし、横糸には直径3mmの透明ナイロン糸を用い
て縦横に交互に編んだ。この場合特に縦糸は隣接
する糸間に隙間がないように密に編成して布状太
陽電池を作つた。
The thus obtained multilayer structure solar cell fiber was made into warp yarns, and transparent nylon threads with a diameter of 3 mm were used as weft yarns, which were knitted alternately in the vertical and horizontal directions. In this case, in particular, the warp yarns were tightly knitted so that there were no gaps between adjacent yarns to create a cloth-like solar cell.

この布を適当な大きさに裁断し、第2図に示し
たように縦糸の一端部のみで電極層、すなわち
SnO2膜およびFe芯線を露呈させ、直並列接続し
て最後に一本のプラス端子と一本のマイナス端子
にまとめた。表面を絶縁プラスチツク膜で処理し
た後真夏の直射日光下で出力を測定すると約
105W/m2が得られた。多結晶InP太陽電池のエ
ネルギー変換効率は約12%であつたが、p−InP
電極層SnO2膜の抵抗が比較的大きくやや取出し
損失がみられる。しかし、この扁平多層構造太陽
電池繊維を用いた化合物半導体布状太陽電池も充
分な可撓性と機械的強度を有していることが確か
められた。
This cloth is cut to an appropriate size, and as shown in Figure 2, only one end of the warp is used to form an electrode layer, i.e.
The SnO 2 film and Fe core wire were exposed, connected in series and parallel, and finally combined into one positive terminal and one negative terminal. After the surface is treated with an insulating plastic film, the output is measured under direct sunlight in midsummer.
105W/ m2 was obtained. The energy conversion efficiency of polycrystalline InP solar cells was about 12%, but p-InP
The resistance of the SnO 2 electrode layer is relatively large, and a slight extraction loss is observed. However, it was confirmed that the compound semiconductor fabric solar cell using this flat multilayer structure solar cell fiber also had sufficient flexibility and mechanical strength.

(その5) 実施例(その1)と全く同じ工程で製造した直
径約1mmの多層構造Si太陽電池繊維を密な状態で
縦横交互に編み布状太陽電池を作つた。この場
合、縦線、横線が共に太陽電池繊維であるため、
適当な大きさに裁断した後、縦線側一端部と横線
側一端部の各々で第2図にようにして各線の直並
列接続を行ない、最後に一本のプラス側端子、一
本のマイナス側端子にまとめた。該布状太陽電池
全体を透明プラスチツク溶液中に浸漬して引上げ
乾燥した。この布状太陽電池は真夏の直射日光下
で約100W/m2の出力を示した。実施例(その1)
の場合より発電能が小さいのは縦横交叉点下方の
遮光部分が電力取出し損失を与えているためと考
えられる。しかし、p−Si層203にSnリボン
層202を接続して伝導損失を減らした結果、特
公昭58−33718の場合より発電能は約15%向上し
ている。
(Part 5) A fabric-like solar cell was fabricated by knitting multilayered Si solar cell fibers having a diameter of approximately 1 mm, which were produced in exactly the same process as in Example (Part 1), in a dense state and alternating vertically and horizontally. In this case, both the vertical and horizontal lines are solar cell fibers, so
After cutting to an appropriate size, connect each wire in series and parallel at one end of the vertical line side and one end of the horizontal line as shown in Figure 2, and finally connect one positive terminal and one negative terminal. I put it together on the side terminal. The entire fabric solar cell was immersed in a transparent plastic solution and pulled up to dry. This fabric solar cell exhibited an output of approximately 100 W/m 2 under direct sunlight in midsummer. Example (Part 1)
The reason why the power generation capacity is lower than that in the case of 2 is thought to be that the light-shielding portion below the vertical and horizontal intersections causes power extraction loss. However, as a result of connecting the Sn ribbon layer 202 to the p-Si layer 203 to reduce conduction loss, the power generation capacity is improved by about 15% compared to the case of Japanese Patent Publication No. 58-33718.

