WO2005029657A1 - Solar cell module and its element - Google Patents

Solar cell module and its element Download PDF

Info

Publication number
WO2005029657A1
WO2005029657A1 PCT/JP2004/013772 JP2004013772W WO2005029657A1 WO 2005029657 A1 WO2005029657 A1 WO 2005029657A1 JP 2004013772 W JP2004013772 W JP 2004013772W WO 2005029657 A1 WO2005029657 A1 WO 2005029657A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
dimensional
polycrystalline silicon
semiconductor
layer
Prior art date
Application number
PCT/JP2004/013772
Other languages
French (fr)
Japanese (ja)
Other versions
WO2005029657A8 (en
Inventor
Toshihiro Nakamura
Hisashi Koaizawa
Hiroshi Kuraseko
Michio Kondo
Kenkichi Suzuki
Original Assignee
The Furukawa Electric Co., Ltd.
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd., National Institute Of Advanced Industrial Science And Technology filed Critical The Furukawa Electric Co., Ltd.
Priority to JP2005514094A priority Critical patent/JP4609856B2/en
Publication of WO2005029657A1 publication Critical patent/WO2005029657A1/en
Publication of WO2005029657A8 publication Critical patent/WO2005029657A8/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0475PV cell arrays made by cells in a planar, e.g. repetitive, configuration on a single semiconductor substrate; PV cell microarrays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module and its components c
  • the biggest problem with solar cells is their high manufacturing cost. As of 2003, in Japan, the cost of electricity generated by solar cells is about 70 yen ZkWh, which is about three times higher than the commercial electricity rate of 25 yen ZkWh.
  • solar cells using a single crystal silicon substrate or a polycrystalline silicon substrate having high conversion efficiency are mainly used.
  • a P-type substrate is generally used, and an N-type semiconductor is created by doping phosphorus on the surface of the substrate, a PN junction is formed in the thickness direction of the substrate, and electrodes are formed on the back and front surfaces of the substrate.
  • the surface is silicon dioxide (SiO 2)
  • a transparent conductive film such as SnO or ZnO is formed by a sputtering method.
  • amorphous conductive film such as SnO or ZnO is formed by a sputtering method.
  • a-Si silicon
  • PCVD plasma CVD
  • the structure of the element is, for example, three layers of P-type, I-type, and N-type, and a PIN diode structure.
  • a back electrode is formed on a-Si by a method such as vapor deposition and sputtering.
  • binary compound semiconductors such as GaAs, InP, CdS and CdTe, and CuInSe
  • Such ternary compound semiconductors are also being studied.
  • porous TiO was impregnated with a dye.
  • Dye-impregnated solar cells have also been developed.
  • Organic semiconductor solar cells have also been developed.
  • a semiconductor substrate such as gallium arsenide (GaAs) / gallium nitride (GaN) or a glass substrate is used as a substrate.
  • a semiconductor substrate such as silicon or gallium arsenide (GaAs) / gallium nitride (GaN) or a glass substrate which is usually used for a solar cell is a two-dimensional flat substrate.
  • a silicon or GaAs semiconductor substrate is pulled up from a molten raw material using a seed crystal, a single crystal ingot is manufactured, cut, polished, and polished to obtain a mirror-finished semiconductor substrate.
  • the glass substrate is made of flat glass made by the float method, etc.! Polished and cut to size. Depending on the application, it may be used after cutting without polishing.
  • a method using a silicon substrate is very difficult because of a high raw material cost (substrate cost).
  • substrate cost raw material cost
  • a method using a glass substrate it has been studied to reduce the manufacturing cost by enlarging the substrate and increasing the throughput.
  • a-Si is most likely to be used, but there is a problem that the film formation rate cannot be increased because the film is formed at a low temperature, and the film thickness cannot be increased.
  • a-Si has a problem of low conversion efficiency because the absorption wavelength band is 0.8 m or less, which is lower than that of 1.1 m of monocrystalline silicon or polycrystalline silicon.
  • the manufacturing apparatus needs to be large, and there is a problem that the equipment cost is significantly increased.
  • vacuum deposition and PCVD sputtering equipment are all vacuum equipment. These are generally more expensive than normal pressure devices, and the increase in cost due to the increase in size is a particular problem.
  • the glass substrate in the case of lm 2 substrates used for heavy ingredients e.g. normal solar cells as compared with the semiconductor substrate, the weight is approximately very heavy and 9 kg 4 mm thickness.
  • an object of the present invention is to provide a solar cell module which is free from the disadvantages due to an increase in weight when the manufacturing cost is increased and the cost is reduced, and which is excellent in conversion efficiency and a component thereof.
  • the present invention provides a solar cell in which a PN-type or PIN-type semiconductor element serving as a photoelectric conversion element is formed on an outer surface of a long body having a diameter of 1000 m or less. Provide the element.
  • the PN-type or PIN-type semiconductor is preferably a polycrystalline silicon semiconductor.
  • the polycrystalline silicon semiconductor is formed on an outer surface of the elongated body and is electrically connected to each other, a P-type polycrystalline silicon layer (P-pSi layer). ), P + type polycrystalline silicon layer (P + -pSi layer) and N + type polycrystalline silicon layer (N + -pSi layer)
  • the P-type polycrystalline silicon layer is formed on an outer surface of a long body, and the P + -type polycrystalline silicon layer and the N + -type polycrystalline silicon layer are: It is preferable that each is formed on the P-type polycrystalline silicon layer.
  • the P + -type polycrystalline silicon layer, the P-type polycrystalline silicon layer, and the N + -type polycrystalline silicon layer are provided on an outer surface of the elongated body. It is preferred that the layers are laminated in this order from the outer surface side of the body or vice versa.
  • the polycrystalline silicon semiconductor is a P-type polycrystalline silicon layer and a part of the P-type polycrystalline silicon layer in the circumferential direction is made N-type by doping.
  • N-type polycrystalline silicon layer It is preferable to include an N-type polycrystalline silicon layer.
  • a plurality of the photoelectric conversion elements are formed along a longitudinal direction of the elongated body, and the plurality of photoelectric conversion elements are electrically connected by wiring. Is preferred.
  • silicon dioxide or the like is provided between the plurality of photoelectric conversion elements. It is preferable that an insulating film including at least one of silicon nitride and silicon nitride is further formed.
  • a protective film containing at least one of silicon dioxide and silicon nitride is formed on the outer surface of the solar cell element.
  • the elongated body preferably has a long fiber strength of quartz glass.
  • the present invention provides a solar cell module in which at least two or more solar cell elements of the present invention are arranged in parallel and Z or in series.
  • the solar cell module of the present invention preferably has a common wiring for electrically connecting different solar cell elements.
  • a reflector is further provided on a plane formed by at least two or more solar cell elements arranged in parallel and Z or in series.
  • the one-dimensional solar cell of the present invention is an element that becomes a solar cell (hereinafter referred to as a solar cell) using a one-dimensional semiconductor substrate in which a semiconductor thin film that becomes a solar cell is formed on a linear one-dimensional base material. Characterized by forming a battery element and ⁇ ⁇ )
  • the one-dimensional solar cell of the present invention is characterized in that a plurality of the solar cell elements are formed in a longitudinal direction of the one-dimensional base material!
  • the one-dimensional solar cell of the present invention is characterized in that a plurality of the solar cell elements are connected in series or in parallel.
  • the one-dimensional solar cell of the present invention is characterized by using a high melting point material such as ceramics such as quartz glass, multi-component glass, sapphire, alumina, carbon and silicon carbide as the one-dimensional substrate.
  • a high melting point material such as ceramics such as quartz glass, multi-component glass, sapphire, alumina, carbon and silicon carbide as the one-dimensional substrate.
  • one of the thin films formed on the one-dimensional substrate may be doped with! /, The semiconductor thin film, or P-type or N-type doped. It is characterized by being one of the semiconductor thin films.
  • the one-dimensional solar cell of the present invention is characterized in that the semiconductor thin film has a thickness of 0.5 ⁇ m or more and 50 ⁇ m or less. [0028]
  • the one-dimensional solar cell of the present invention is characterized in that the structure of the solar cell element forms at least one PN junction, PIN junction, NP junction, or NIP junction in the thickness direction of the thin film. .
  • the one-dimensional solar cell of the present invention is characterized in that one or more PN junctions or PIN junctions are formed in the longitudinal direction of the one-dimensional substrate.
  • the thin film of silicon dioxide (Si02) or silicon nitride (Si3N4) or both is formed. It is characterized by doing.
  • the one-dimensional solar cell of the present invention is characterized in that the wiring for connecting the solar cell element is formed in a part in the circumferential direction, and the force is formed so as to be substantially linear in the longitudinal direction. It shall be.
  • the one-dimensional solar cell of the present invention is characterized in that the one-dimensional base material has a cross-sectional shape of any one of a circle, a polygon, a rectangle, and a combined shape of an arc and a rectangle.
  • the one-dimensional solar cell of the present invention is characterized in that the one-dimensional substrate is a conductive fiber (wire).
  • the one-dimensional solar cell of the present invention is characterized in that the material of the fiber (wire) is any of aluminum, copper, steel, tungsten, molybdenum, or an alloy thereof.
  • the one-dimensional solar cell of the present invention is characterized in that a semiconductor layer to be a solar cell is formed after removing the oxide film formed on the surface of the wire.