一方、上記多層構造Si太陽電池繊維を縦横に編
む場合、繊維直径と同じ1mm径の透明ナイロン糸
を一本おきに混合して編み、裁断一端部での直並
列接続、透明絶縁処理後該太陽電池布の裏面に光
反射性白色合成繊維布206を配した実施例(そ
の3)の如き2重布構造では直射日光下での出力
は約88W/m2であつた。
On the other hand, when weaving the above multilayer structure Si solar cell fiber vertically and horizontally, transparent nylon threads with a diameter of 1 mm, which is the same as the fiber diameter, are mixed and knitted every other thread, cut in series and parallel at one end, and after transparent insulation treatment, the solar cell fiber is In the case of a double cloth structure such as Example (Part 3) in which the light-reflective white synthetic fiber cloth 206 was arranged on the back side of the battery cloth, the output under direct sunlight was about 88 W/m 2 .

以上述べてきた布状太陽電池の実施例では多層
構造太陽電池繊維の光電変換層材料としてSi、
Si1-xCx、InP、また製造方法としては、芯線の外
側に太陽電池層を構成する「外付け法」だけを扱
つた。しかし、この他光電変換層材料としてCdS
やCaAs等の化合物半導体材料にも本願発明が適
用できることは自明である。また、「外付け法」
以外にも、たとえば特公昭58−33718で述べたよ
うな中空芯線の内側に太陽電池層を形成する「内
付け法」によつても本願発明の布状太陽電池が得
られることは、本願発明の構成から明白である。
In the fabric solar cell examples described above, Si is used as the material for the photoelectric conversion layer of the multilayer solar cell fiber.
As for Si 1-x C x , InP, and as a manufacturing method, only the ``external attachment method'' in which the solar cell layer is formed outside the core wire was used. However, in addition to this, CdS is used as a photoelectric conversion layer material.
It is obvious that the present invention can also be applied to compound semiconductor materials such as CaAs and CaAs. Also, "external attachment method"
In addition, the fact that the fabric solar cell of the present invention can also be obtained by the "internal attachment method" of forming a solar cell layer inside a hollow core wire, as described in Japanese Patent Publication No. 58-33718, is an aspect of the present invention. It is clear from the structure of

本願発明によつて可撓性にきわめて富み機械的
強度が充分ありまた大面積化、量産化、多形状化
容易な布状太陽電池の電力取出し効率の向上と製
造コスト、特に材料コストの大幅な低減が可能と
なつた。
The present invention improves the power extraction efficiency of fabric solar cells, which are extremely flexible and have sufficient mechanical strength, and which are easy to increase in area, mass production, and multi-shape, and significantly reduce manufacturing costs, especially material costs. It has become possible to reduce

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明になる多層構造太陽電池繊維
製造工程の一実施例を示す図、第2図は本発明の
布状太陽電池における各線接続の一実施例を示す
図でありa,b,cは接続のための工程を示して
いる。第3図は、本発明の別の一実施例における
多層構造太陽電池繊維の構成を示す図、第4図
は、本発明になり布状太陽電池のさらに別の一実
施例における布構成を示す図である。 図において1は導電性芯線、204は結晶性n
−Si層、203は結晶性p−Si層、202はSn
リボン層、201は多層構造太陽電池繊維、20
0は透明合成繊維糸、206は白色合成繊維布、
36は透明絶縁層、35はInリボン層、30はガ
ラスフアイバー芯線、31はSnO2導電膜、32
は非晶質n−Si層、33は非晶質i−Si層、34
は非晶質p−Si層である。
FIG. 1 is a diagram showing an example of the multilayer structure solar cell fiber manufacturing process of the present invention, and FIG. 2 is a diagram showing an example of each line connection in the fabric solar cell of the present invention. , c indicate the process for connection. FIG. 3 is a diagram showing the structure of a multilayer solar cell fiber in another embodiment of the present invention, and FIG. 4 is a diagram showing the fabric structure in yet another embodiment of the fabric solar cell according to the present invention. It is a diagram. In the figure, 1 is a conductive core wire, 204 is a crystalline n
-Si layer, 203 is crystalline p-Si layer, 202 is Sn
Ribbon layer, 201, multilayer structure solar cell fiber, 20
0 is transparent synthetic fiber yarn, 206 is white synthetic fiber cloth,
36 is a transparent insulating layer, 35 is an In ribbon layer, 30 is a glass fiber core wire, 31 is a SnO 2 conductive film, 32
is an amorphous n-Si layer, 33 is an amorphous i-Si layer, 34
is an amorphous p-Si layer.