  • the one-dimensional solar cell of the present invention is characterized in that the semiconductor is a binary semiconductor such as silicon or GaAs, a ternary semiconductor such as CuInS2, or a dye-sensitized semiconductor such as ZnO or ⁇ 02. It shall be.
  • a one-dimensional solar cell array in which a plurality of one-dimensional solar cells are arranged and arranged and connected by wiring is packaged on a mount, and terminals for connecting the wiring are provided on the mount. It is characterized by the following.
  • the solar cell module of the present invention is characterized in that the one-dimensional solar cells are integrated in a planar or curved shape. [0039]
  • the solar cell module of the present invention is characterized in that the wiring connected to each of the one-dimensional solar cells is provided on a side opposite to a light receiving surface side of the one-dimensional solar cell array.
  • the solar cell module of the present invention is characterized in that a plurality of the one-dimensional solar cells are arranged and connected, and are fixed directly to a flexible transparent sheet by a force or a sheet.
  • the solar cell module of the present invention is characterized in that the one-dimensional solar cells are connected to each other with a fiber or a wire to form an interdigital shape.
  • the solar cell module of the present invention is characterized in that the thickness is 0.04 mm or more and 10 mm or less.
  • one or a plurality of the solar cell modules constituted by the one-dimensional solar cells are connected to form a solar cell array, and the solar cell module or the solar cell array is charged. Characterized in that a discharge controller is connected
  • the solar cell power generation system of the present invention is further characterized in that an inverter is connected.
  • the solar cell power generation system of the present invention is characterized in that a battery is further connected.
  • a semiconductor element serving as a photoelectric conversion element is formed on the outer surface of a long body having a diameter of 1000 m or less.
  • the manufacturing cost of the solar cell is greatly reduced as compared with the case where is used.
  • the solar cell element of the present invention can apply the optical fiber technology, which has already been technically proven and has high productivity. For this reason, productivity is high and manufacturing cost is reduced.
  • the film formation rate is 100 nmZs to 100 nm or more. . This is 10 times the film formation rate when forming a film on a flat substrate by the conventional vacuum method. The force is also 100 times, and the throughput in the film forming process can be greatly improved. Further, since the film formation rate is high, the thickness of the polycrystalline silicon layer can be increased in a short time, and the conversion efficiency can be increased by growing silicon crystal grains.
  • the semiconductor element is formed on the outer surface of the elongated body having a diameter of 1000 m or less, an atmospheric pressure process that does not require the use of a vacuum device is possible. Therefore, the entire process can be performed without using an expensive vacuum process, and the equipment cost is low. Furthermore, since an atmospheric pressure process can be used, an expensive SiO film or
  • S13N film can be formed at low cost. Therefore, using these films as protective films
  • the weather resistance of the solar cell element can be significantly improved.
  • the conversion efficiency can be further improved due to the multiple reflection effect inside the elongated body. This can increase the conversion efficiency to a maximum of 20% or more.
  • the solar cell module of the present invention is formed by arranging at least two or more long solar cell elements having a diameter of 1000 m or less in parallel and Z or in series, a conventional two-dimensional glass substrate Can be made lighter than a solar cell module using the same. Specifically, when compared with the weight of the module itself, it can be reduced to 1Z10 or less as compared with the case where a conventional two-dimensional glass substrate is used. By reducing the weight of the module, the cost required for parts of the module divided by the installation cost can be reduced.
  • the solar cell module of the present invention includes at least a long-sized solar cell element.
  • the elongated members When two or more elongated members are arranged in parallel, the elongated members can have flexibility in the width direction of the elongated members by joining them with flexibility. Further, by using a flexible material such as quartz glass long fiber for the elongated body itself, a solar cell module having flexibility in the longitudinal direction of the elongated body can be obtained. As a result, a deformable solar cell module or a foldable solar cell module can be obtained.
  • FIG. 1 is a cross-sectional view of one configuration example of a solar cell element of the present invention.
  • FIG. 2 is a longitudinal sectional view of the solar cell element shown in FIG. 1 cut along line AA.
  • FIG. 3 is a cross-sectional view of another configuration example of the solar cell element of the present invention.
  • FIG. 4 is a longitudinal sectional view of the solar cell element shown in FIG. 3, taken along line BB.
  • FIG. 5 is a longitudinal sectional view of another configuration example of the solar cell element of the present invention.
  • FIG. 6 is a partially cutaway side view of the solar cell element shown in FIG.
  • FIG. 7 is a longitudinal sectional view of another configuration example of the solar cell element of the present invention.
  • FIG. 8 is a side view of the solar cell element shown in FIG. 7.
  • FIG. 9 is a longitudinal sectional view of one configuration example of the solar cell element of the present invention.
  • FIG. 10 is a diagram illustrating a method for connecting solar cell elements according to the present invention.
  • FIG. 11 is a diagram illustrating another method for connecting solar cell elements according to the present invention.
  • FIG. 12 is a conceptual diagram of a configuration example of a solar cell module according to the present invention.
  • FIG. 13 is a diagram for explaining a multiple reflection effect in the solar cell module of the present invention.
  • FIG. 14 is a conceptual diagram of a blind solar cell module, which is one configuration example of the solar cell module of the present invention.
  • FIG. 15 is a plan view of another configuration example of the solar cell module of the present invention, which is partially enlarged.
  • FIG. 16 is a conceptual diagram showing one configuration example of a solar cell system using the solar cell module of the present invention.
  • FIG. 17 is a diagram illustrating an example of a method for manufacturing a one-dimensional semiconductor substrate used for manufacturing a solar cell element according to the present invention.
  • FIGS. 18 (a) and (b) are longitudinal sectional views of a one-dimensional semiconductor substrate used for manufacturing a solar cell element of the present invention.
  • FIG. 19 is a diagram illustrating an example of a method for manufacturing a one-dimensional semiconductor substrate used for manufacturing a solar cell element according to the present invention.
  • FIG. 20 is a diagram illustrating an example of a method for manufacturing a one-dimensional semiconductor substrate used for manufacturing a solar cell element according to the present invention.
  • FIGS. 21 (a) and (b) are longitudinal sectional views of a one-dimensional semiconductor substrate used for manufacturing a solar cell element of the present invention.
  • FIG. 22 An example of a method for manufacturing a one-dimensional semiconductor substrate used for manufacturing a solar cell element of the present invention. It is a figure for explaining an example.
  • FIG. 23 is a diagram showing a step of manufacturing a solar cell element of the present invention using a one-dimensional semiconductor substrate.
  • FIG. 24 is a diagram showing a step of manufacturing a solar cell element of the present invention using a one-dimensional semiconductor substrate.
  • FIG. 25 is a conceptual diagram showing an example of segmentation of a dimensional semiconductor substrate.
  • FIG. 26 is a conceptual diagram showing a method for manufacturing a two-dimensional substrate.
  • FIG. 27 (a) is a diagram showing a cross section of a one-dimensional SOI substrate
  • FIG. 27 (b) is a diagram showing a cross section of a coated one-dimensional SOI substrate.
  • FIG. 28 is a diagram illustrating a cross-sectional view of a solar cell module and multiple reflection in a one-dimensional substrate.
  • FIG. 29 is a diagram showing a cross-sectional structure of a one-dimensional solar cell element.
  • FIG. 30 is a diagram illustrating a process flow of a type 1 fiber solar cell element.
  • FIG. 31 is a diagram illustrating a process flow of an 11-type fiber solar cell element.
  • Heating device 300 Jig
  • FIG. 1 is a side sectional view of one embodiment of the solar cell element of the present invention
  • FIG. 2 is a longitudinal sectional view taken along line AA of FIG.
  • the solar cell element 1 of the present invention has a plurality of photoelectric conversion elements 6 formed on the outer surface of a long body 2 having a circular cross section along the longitudinal direction.
  • a P-type polycrystalline silicon layer (P-pSi layer) 3 is formed on the outer surface of the long body 2, and the long side of the long body 2 is formed on the P-pSi layer 3.
  • a P + type polycrystalline silicon layer (P + —pSi layer) 4 and an N + type polycrystalline silicon layer (N + —pSi layer) 5 are formed at different positions in different directions.
  • the P-pSi layer 3, the P + -pSi layer 4 and the N + -pSi layer 5 are formed over the entire circumference of the elongated body 2. That is, in the solar cell element 1 of the present invention, the photoelectric conversion element 6 including the P—pSi layer 3, the P + —pSi layer 4, and the Formed over a long distance.
  • electrodes 7 are formed on P + —pSi layer 4 and N + —pSi layer 5, respectively, and different photoelectric conversion elements 6 are provided with wiring 8 between electrodes 7. It is electrically connected.
  • the electrode 7 is partially formed in the circumferential direction of the elongated body 2 on the P + -pSi layer 4 and the N + -pSi layer 5 formed over the entire circumference of the elongated body 2. Is formed.
  • the electrode 7 is formed on the back side with respect to the incident light side of the solar cell module, the electrode 7 This is preferable because the effective area can be increased.
  • FIG. 3 is a side sectional view of another embodiment of the solar cell element of the present invention
  • FIG. 4 is a longitudinal sectional view taken along line BB of FIG.
  • the solar cell element 10 shown in FIGS. 3 and 4 is different from the solar cell element 10 in that a plurality of photoelectric conversion elements 6 are formed on the outer surface of a long body 2 having a circular cross section along the longitudinal direction. And 2 and the configuration of the photoelectric conversion element 6 is different from that of the solar cell element 1 shown in FIGS. That is, in the solar cell element 10 shown in FIGS. 3 and 4, the P + -pSi layer 4 is formed on the outer surface of the elongated body 2, and the P-pSi layer 3 is formed on the P + -pSi layer 4. And an N + -pSi layer 5 are laminated in this order. That is, in the solar cell element 10 shown in FIGS.
  • the photoelectric conversion element is a PIN-type semiconductor element in which the P + —pSi layer 4, the P—pSi layer 3, and the N + —pSi layer 5 are laminated in this order. 6 is formed.
  • the P + pSi layer 4, the P—pSi layer 3 and the N + —pSi layer 5 are formed over the entire circumference of the elongated body 2.
  • the electrodes 7 are formed on the P +-pSi layer 4 and the N +-pSi layer 5, and the mutually different photoelectric conversion elements 6 are wired between the electrodes 7. It is electrically connected by providing 8.
  • an insulating film 9 is formed on a side surface of the photoelectric conversion element 6 to prevent a short circuit between the different photoelectric conversion elements 6.
  • the insulating film is generally made of silicon dioxide (SiO 2), silicon nitride (Si).
  • an insulating film may be formed on the side surface of the P-pSi layer 3 in order to prevent a short circuit between different photoelectric conversion elements 6.
  • the elongated body 2 is not limited to the illustrated circular shape as long as the elongated body has a small diameter of 1000 m or less. Therefore, the elongated body 2 may have an elliptical cross section, a polygon including a rectangle, or a shape obtained by combining an arc and a rectangle.
  • the major axis of the cross-sectional shape is 1000 m or less.
  • the cross-sectional shape is circular or elliptical, since it can be manufactured with a roll 'roll' while being wound around a mouth as described later.
  • the elongated body 2 has a circular or elliptical cross-sectional shape and is made of quartz glass having excellent light transmittance, multiple reflection of light inside the elongated body 2 will be described in detail later.
  • the photoelectric conversion efficiency of the solar cell elements 1 and 10 can be increased.
  • the cross section is elliptical, it is possible to easily recognize the surface on which the electrodes 7 of the solar cell elements 1 and 10 are formed and the surface having no electrodes 7 from the shape. Also in the process, the electrode 7 Or because it is easier to form the wiring 8.
  • the elongated body 2 is not particularly limited as long as it is a high melting point material capable of forming a semiconductor element on its outer surface. Therefore, the elongated body 2 may be made of a conductive metal material such as gold, silver, platinum, copper, aluminum, iron, stainless steel, magnesium, titanium, or an alloy thereof, or may be made of silicon fiber, quartz, or the like. Conductive or non-conductive ceramic materials such as long fibers such as glass or carbon fiber, multi-component glass, sapphire, alumina, and silicon carbide may be used.
  • quartz glass long fibers or carbon fibers are widely used for optical fibers, glass fiber reinforced plastics (GFRP), carbon fiber reinforced plastics (CFRP), and the like.
  • long quartz glass fibers have excellent heat resistance, and can use SOI (silicon on insulator) technology when forming a semiconductor element constituting the photoelectric conversion element 6 on the outer surface.
  • SOI silicon on insulator
  • the elongated body 2 is made of a conductive material such as a metal wire or carbon fiber, it is necessary to form an insulating layer on its outer surface and form a monocrystalline or polycrystalline silicon film thereon.
  • a semiconductor element can be formed using SOI technology.
  • the long body 2 is an insulator and is a quartz glass long fiber having excellent heat resistance
  • the SOI technology is applied by forming a single crystal or polycrystalline silicon film on the outer surface of the long fiber 2 as it is. be able to.
  • another reason that the quartz glass long fiber of the elongated body 2 is preferable is that, since it has excellent light transmittance, the photoelectric conversion efficiency can be enhanced by using the multiple reflection effect inside the elongated body 2. No.
  • the diameter of the elongated body 2 is preferably 800 ⁇ m or less, more preferably 150 m or less.
  • One advantage of the solar cell elements 1 and 10 of the present invention is that, as described later, a plurality of photoelectric conversion elements 6 are formed as a continuous elongated body 2 formed on an outer surface of the solar cell elements 1 and 10 in a roll-shaped roll. It can be manufactured while being wound on a bobbin. If the long body 2 has a diameter of 150 ⁇ m or less, it is more preferable to manufacture the long body 2 with a roll-to-roll using long quartz glass fibers.
  • the effective area of No. 6 has a preferable size, it is preferably 30 ⁇ m or more. If it is less than 30 / zm, the problem that the probability of breakage during the production increases and the number of arrays for arraying increases, which takes time and does not increase the throughput becomes remarkable.
  • the photoelectric conversion element 6 formed on the outer surface of the elongated body 2 may be a PN junction semiconductor instead of a PIN junction semiconductor.
  • a solar cell element having the same structure as solar cell element 1 shown in Figs. 1 and 2 has a P +-pSi layer and N +- pSi layer force is formed in the longitudinal direction of the elongated body in this order or in the opposite order.
  • the P + -pSi layer and the N + -pSi layer are formed by laminating the P-pSi layer without sandwiching them.
  • each layer in the photoelectric conversion element 6 is not limited to the illustrated embodiment, and the external surface side force of the elongated body 2 is also N + -pSi layer, P-pSi layer And N + junction semiconductor element in which P + and p + pSi layers are formed in this order
  • the photoelectric conversion element 6 is formed in a plurality of pieces. One photoelectric conversion element may be extended along.
  • each layer constituting the photoelectric conversion element 6 is formed over the entire circumference of the elongated body 2.
  • Each layer constituting the conversion element may be formed.
  • a common electrode for a plurality of photoelectric conversion elements formed on the elongate body is provided on a portion of the outer surface of the elongate body where the respective layers forming the photoelectric conversion element are not formed, in a longitudinal direction of the elongate body. It extends in the direction.
  • each layer constituting the photoelectric conversion element 6 can be appropriately selected as needed. Force The thickness of the photoelectric conversion element 6 as a whole is 0.5 ⁇ m or more and 50 ⁇ m or less. Is more preferably 2 ⁇ m or more and 30 ⁇ m or less. When the thickness of the photoelectric conversion element 6 is within the above range, it is preferable to take advantage of the advantage at the time of manufacturing the solar cell elements 1 and 10 of the present invention having a high film forming rate, and the solar cell elements 1 and 10 are preferable. Excellent photoelectric conversion efficiency.
  • the solar cell element of the present invention has a photovoltaic element on the outer surface of a long body having a diameter of 1000 m or less. Any configuration other than the above-described configuration may be used as long as a PN-type or PIN-type semiconductor element serving as a replacement element is formed.
  • FIG. 5 is a longitudinal sectional view of another configuration example of the solar cell element of the present invention
  • FIG. 6 is a partially cutaway side view of the solar cell element shown in FIG. It is the figure seen from the 4th quadrant side.
  • the metal electrode film 71 is formed on the outer surface of the long body 2 over the entire circumference.
  • examples of the metal material constituting the metal electrode film include Al, Ag, Cu, Mg, Rh, Ir, W, Mo, Pt, Ti and alloys thereof, and tungsten silicide (WSi). Of these, W and WSi are preferred because of their excellent heat resistance.
  • a P + -pSi layer 4, a P-pSi layer 3, and an N + -pSi layer 5 are laminated in this order to form a photoelectric conversion element 6, which is a PIN semiconductor element. I have.
  • a tin-doped indium oxide (ITO) film 72 is formed as a transparent electrode film.
  • the A1 film 13 is formed on the ITO film 72 in the second and third quadrants in FIG.
  • the A1 film 13 plays a role of an anti-reflection film and a low resistance film of the ITO film. Therefore, in FIG. 5, the first quadrant and the fourth quadrant are the light incident sides.
  • the solar cell element 11 shown in FIGS. 5 and 6 can be manufactured, for example, by the following procedure.
  • an amorphous silicon (a-Si) film is formed in order to prevent diffusion of metal atoms from the metal electrode film 71.
  • the film is crystallized by low-temperature radio-frequency (RF) heating to form a P + -pSi layer 4.
  • RF radio-frequency
  • a laser may be used instead of RF heating to crystallize the a-Si film.
  • a P + -pSi layer may be directly formed by using a thermal CVD method described later.
  • the thickness of the P + -pSi layer 4 can be, for example, about 100 nm.
  • a P-Si layer 3 is formed on the P + -pSi layer 4.
  • the P-Si layer 3 may be formed by using a thermal CVD method to be described later, or may be formed by applying slurry-like silicon particles and baking them by heating.
  • the N + -pSi layer 5 is formed on the P-Si layer 3, the ITO film 72 is formed, and the A1 film 13 is formed, whereby the solar cell element 11 shown in FIGS. 5 and 6 is obtained.
  • FIG. 7 is a longitudinal sectional view of another configuration example of the solar cell element of the present invention
  • FIG. 8 is a side view thereof.
  • a p-Si layer 3 is formed throughout.
  • a P + -pSi layer 4 is formed on the p-Si layer 3 in the first and fourth quadrants
  • an N +-pSi layer 4 is formed on the p-Si layer 3 in the second and third quadrants.
  • Layer 5 has been formed.
  • the P + -pSi layer 4 and the N + -pSi layer 5 are formed at an interval so as not to directly contact each other.