Claims (1)

【特許請求の範囲】[Claims] 1 多層構造を有する可撓性太陽電池繊維を編み
こんで二次元的な広がりをもたせた太陽電池の縦
糸横糸のうち、どちらか一方を上記多層構造太陽
電池繊維か或いは該太陽電池繊維と非発電性繊維
の混合繊維で構成し、他方を非発電性透明繊維の
みで構成し上記多層構造太陽電池繊維は外光が入
射する最外層の透明な電気的絶縁層と、該絶縁層
の内周に設けられたp−n又はp−i−n接合形
光電変換層と、該光電変換層の両側に位置し該光
電変換層の一部又は全部に設けられた導電部と、
該導電部を介して上記p−n又はp−i−n接合
に生ずる起電力を外部へ取出す手段とより成る布
状太陽電池。
1. Of the warp and weft of a solar cell that is made by knitting flexible solar cell fibers with a multilayer structure to have a two-dimensional spread, one of the warp and weft yarns is connected to the above multilayer structure solar cell fiber or to a non-power generating device with the solar cell fiber. The multilayer structure solar cell fiber is composed of a mixed fiber of electrically conductive fibers, and the other is composed only of non-electrically generating transparent fibers. A p-n or pin junction type photoelectric conversion layer provided, a conductive part located on both sides of the photoelectric conversion layer and provided in part or all of the photoelectric conversion layer,
A fabric solar cell comprising means for extracting the electromotive force generated at the p-n or p-i-n junction to the outside via the conductive portion.
JP58150380A 1983-08-19 1983-08-19 Cloth-like solar battery Granted JPS6042876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58150380A JPS6042876A (en) 1983-08-19 1983-08-19 Cloth-like solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58150380A JPS6042876A (en) 1983-08-19 1983-08-19 Cloth-like solar battery

Publications (2)

Publication Number Publication Date
JPS6042876A JPS6042876A (en) 1985-03-07
JPH0479151B2 true JPH0479151B2 (en) 1992-12-15

Family

ID=15495728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58150380A Granted JPS6042876A (en) 1983-08-19 1983-08-19 Cloth-like solar battery

Country Status (1)

Country Link
JP (1) JPS6042876A (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3700792C2 (en) * 1987-01-13 1996-08-22 Hoegl Helmut Photovoltaic solar cell arrangement and method for its production
DE4328868A1 (en) * 1993-08-27 1995-03-02 Twin Solar Technik Entwicklung Element of a photovoltaic solar cell and method for its production as well as its arrangement in a solar cell
US5437736A (en) * 1994-02-15 1995-08-01 Cole; Eric D. Semiconductor fiber solar cells and modules
JP3435304B2 (en) * 1997-03-13 2003-08-11 株式会社東芝 Liquid crystal display
DE10054558A1 (en) * 2000-10-31 2002-05-16 Univ Stuttgart Inst Fuer Physi Flexible fiber, semiconductor device and textile product
JP2003309278A (en) * 2002-04-16 2003-10-31 Japan Science & Technology Corp Electronic device formed of three-dimensional textile structure
US7535019B1 (en) * 2003-02-18 2009-05-19 Nanosolar, Inc. Optoelectronic fiber
WO2005029657A1 (en) * 2003-09-19 2005-03-31 The Furukawa Electric Co., Ltd. Solar cell module and its element
WO2005050745A1 (en) 2003-11-20 2005-06-02 Ideal Star Inc. Columnar electric device and its manufacturing method
JP2009099751A (en) * 2007-10-17 2009-05-07 Hokkaido Univ Fibrous photoelectric conversion element, method of using the same and method of manufacturing the same, textile, method of using the same, clothing, and wallpaper
JP2012186233A (en) * 2011-03-03 2012-09-27 Jsr Corp Device and manufacturing method therefor
JP2012234959A (en) * 2011-04-28 2012-11-29 Suminoe Textile Co Ltd Photovoltaic thread covered with thermoplastic resin, and method for manufacturing the same
JP5941625B2 (en) * 2011-06-01 2016-06-29 太陽工業株式会社 Membrane solar power generator
JP2017017136A (en) * 2015-06-30 2017-01-19 住江織物株式会社 Cloth-like solar cell
DE102016110464A1 (en) * 2016-06-07 2017-12-07 Gunter Erfurt Solar cell structure and process for producing a solar cell structure
US10665730B2 (en) * 2017-10-20 2020-05-26 Pepin Technologies Llc. Photovoltaic fabric with woven bus architecture
JP2019186258A (en) * 2018-04-02 2019-10-24 住江織物株式会社 Series connection structure of fibrous photovoltaic elements and cloth type solar cell including fibrous photovoltaic elements connected in series connection structure
CN117673185B (en) * 2024-02-02 2024-05-03 西安电子科技大学 Laminated battery assembly packaged by core spun yarn process, preparation method and wearable fabric