  • the p-Si layer 3, the P + pSi layer 4, and the N + -pSi layer 5 form a PIN-type semiconductor element, that is, a photoelectric conversion element 6.
  • the thickness of the p-Si layer 3 is, for example, 3 ⁇ m
  • the thickness of the P + -pSi layer 4 and the N + pSi layer 5 is, for example, 1 OO nm—number 1 OO nm.
  • FIG. 9 is a longitudinal sectional view of another configuration example of the solar cell element of the present invention.
  • the solar cell element 15 shown in FIG. 9 is composed of a P-type silicon layer 16 and an N-type silicon layer 17, both of which are separated in the circumferential direction.
  • the manufacturing method of the solar cell element 15 is as follows. First, a P-type polycrystalline silicon layer 16 is formed on the entire outer surface of the elongated body 2 and then a part of the P-type polycrystalline silicon film 16 in the circumferential direction is formed. Then, apply PSG (phospho-silicate-glass) in the longitudinal direction. Thereafter, heat treatment (1000 ° C, 20-40 min) is performed, and the glass generated by PSG is removed with hydrofluoric acid to form an N-type silicon layer.
  • PSG phospho-silicate-glass
  • FIG. 10 shows a method of connecting the solar cell element 15 of the present invention.
  • the solar cell elements 15 of the present invention are arranged side by side, and are connected at a connection portion 18 using silver paste or the like.
  • the electromotive force can be boosted.
  • Flexible solar cells can be produced by this method and lamination method.
  • the doping of impurities may be performed using a gas phase doping method.
  • the photoelectric conversion element formed on the outer surface of the elongated body may be a PN-type or PIN-type semiconductor element. It is not limited to. Therefore, it may be an amorphous silicon type semiconductor device, a binary compound semiconductor device such as GaAs, InP, CdS or CdTe, or a ternary compound semiconductor device such as CuInSe. Furthermore, the color of porous TiO
  • It may be a dye-impregnated semiconductor element impregnated with 22 elements.
  • a plurality of photoelectric conversion elements 6 are connected in series by the electrode 7 and the wiring 8, but are not limited thereto, and the electrode 7 and the wiring 8 may be arranged so that the photoelectric conversion elements 6 are connected to each other in parallel.
  • the solar cell element of the present invention may include components other than those illustrated.
  • a protective film for covering the outer surface of the solar cell element.
  • the protective film serves as an insulating film and an antireflection film, and is usually a silicon dioxide film, a silicon nitride film, or both.
  • FIG. 12 is a perspective view showing one embodiment of the solar cell module of the present invention.
  • a solar cell module 20 shown in FIG. 12 has a plurality of solar cell elements 1 and 10 of the present invention in which a photoelectric conversion element 6 is formed on the outer surface of a long body 2 having a diameter of 1000 m or less. Formed.
  • the solar cell element has been described with reference to the solar cell elements 1 and 10 shown in FIGS. 1 to 4, the solar cell element is not particularly limited as long as it is the solar cell element of the present invention.
  • the solar cell element 11 shown in FIGS. 7 and 8 may be used.
  • a protective film 12 which also functions as an insulating film and an antireflection film is formed on the outer surfaces of the solar cell elements 1 and 10.
  • an aluminum reflector 30 is provided on a plane formed by a plurality of solar cell elements 1 and 10 arranged in parallel.
  • the reflection plate 30 is formed with the electrodes 7 of the solar cell elements 1 and 10 shown in FIGS. 1 to 4. It is preferably formed on the surface on the side where it is provided.
  • a solar cell module 20 shown in FIG. 12 has a two-dimensional planar shape by arranging a plurality of long solar cell elements 1 and 10 in parallel. Therefore, the size of the module can be selected without being restricted by the manufacturing process as in the conventional solar cell module using the two-dimensional glass substrate. In other words, the size of the solar cell module can be freely selected according to the length of the solar cell elements 1 and 10 to be used and the number of the solar cell elements 1 and 10 arranged in parallel.
  • a plurality of solar cell elements 1 and 10 that are long bodies with a diameter of 1000 m or less are arranged side by side. Since the solar cell modules 20 are formed in a row, the weight can be reduced as compared with a conventional solar cell module using a two-dimensional glass substrate.
  • the weight of the solar cell module was about 700 g, which was less than 1Z10 when using a conventional two-dimensional glass substrate (about 9 kg when the glass thickness was 4 mm). As a result, it is possible to reduce solar cell module transportation costs, installation costs, and construction costs by 20% to 30%. Under the same conditions, when a 0.2 mm-diameter quartz glass fiber is used, the weight of the obtained solar cell module is about 3 kg.
  • the elongated body 2 constituting the solar cell elements 1 and 10 uses a quartz glass long fiber having a circular or elliptical cross section, and as shown in FIG.
  • the reflection plate 30 is formed on the back surface of the battery module 20, the conversion efficiency can be increased by multiple reflection.
  • FIG. 13 is a diagram for explaining the multiple reflection effect in the solar cell module 20 of the present invention.
  • the solar cell module 20 in which the elongated body 2 uses a quartz glass long fiber having excellent light transmittance the light transmitted through the protective film 12 formed on the surface of the solar cell element 1 is converted into the photoelectric conversion element 6 (semiconductor layer).
  • the light After passing through, the light passes through the quartz glass long fiber (long body) 2 without being absorbed, and a part is absorbed by the opposite photoelectric conversion element 6.
  • a part of the light beam is reflected at the interface between the quartz glass long fiber 2 and the photoelectric conversion element 6, and is absorbed by the photoelectric conversion element 6 while undergoing multiple reflection.
  • Light that has again entered the photoelectric conversion element 6 is transmitted while being absorbed, and is partially reflected and partially transmitted at the interface between the photoelectric conversion element 6 and the atmosphere.
  • power generation 60 is performed at a plurality of portions in the circumferential direction of the solar cell element 1, and the photoelectric conversion efficiency can be increased. This can increase the conversion efficiency from 12-15% to 17-20%.
  • the solar cell module of the present invention when a plurality of long thin bodies having a diameter of 1000 m or less are arranged in parallel and formed, the long bodies are connected with flexibility. In addition, it is possible to have flexibility in the width direction of the elongated body. Further, if the long body is formed of a material having excellent flexibility such as quartz glass long fiber, it is possible to make the long body also excellent in the longitudinal direction.
  • the solar cell module of the present invention has excellent flexibility. By virtue of the features described above, a solar cell module 20 in the form of a blind as shown in FIG. 14 or a foldable solar cell module (not shown) can be obtained. In a solar cell module 20 shown in FIG.
  • a plurality of solar cell elements are arranged in parallel, a plurality of solar cell elements are electrically connected to each other by a common electrode, and a wiring for power extraction is provided outside the common electrode.
  • a transparent sheet polyethylene terephthalate (PET), acrylic resin, Shiridani butyl resin, polycarbonate resin, etc.
  • DC is used in consideration of portability and portability.
  • a small fan can be rotated in an empty vehicle by the generation of solar cells to cool the interior of the automobile.
  • a Peltier element the inside of the vehicle can be cooled while the vehicle is empty.
  • it can drive electric fans, drive and charge personal computers, and charge mobile phones.
  • FIG. 15 is a plan view of another configuration example of the solar cell module, and the solar cell module is formed by arranging solar cell elements in parallel and in series.
  • a part of the solar cell module is shown in an enlarged manner.
  • two sets of 25 solar cell elements 1 arranged in parallel are arranged in series.
  • an element 21 serving as an electrode for extracting power and a joint for connecting the solar cell elements 1 to each other is attached.
  • a desired solar cell module 20 can be formed by arranging a plurality of solar cell elements 1 in parallel and Z or in series.
  • a solar cell module (length 50 cm, width 4 cm) formed by arranging 400 solar cell elements having a diameter of 0.1 mm and a length of 50 cm in parallel has the following performance.
  • the voltage 0.5 V is an ideal voltage in a silicon-based solar cell.
  • Output is the output when the area of the light input reflecting surface is assumed the output of the solar cell lm 2 and 100W.
  • Current Is derived from the electromotive force and the extraction voltage using the above equation.
  • a solar cell module (length lm, width 2 cm) formed by arranging 200 solar cell elements having a diameter of 0.1 mm and a length of lm in parallel has the following performance.
  • FIG. 16 is a diagram showing one configuration example of a solar cell system using the solar cell module of the present invention.
  • the solar cell system shown in FIG. 16 is an AC specification system.
  • the solar cell module 20 of the present invention is connected to a charge / discharge controller 22, an inverter 24, and connected to an external device (load) 26. is there.
  • the system shown in FIG. 16 also has a battery 128 connected to store daytime power.
  • the solar cell element and the solar cell module of the present invention are not limited to those manufactured by any of the following methods as long as the above-described configuration can be realized.
  • FIG. 17 is a diagram for explaining a method for manufacturing a one-dimensional semiconductor substrate used for manufacturing a solar cell element of the present invention, and shows an example of a manufacturing apparatus used for the method.
  • the manufacturing apparatus shown in Fig. 17 has the same basic structure as the optical fiber drawing apparatus, except that the upper part of the furnace is of a closed type, the force for publishing the inside of the heating furnace with Ar or He gas, and the like.
  • the raw material is heated and the vapor pressure is used to generate the raw material gas (silicon raw material gas SiCl, SiHC
  • a silicon polycrystalline film is formed on the outer surface of the fiber, and a plurality of heaters provide a temperature distribution in the longitudinal direction of the drawing.
  • the upper heater 120 heats and melts the preform (base material) 110 introduced from the drive shaft 100, and the other heaters 130, 140, and 150 heat the source gas and adjust the temperature of the atmosphere. It is for doing.
  • the atmosphere containing the heater sections 130, 140, 150 and the preform 110 is separated by a furnace tube 160. Core tube As 160, carbon is used.
  • furnace tubes and components made of quartz or SiC, or carbon or SiC coated with SiC can be used.
  • an inert gas (Ar or He) gas is supplied to increase the pressure in the furnace above the atmospheric pressure and, if necessary, to create a pressurized atmosphere.
  • Such gas is mainly exhausted from the upper part.
  • Source gas and reacted gas are exhausted from the outlet side of the furnace.
  • a shielding means for separating the atmosphere gas and the source gas is provided in the furnace. Thereby, mixing of both gases can be prevented.
  • an inert gas is supplied to prevent air from entering the furnace so that air does not enter the furnace.
  • the second heater 130 (second from above) of the drawing furnace is a reaction heater, and the temperature of the quartz glass filament is higher than the melting point of silicon (1412 ° C) (from 1430 ° C to 1600 ° C). (° C) so that the source gas is supplied. It is considered that the silicon deposited on the surface of the quartz glass long fiber becomes liquid because the temperature of the quartz glass long fiber is equal to or higher than the melting point of silicon.
  • the method shown in the drawing is different from a normal method for manufacturing a solar cell in that a polycrystalline silicon film is formed by thermal CVD under normal pressure or pressure. In the prior art, a polycrystalline silicon film is formed on a two-dimensional glass substrate in a vacuum using a PCVD or sputtering method.
  • the thickness of the film can be controlled by the concentration of the raw material in the furnace tube, the temperature, the distance and the pressure of the first heater power of the drawing furnace.
  • Furnace 140, 150 with two heaters in the lower stage is a furnace for particle growth. Cooling with an appropriate temperature gradient cools and solidifies the molten silicon.
  • linear velocity fluctuation a fluctuation of 10% to 20% of the set linear velocity can usually occur
  • film thickness To deal with fluctuations in height.
  • the drawing speed is increased, the temperature distribution is lengthened.
  • the particle size can be changed by adjusting nucleation conditions and crystal growth conditions during film formation.
  • the generation of nuclei is suppressed by setting the heater temperature in the initial stage of film formation from 300 ° C to 700 ° C during nucleus growth, and the growth rate is increased by setting the heater temperature from 800 ° C to 1,600 ° C during crystal growth. it can.
  • the temperature distribution in the longitudinal direction in the drawing direction nucleation and crystal growth can be controlled continuously.
  • the one-dimensional semiconductor substrate coming out of the drawing furnace 160 is cooled by the cooling device 180 (using He gas for V, Then, the surface of the one-dimensional semiconductor substrate is coated with a resist or the like to be used in a resin / device process using a resist coating device 190, and the resist is heated and cured in a heating furnace 200. This is to protect the formed polycrystalline silicon film.
  • the one-dimensional semiconductor substrate is pulled out by a capstan 210 and wound up by a double spooler (a winder capable of winding continuously from a full bobbin to an empty bobbin without reducing the speed) 220.
  • the winding amount of one bobbin is set at 50 km to 200 km. With a 1000 km base material, 5 to 20 bobbins will be formed.
  • the cross-sectional shape of the one-dimensional semiconductor substrate is substantially determined by the shape of the base material used. In this case, the shape can be substantially defined by preforming the preform into a desired shape.
  • FIGS. 18A and 18B are diagrams showing an example of a cross-sectional shape of a one-dimensional semiconductor substrate.
  • (A) has a rectangular cross-sectional shape
  • (b) has a circular cross-sectional shape.
  • the polycrystalline silicon film 3 is formed on the outer surface of the long quartz glass fiber 2.
  • the corners are slightly rounded and the R portion becomes large, but it is possible to draw a line so as to keep the almost processed shape.
  • the change in shape can be reduced.
  • extend the length of the heater for drawing use multiple heaters, or control the temperature of the reaction heater to a higher temperature to lower the temperature in the drawing furnace 160 to about 1800 ° C. be able to.
  • an ordinary optical fiber drawing technique can be used. That is, the base material processed into a desired shape is melted and spun in a drawing furnace 160, and the shape of the one-dimensional semiconductor substrate is measured at an exit portion of the drawing furnace with an outer diameter measuring device or a shape measuring device. Is drawn out of the drawing furnace 160 while controlling the drawing speed and / or the feeding speed of the base material so that the constant is constant, and the film is wound up by the winder 220. In the case of the original semiconductor substrate, the variation of the outer diameter can be reduced to 1 ⁇ m or less.
  • a high-temperature process can be performed while running the quartz glass long fiber at high speed.
  • a polycrystalline silicon film can be formed at a deposition rate of 10 to 100 times or more as compared with the case of forming a film on a two-dimensional glass substrate using a vacuum method, and at a high throughput (high speed of 20 mZs or more).
  • a one-dimensional semiconductor substrate can be manufactured at low cost.
  • the weight of the substrate used is about 9 kg for a two-dimensional glass substrate, but is about 700 g for a one-dimensional semiconductor substrate used in the present invention (when a quartz glass filament having a diameter of 0.1 mm is used).
  • the use amount of the base material can be reduced to 1Z10 or less.
  • the manufacturing equipment can be very cheap and the capital investment can be suppressed as compared with the manufacturing equipment for grinding and polishing a glass substrate for semiconductor devices and liquid crystals.
  • the drawn quartz glass long fiber has a clean surface and a small roughness of several tens of nanometers, so that cleaning or polishing before film formation is unnecessary. This is another factor that can reduce manufacturing costs.
  • the polycrystalline silicon film to be formed can be formed without touching a solid object until the film is formed. It can be manufactured at high speed without any problems.
  • the force for drawing the quartz glass long fiber and forming the polycrystalline silicon film in the drawing furnace 160 are different from each other as shown in FIG. 19 in that the drawing furnace 160 and the film forming furnace 161 are separated.
  • a furnace is fine.
  • a polycrystalline silicon film is formed in the film forming furnace 161 on the quartz glass long fiber drawn from the preform 110 in the drawing furnace 160.
  • the air enters the film forming furnace 161 it becomes an impurity and reacts to form particles, which deposit on the film and cause defects. Therefore, the space between the drawing furnace 160 and the film forming furnace 161 must be airtight. is necessary. For this reason, in FIG.
  • the drawing furnace 160 and the film forming furnace 161 are air-tightly connected by the connecting cylinder 162.
  • the inside of the film forming furnace 161 needs to be made to have an atmosphere of an inert gas or the like so that the atmosphere does not enter. For this reason, it is preferable that the pressure in the film forming furnace 161 be higher than the atmospheric pressure.
  • a P-type polycrystalline silicon layer (P-pSi layer) and an N + -type polycrystalline silicon layer (N + -pSi layer) are stacked and formed on the outer surface of long quartz glass fibers. Have been.
  • FIG. 20 is a diagram for explaining this manufacturing method, and shows an example of a manufacturing apparatus used in this manufacturing method.
  • the manufacturing method shown in Fig. 20 has almost the same force as the manufacturing method shown in Fig. 17.
  • a P-type polycrystalline silicon film is formed on the outer surface of a drawn quartz glass filament, and then an N + -type polycrystalline silicon film is formed. The difference is that silicon is deposited.
  • P-type polycrystalline silicon In the case of recon, silicon material (SiCl, SiCl H, etc.) and boron (B), which is a P-type dopant
  • A1 material are supplied to form a film.
  • a silicon material SiCl, SiCl H, etc.
  • a phosphorus (P) or bismuth (Bi) material serving as an N-type dopant are supplied.
  • a film is formed.
  • the carrier concentration of the semiconductor to be formed can be controlled by the concentration of the supplied dopant, and a P-type, P + -type, N-type, and N + -type polycrystalline silicon layer can be formed.
  • FIGS. 21 (a) and 21 (b) are views showing a cross-sectional shape of a one-dimensional semiconductor substrate manufactured by the method shown in FIG.
  • the cross section of the substrate (a) is rectangular, and the cross section of the substrate (b) is circular.
  • a P-type polycrystalline silicon film 3 is formed on the outer surface of a quartz glass long fiber 2, and an N + type polycrystalline silicon film 5 is formed thereon.
  • FIG. 22 is a diagram for explaining another method for manufacturing a one-dimensional semiconductor substrate used for manufacturing the solar cell element of the present invention, and shows an example of a manufacturing apparatus used for the manufacturing method. I have.
  • the quartz glass filaments are drawn without flowing the raw material gas, cooled in the cooling device 180, and then suspended in water or alcohol in the coating device 230 to form a slurry.
  • the outer surface of the quartz glass long fiber is coated with the silicon particles thus obtained, and is heated and baked by a calo heating device 240 or re-melted to form a polycrystalline silicon film, and then coated with a resist or the like and wound up.
  • This method can be applied to the case of forming a semiconductor film other than silicon.
  • the solar cell element of the present invention A procedure for manufacturing a solar cell module using the solar cell element will be described.
  • the steps of manufacturing the solar cell element of the present invention using the one-dimensional semiconductor substrate manufactured by the above procedure include a protective film removing step, a semiconductor film forming step, a doping step, an element separating step, an electrode forming step, and a cutting step.