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254391A (en) * 1975-10-29 1977-05-02 Yuuji Yamaguchi Fibrous photocell
JPS5430786A (en) * 1977-08-11 1979-03-07 Japan Solar Energy Optical generator
JPS56152275A (en) * 1980-04-25 1981-11-25 Teijin Ltd Thin film type solar cell
JPS5833718A (en) * 1981-08-20 1983-02-28 Nagoyashi Inducing device for mobile body using information tile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254391A (en) * 1975-10-29 1977-05-02 Yuuji Yamaguchi Fibrous photocell
JPS5430786A (en) * 1977-08-11 1979-03-07 Japan Solar Energy Optical generator
JPS56152275A (en) * 1980-04-25 1981-11-25 Teijin Ltd Thin film type solar cell
JPS5833718A (en) * 1981-08-20 1983-02-28 Nagoyashi Inducing device for mobile body using information tile

Also Published As

Publication number Publication date
JPS6042876A (en) 1985-03-07

Similar Documents

Publication Publication Date Title
JPH0479151B2 (en)
US4591892A (en) Semiconductor photoelectric conversion device
KR100809248B1 (en) Photovoltaic device using semiconductor heterostructure nanowires and method for manufacturing the same
KR100348108B1 (en) A photovoltaic element having a back side transparent and electrically conductive layer with a light incident side surface region having a specific cross section and a module comprising said photovoltaic element
US20220367739A1 (en) Solar cell comprising a metal-oxide buffer layer and method of fabrication
JP3327811B2 (en) Method for producing zinc oxide thin film, photovoltaic element and semiconductor element substrate using the same
US5180434A (en) Interfacial plasma bars for photovoltaic deposition apparatus
US9548403B2 (en) Solar cell and method for manufacturing the same
US20180097127A1 (en) Solar cell and method for manufacturing the same
WO2022068350A1 (en) Heterojunction battery, preparation method therefor, and application thereof
US5043772A (en) Semiconductor photo-electrically-sensitive device
US5391893A (en) Nonsingle crystal semiconductor and a semiconductor device using such semiconductor
JPH09162434A (en) Solar battery and its manufacture
KR101275576B1 (en) Solar cell and manufacturing method thereof
CN106449795A (en) MoS2/Si photovoltaic device with ITO/Pd double-layer structured composite electrode and preparation method thereof
JPH06101571B2 (en) Semiconductor device
CN109950334A (en) MWT solar battery group string and preparation method thereof, component
JPH03125481A (en) Photovoltaic device
JPH0677511A (en) Solar battery and its manufacture
JPS5833718B2 (en) Multilayer coaxial fibrous solar cell
CA1121897A (en) Thin film photovoltaic cells
JP2009200126A (en) Power generation system, method and device for manufacturing the same, and solar cell
JP2005142371A (en) Method of anti reflective film for solar cell
JPS611062A (en) Photovoltaic device
RU199472U1 (en) PHOTOSENSOR BASED ON A FLEXIBLE MEMBRANE WITH FILAMENT NANOCRYSTALS