  • Consisting of Figure 23 shows the flow of these steps.
  • the process of supplying and winding with a bobbin for each process may be repeated several times.
  • FIG. 24 shows a process flow in the case where the semiconductor film forming process is performed up to the element isolation process at one time and then wound once on a bobbin to form an electrode later. In this case, it is preferable that the treated film is not damaged!
  • FIG. 25 is a diagram illustrating an example of a segmented primary semiconductor substrate.
  • a plurality of solar cell elements 1 are fixed around a cylindrical jig 300 to form a roller-shaped substrate.
  • a one-dimensional semiconductor substrate is integrated, segmented or arrayed, and formed into a roller-shaped substrate or a planar substrate to reduce the size of the device used in the manufacturing process of the solar cell element while reducing the cost.
  • the throughput can be increased by several tens or even hundreds or thousands of times. Further, it is not necessary to apply an excessive tension to the one-dimensional semiconductor substrate, and the process can be performed in a non-contact manner.
  • the assembly time of the solar cell module can be reduced.
  • differential evacuation may be performed and a vacuum process may be performed.
  • an atmospheric pressure process may be used in consideration of productivity and maintainability.
  • processes such as coating removal by atmospheric pressure plasma, formation of a semiconductor film, etching and electrode formation, removal of a protective film by wet etching, wiring by an inkjet dispenser or a printing technique, and etching by a laser can be considered.
  • solar cell elements are manufactured without segmentation and with one-dimensional semiconductor substrates, It is preferable to increase the film formation rate by using atmospheric pressure plasma or high temperature thermal CVD in consideration of the properties.
  • the productivity can be further improved.
  • a PN-type or PIN-type semiconductor element as a photoelectric conversion element on the outer surface of the elongated body, it can be easily applied to a solar cell element and a solar cell module.

Landscapes

  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

[PROBLEMS] To provide a solar cell module low in production cost, free from the adverse effect produced by an increase in weight when the size of the module is increased, and excellent in conversion efficiency and to provide its constituent element. [MEANS FOR SOLVING PROBLEMS] A solar cell element in which a PN- or PIN-type semiconductor device serving as a photoelectric conversion element is formed on the outer surface of an elongated body having a diameter of 1000 μm or less.

Description

明 細 書  Specification
太陽電池モジュールおよびその要素  Solar cell module and its elements
技術分野  Technical field
[0001] 本発明は、太陽電池モジュールおよびその構成要素に関する c The present invention relates to a solar cell module and its components c
背景技術  Background art
[0002] 太陽電池は、実質的に無尽蔵の太陽エネルギーを直接電気に変換でき、またタリ ーンなエネルギーである。そのために環境問題を引き起こすことが無 、エネルギーと して化石燃料を使う火力発電の代替として注目を浴びて ヽるエネルギーの一つであ る。  [0002] Solar cells can convert virtually inexhaustible solar energy directly into electricity, and are also highly energy-efficient. As a result, it does not cause environmental problems and is one of the hot spots as an alternative to thermal power generation using fossil fuels as energy.
太陽電池に関する最も大きな問題はその製造コストの高さである。 2003年現在に ぉ 、て、我が国で太陽電池で発電した場合の電気代はおおよそ 70円 ZkWh程度 であり、商用電力料金 25円 ZkWhよりも 3倍程度高いのが現状である。  The biggest problem with solar cells is their high manufacturing cost. As of 2003, in Japan, the cost of electricity generated by solar cells is about 70 yen ZkWh, which is about three times higher than the commercial electricity rate of 25 yen ZkWh.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 現在は変換効率が良い単結晶シリコン基板または多結晶シリコン基板を用いた太 陽電池が主に用いられている。両者の場合、一般に P型の基板を用い、基板表面に リン )をドープして N型の半導体を作成し基板の厚さ方向に PN接合を形成し、基 板の裏面と表面に電極を形成し、更に表面を二酸化珪素(SiO )  [0003] At present, solar cells using a single crystal silicon substrate or a polycrystalline silicon substrate having high conversion efficiency are mainly used. In both cases, a P-type substrate is generally used, and an N-type semiconductor is created by doping phosphorus on the surface of the substrate, a PN junction is formed in the thickness direction of the substrate, and electrodes are formed on the back and front surfaces of the substrate. And the surface is silicon dioxide (SiO 2)
2ゃ窒化珪素(SiN 2 ゃ Silicon nitride (SiN
)の保護膜で覆 、太陽電池として ヽる。これらの太陽電池をパネルに集積ィ匕し配線を 行 、太陽電池モジュールとし、更に前記モジュール^^積ィ匕し配線して太陽電池ァ レーとしている。このアレーに充放電コントローラ、ノ ッテリー、インバータ等を組み合 わせて太陽電池システムとして 、る。 ) Cover with a protective film and cover as a solar cell. These solar cells are integrated on a panel and wired to form a solar cell module, and the modules are laminated and wired to form a solar cell array. This array is combined with a charge / discharge controller, a knottery, an inverter, etc. to form a solar cell system.
[0004] また、シリコン基板を用いない太陽電池も開発されている。これは、多成分系のガラ ス基板 (青板ガラスや代板ガラス等)の基板を用いて、その上に 300°C程度の比較低 温で SiOの膜をスパッタゃ蒸着、 CVD法を用いて形成し、その上に ITO (InSnO )  [0004] Solar cells that do not use a silicon substrate have also been developed. This involves forming a SiO film on a multi-component glass substrate (blue sheet glass, substitute sheet glass, etc.) at a comparatively low temperature of about 300 ° C by sputtering, vapor deposition, or CVD. And ITO (InSnO)
2 2 twenty two
、 SnOや ZnO等の透明導電性膜をスパッタ法で形成する。その上に、アモルファスThen, a transparent conductive film such as SnO or ZnO is formed by a sputtering method. On top of that, amorphous
2 2
シリコン (以下、「a-Si」と略す)プラズマ CVD (以下、「PCVD」と略す)で成膜する。 素子の構造は、例えば P型、 I型、 N型の 3層形成し PINにダイオード構造とする。更 に a— Siの上に裏面電極を蒸着ゃスパッタ等の方法で成膜させる。 Film is formed by silicon (hereinafter abbreviated as “a-Si”) plasma CVD (hereinafter abbreviated as “PCVD”). The structure of the element is, for example, three layers of P-type, I-type, and N-type, and a PIN diode structure. Further, a back electrode is formed on a-Si by a method such as vapor deposition and sputtering.
[0005] この他に、 GaAs、 InP、 CdSや CdTe等の二元系化合物半導体や、 CuInSeのよ [0005] Other than this, binary compound semiconductors such as GaAs, InP, CdS and CdTe, and CuInSe
2 うな三元系の化合物半導体も検討されている。また多孔質 TiOに色素を含浸させた  Such ternary compound semiconductors are also being studied. In addition, porous TiO was impregnated with a dye.
2  2
色素含浸太陽電池も開発されている。また有機半導体太陽電池も開発されている。 これらの太陽電池において、基板にはガリウム砒素(GaAs)ゃ窒化ガリウム(GaN) 等の半導体基板やガラス基板が用いられて ヽる。  Dye-impregnated solar cells have also been developed. Organic semiconductor solar cells have also been developed. In these solar cells, a semiconductor substrate such as gallium arsenide (GaAs) / gallium nitride (GaN) or a glass substrate is used as a substrate.
[0006] 太陽電池に通常用いられるシリコンやガリウム砒素(GaAs)ゃ窒化ガリウム(GaN) 等の半導体基板や、ガラス基板は二次元の平板基板である。 [0006] A semiconductor substrate such as silicon or gallium arsenide (GaAs) / gallium nitride (GaN) or a glass substrate which is usually used for a solar cell is a two-dimensional flat substrate.
シリコンや GaAsの半導体基板は、溶融した原料より種結晶を用いて引き上げ、単 結晶のインゴットを作製し、切断し研肖 ij ·研磨を施して鏡面の半導体基板としている。 一方、ガラス基板は、フロート法などで作られた板ガラスを研肖! 研磨して所定のサ ィズに切断されて作られる。用途によっては、研肖 1 研磨なしで切断だけされて使わ れる場合もある。  A silicon or GaAs semiconductor substrate is pulled up from a molten raw material using a seed crystal, a single crystal ingot is manufactured, cut, polished, and polished to obtain a mirror-finished semiconductor substrate. On the other hand, the glass substrate is made of flat glass made by the float method, etc.! Polished and cut to size. Depending on the application, it may be used after cutting without polishing.
[0007] 太陽電池の原価低減のためには、シリコン基板を用いる方法では原料費 (基板代) が高く非常に困難である。ガラス基板を用いる方法では、基板を大きくし、かつスル 一プットを上げて製造コストを下げることが検討されている。現状では、 a-Siが一番 可能性が高いが、低温で成膜するために成膜レートが上がらず、膜厚を厚くできない 問題がある。また、 a— Siは吸収波長帯が 0. 8 m以下で、単結晶シリコンや多結晶 シリコンの 1. 1 mに比べて低いために変換効率が低い問題がある。また低コストィ匕 の為に、大きなガラス基板を使うと、製造装置も大型とする必要があり、設備コストが 大幅に高くなる問題がある。特に、真空蒸着、 PCVDゃスパッタ装置は、すべて真空 装置である。これらは一般に常圧の装置と比べて高価であり、大型化によるコスト増 加は特に問題となる。更に、ガラス基板は、半導体基板に比べて重ぐ例えば通常太 陽電池に使用される lm2基板の場合、厚さが 4mmで重量はおおよそ 9kgと非常に 重い。このため、基板を大型化した場合、搬送装置も高くなるしモジュールやアレー にした時の太陽電池装置重量が重くなり部品ゃ据付けのコストが掛カる問題がある。 更に家庭用に使う場合は屋根の補強は必要となることも懸念される。 a— Siは低温で 成膜できるため、透明なフィルム等にも堆積させることができるが、発電用には耐候 性が低く寿命が短い。 [0007] In order to reduce the cost of a solar cell, a method using a silicon substrate is very difficult because of a high raw material cost (substrate cost). In a method using a glass substrate, it has been studied to reduce the manufacturing cost by enlarging the substrate and increasing the throughput. At present, a-Si is most likely to be used, but there is a problem that the film formation rate cannot be increased because the film is formed at a low temperature, and the film thickness cannot be increased. Also, a-Si has a problem of low conversion efficiency because the absorption wavelength band is 0.8 m or less, which is lower than that of 1.1 m of monocrystalline silicon or polycrystalline silicon. In addition, when a large glass substrate is used for low cost dagger, the manufacturing apparatus needs to be large, and there is a problem that the equipment cost is significantly increased. In particular, vacuum deposition and PCVD sputtering equipment are all vacuum equipment. These are generally more expensive than normal pressure devices, and the increase in cost due to the increase in size is a particular problem. Further, the glass substrate in the case of lm 2 substrates used for heavy ingredients e.g. normal solar cells as compared with the semiconductor substrate, the weight is approximately very heavy and 9 kg 4 mm thickness. For this reason, when the size of the substrate is increased, the transfer device becomes expensive, and the weight of the solar cell device when it is made into a module or an array becomes heavy, and there is a problem in that the cost of parts and installation is increased. In addition, when used for home use, there is a concern that the roof must be reinforced. a—Si at low temperature Since it can be formed into a film, it can be deposited even on a transparent film, but it has low weather resistance and short life for power generation.
[0008] したがって、本発明は、製造コストが安ぐ大型化した場合における重量増加による 弊害が解消され、かつ変換効率に優れた太陽電池モジュールおよびその構成要素 を提供することを目的とする。  [0008] Accordingly, an object of the present invention is to provide a solar cell module which is free from the disadvantages due to an increase in weight when the manufacturing cost is increased and the cost is reduced, and which is excellent in conversion efficiency and a component thereof.
課題を解決するための手段  Means for solving the problem
[0009] 前述した目的を達成するために、本発明は、径が 1000 m以下の長尺体の外表 面上に、光電変換素子をなす PN型または PIN型の半導体素子が形成された太陽 電池要素を提供する。 [0009] In order to achieve the above-described object, the present invention provides a solar cell in which a PN-type or PIN-type semiconductor element serving as a photoelectric conversion element is formed on an outer surface of a long body having a diameter of 1000 m or less. Provide the element.
[0010] 本発明の太陽電池要素において、前記 PN型または PIN型の半導体は、多結晶シ リコン半導体であることが好ましい。  [0010] In the solar cell element of the present invention, the PN-type or PIN-type semiconductor is preferably a polycrystalline silicon semiconductor.
[0011] 本発明の太陽電池要素において、前記多結晶シリコン半導体は、前記長尺体の外 表面上に形成され、かつ互いに電気的に接続される、 P型多結晶シリコン層 (P-pSi 層)、 P+型多結晶シリコン層(P+-pSi層)および N+型多結晶シリコン層(N+-pSi層[0011] In the solar cell element of the present invention, the polycrystalline silicon semiconductor is formed on an outer surface of the elongated body and is electrically connected to each other, a P-type polycrystalline silicon layer (P-pSi layer). ), P + type polycrystalline silicon layer (P + -pSi layer) and N + type polycrystalline silicon layer (N + -pSi layer)
)よりなることが好ましい。 ).
[0012] 本発明の太陽電池要素において、前記 P型多結晶シリコン層は、長尺体の外表面 上に形成されており、前記 P+型多結晶シリコン層および前記 N+型多結晶シリコン層 は、それぞれ該 P型多結晶シリコン層上に形成されていることが好ましい。 [0012] In the solar cell element of the present invention, the P-type polycrystalline silicon layer is formed on an outer surface of a long body, and the P + -type polycrystalline silicon layer and the N + -type polycrystalline silicon layer are: It is preferable that each is formed on the P-type polycrystalline silicon layer.
[0013] また、本発明の太陽電池要素において、前記 P+型多結晶シリコン層、前記 P型多 結晶シリコン層および前記 N+型多結晶シリコン層は、前記長尺体の外表面上に該 長尺体の外表面側からこの順、またはこの反対の順、で積層されることが好ましい。 [0013] Further, in the solar cell element of the present invention, the P + -type polycrystalline silicon layer, the P-type polycrystalline silicon layer, and the N + -type polycrystalline silicon layer are provided on an outer surface of the elongated body. It is preferred that the layers are laminated in this order from the outer surface side of the body or vice versa.
[0014] 本発明の太陽電池要素において、前記多結晶シリコン半導体は、 P型多結晶シリコ ン層と、前記 P型多結晶シリコン層の円周方向の一部分をドーピングにより N型とした[0014] In the solar cell element of the present invention, the polycrystalline silicon semiconductor is a P-type polycrystalline silicon layer and a part of the P-type polycrystalline silicon layer in the circumferential direction is made N-type by doping.
N型多結晶シリコン層とからなることが好ましい。 It is preferable to include an N-type polycrystalline silicon layer.
[0015] 本発明の太陽電池要素において、前記光電変換素子は、前記長尺体の長手方向 に沿って複数形成されており、複数ある光電変換素子間は、配線により電気的に接 続されていることが好ましい。 [0015] In the solar cell element of the present invention, a plurality of the photoelectric conversion elements are formed along a longitudinal direction of the elongated body, and the plurality of photoelectric conversion elements are electrically connected by wiring. Is preferred.
[0016] 本発明の太陽電池要素において、複数ある光電変換素子間には、二酸化ケイ素ま たは窒化ケィ素のうち、少なくとも一方を含む絶縁膜がさらに形成されていることが好 ましい。 [0016] In the solar cell element of the present invention, between the plurality of photoelectric conversion elements, silicon dioxide or the like is provided. It is preferable that an insulating film including at least one of silicon nitride and silicon nitride is further formed.
[0017] 本発明の太陽電池要素は、太陽電池素子の外表面上に二酸化ケイ素または窒化 ケィ素のうち、少なくとも一方を含む保護膜が形成されていることが好ましい。  [0017] In the solar cell element of the present invention, it is preferable that a protective film containing at least one of silicon dioxide and silicon nitride is formed on the outer surface of the solar cell element.
[0018] 本発明の太陽電池要素において、前記長尺体は、石英ガラスの長繊維力 なるこ とが好ましい。  [0018] In the solar cell element of the present invention, the elongated body preferably has a long fiber strength of quartz glass.
[0019] また、本発明は、本発明の太陽電池要素を少なくとも 2本以上並列および Zまたは 直列に配列させてなる太陽電池モジュールを提供する。  Further, the present invention provides a solar cell module in which at least two or more solar cell elements of the present invention are arranged in parallel and Z or in series.
[0020] 本発明の太陽電池モジュールは、異なる太陽電池要素間を電気的に接続する共 通配線を有することが好まし 、。 [0020] The solar cell module of the present invention preferably has a common wiring for electrically connecting different solar cell elements.
[0021] 本発明の太陽電池モジュールは、少なくとも 2本以上並列および Zまたは直列に配 列された太陽電池要素がなす平面上に、さらに反射板が設けられていることが好まし い。 [0021] In the solar cell module of the present invention, it is preferable that a reflector is further provided on a plane formed by at least two or more solar cell elements arranged in parallel and Z or in series.
[0022] 本発明の一次元太陽電池は、線状の一次元基材の表面に太陽電池となる半導体薄 膜を成膜された一次元半導体基板を用いて太陽電池となる素子 (以下では太陽電 池素子と ヽぅ)を形成することを特徴とする  [0022] The one-dimensional solar cell of the present invention is an element that becomes a solar cell (hereinafter referred to as a solar cell) using a one-dimensional semiconductor substrate in which a semiconductor thin film that becomes a solar cell is formed on a linear one-dimensional base material. Characterized by forming a battery element and ヽ ぅ)
[0023] 本発明の一次元太陽電池は、前記一次元基材の長手方向に前記太陽電池素子が 複数形成されて!/ゝることを特徴とする。 The one-dimensional solar cell of the present invention is characterized in that a plurality of the solar cell elements are formed in a longitudinal direction of the one-dimensional base material!
[0024] 本発明の一次元太陽電池は、複数の前記太陽電池素子が直列または並列に接続さ れていることを特徴とする。 [0024] The one-dimensional solar cell of the present invention is characterized in that a plurality of the solar cell elements are connected in series or in parallel.
[0025] 本発明の一次元太陽電池は、前記一次元基材として石英ガラス、多成分ガラス、サ フアイャ、アルミナ、カーボン、炭化珪素等のセラミックス等高融点材料を用いることを 特徴とする。 [0025] The one-dimensional solar cell of the present invention is characterized by using a high melting point material such as ceramics such as quartz glass, multi-component glass, sapphire, alumina, carbon and silicon carbide as the one-dimensional substrate.
[0026] 本発明の一次元太陽電池は、前記一次元基板に成膜してある一つの前記薄膜が、 ドープして!/、な 、前記半導体薄膜、または P型又は N型にドーピングされた前記半導 体薄膜のどちらかであることを特徴とする。  [0026] In the one-dimensional solar cell according to the present invention, one of the thin films formed on the one-dimensional substrate may be doped with! /, The semiconductor thin film, or P-type or N-type doped. It is characterized by being one of the semiconductor thin films.
[0027] 本発明の一次元太陽電池は、前記半導体薄膜の膜厚が 0.5 μ m以上 50 μ m以下で あることを特徴とする。 [0028] 本発明の一次元太陽電池は、前記太陽電池素子の構造が、前記薄膜の厚さ方向に 、 PN接合または PIN接合または NP接合または NIP接合を一つ以上形成することを 特徴とする。 [0027] The one-dimensional solar cell of the present invention is characterized in that the semiconductor thin film has a thickness of 0.5 μm or more and 50 μm or less. [0028] The one-dimensional solar cell of the present invention is characterized in that the structure of the solar cell element forms at least one PN junction, PIN junction, NP junction, or NIP junction in the thickness direction of the thin film. .
[0029] 本発明の一次元太陽電池は、前記一次元基材の長手方向に PN接合又は PIN接合 を一つ以上形成することを特徴とする。  [0029] The one-dimensional solar cell of the present invention is characterized in that one or more PN junctions or PIN junctions are formed in the longitudinal direction of the one-dimensional substrate.
[0030] 本発明の一次元太陽電池は、前記太陽電池素子を形成し前記各太陽電池素子を 配線し接続した後に、二酸化珪素(Si02)又は窒化珪素(Si3N4)あるいはその両方の 前記薄膜を形成することを特徴とする。 In the one-dimensional solar cell of the present invention, after forming the solar cell element, wiring and connecting the respective solar cell elements, the thin film of silicon dioxide (Si02) or silicon nitride (Si3N4) or both is formed. It is characterized by doing.
[0031] 本発明の一次元太陽電池は、前記太陽電池素子の接続する配線が、周方向の一部 に形成してありし力も長手方向にほぼ一直線状に並んで形成していることを特徴とす る。 [0031] The one-dimensional solar cell of the present invention is characterized in that the wiring for connecting the solar cell element is formed in a part in the circumferential direction, and the force is formed so as to be substantially linear in the longitudinal direction. It shall be.
[0032] 本発明の一次元太陽電池は、前記一次元基材の断面形状が円形、多角形、矩形、 円弧と矩形の合成した形状のいずれかを持つ前記一次元基材を用いることを特徴と する。  [0032] The one-dimensional solar cell of the present invention is characterized in that the one-dimensional base material has a cross-sectional shape of any one of a circle, a polygon, a rectangle, and a combined shape of an arc and a rectangle. And
[0033] 本発明の一次元太陽電池は、前記 1次元基板が導電性のファイバ(ワイヤー)である ことを特徴とする。  [0033] The one-dimensional solar cell of the present invention is characterized in that the one-dimensional substrate is a conductive fiber (wire).
[0034] 本発明の一次元太陽電池は、前記ファイバ(ワイヤー)の材質がアルミ、銅、鋼、タン ダステン、モリブデンのいずれか、またはそれらの合金であることを特徴とする。  [0034] The one-dimensional solar cell of the present invention is characterized in that the material of the fiber (wire) is any of aluminum, copper, steel, tungsten, molybdenum, or an alloy thereof.
[0035] 本発明の一次元太陽電池は、前記ワイヤーの表面に形成した酸ィ匕膜を除去してから 太陽電池となる半導体層を形成することを特徴とする。 [0035] The one-dimensional solar cell of the present invention is characterized in that a semiconductor layer to be a solar cell is formed after removing the oxide film formed on the surface of the wire.
[0036] 本発明の一次元太陽電池は、半導体が、シリコン、 GaAs等の 2元系、又は CuInS2等 の 3元系半導体、又は ZnOや Ή02等の色素増感された半導体であることを特徴とす る。 The one-dimensional solar cell of the present invention is characterized in that the semiconductor is a binary semiconductor such as silicon or GaAs, a ternary semiconductor such as CuInS2, or a dye-sensitized semiconductor such as ZnO or Ή02. It shall be.
[0037] 本発明の太陽電池モジュールは、一次元太陽電池を複数並べて配列しそれぞれを 配線接続した一次元太陽電池アレーが架台にパッケージされ、前記配線を接続する 端子が架台に設けられて 、ることを特徴とする。  [0037] In the solar cell module of the present invention, a one-dimensional solar cell array in which a plurality of one-dimensional solar cells are arranged and arranged and connected by wiring is packaged on a mount, and terminals for connecting the wiring are provided on the mount. It is characterized by the following.
[0038] 本発明の太陽電池モジュールは、前記一次元太陽電池を平面状又は曲面状に集 積してあることを特徴とする。 [0039] 本発明の太陽電池モジュールは、前記各一次元太陽電池に接続された前記配線が 前記一次元太陽電池アレーの受光面側と反対側に設けられていることを特徴とする [0038] The solar cell module of the present invention is characterized in that the one-dimensional solar cells are integrated in a planar or curved shape. [0039] The solar cell module of the present invention is characterized in that the wiring connected to each of the one-dimensional solar cells is provided on a side opposite to a light receiving surface side of the one-dimensional solar cell array.
[0040] 本発明の太陽電池モジュールは、前記一次元太陽電池を複数並べて接続し、可とう 性の透明なシートに直接固定する力またはシートではさんで固定することを特徴とす る。 [0040] The solar cell module of the present invention is characterized in that a plurality of the one-dimensional solar cells are arranged and connected, and are fixed directly to a flexible transparent sheet by a force or a sheet.
[0041] 本発明の太陽電池モジュールは、前記一次元太陽電池を繊維や線材で連結してす だれ状にすることを特徴とする。  [0041] The solar cell module of the present invention is characterized in that the one-dimensional solar cells are connected to each other with a fiber or a wire to form an interdigital shape.
[0042] 本発明の太陽電池モジュールは、厚さが 0.04mm以上 10mm以下であることを特徴と する。 [0042] The solar cell module of the present invention is characterized in that the thickness is 0.04 mm or more and 10 mm or less.
[0043] 本発明の太陽電池発電システムは、前記一次元太陽電池で構成された前記太陽電 池モジュールを一個または複数個連結して太陽電池アレーとし、前記太陽電池モジ ユールまたは太陽電池アレーと充放電コントローラが接続されていることを特徴とする  [0043] In the solar cell power generation system of the present invention, one or a plurality of the solar cell modules constituted by the one-dimensional solar cells are connected to form a solar cell array, and the solar cell module or the solar cell array is charged. Characterized in that a discharge controller is connected
[0044] 本発明の太陽電池発電システムは、更にインバータが接続されていることを特徴とす る。 [0044] The solar cell power generation system of the present invention is further characterized in that an inverter is connected.
[0045] 本発明の太陽電池発電システムは、更にバッテリーが接続されていることを特徴とす る。  [0045] The solar cell power generation system of the present invention is characterized in that a battery is further connected.
発明の効果  The invention's effect
[0046] 本発明の太陽電池要素は、径が 1000 m以下の長尺体の外表面上に光電変換 素子をなす半導体素子が形成されているため、従来の平板状の半導体基板ゃガラ ス基板を用いた場合に比べて太陽電池の製造コストが大幅に低減される。  In the solar cell element of the present invention, a semiconductor element serving as a photoelectric conversion element is formed on the outer surface of a long body having a diameter of 1000 m or less. The manufacturing cost of the solar cell is greatly reduced as compared with the case where is used.
すなわち、本発明の太陽電池要素は、技術的に既に実証された生産性が高い光フ アイバ技術を応用することができる。このため、生産性が高ぐ製造コストが低減される  That is, the solar cell element of the present invention can apply the optical fiber technology, which has already been technically proven and has high productivity. For this reason, productivity is high and manufacturing cost is reduced.
[0047] また、径が 1000 μ m以下の長尺体の外表面に半導体層または該半導体層の基と なる多結晶シリコン膜を成膜するため、成膜レートが lOOnmZsから lOOOnmZs以 上である。これは、従来の真空法で平板状の基板に成膜する際の成膜レートの 10倍 力も 100倍であり、成膜工程におけるスループットを大幅に向上させることができる。 さらに、成膜レートが高いため、短時間で多結晶シリコン層の膜厚を厚くすることが でき、シリコン結晶粒を成長させることで変換効率を高めることができる。 In addition, since a semiconductor layer or a polycrystalline silicon film serving as a base of the semiconductor layer is formed on the outer surface of a long body having a diameter of 1000 μm or less, the film formation rate is 100 nmZs to 100 nm or more. . This is 10 times the film formation rate when forming a film on a flat substrate by the conventional vacuum method. The force is also 100 times, and the throughput in the film forming process can be greatly improved. Further, since the film formation rate is high, the thickness of the polycrystalline silicon layer can be increased in a short time, and the conversion efficiency can be increased by growing silicon crystal grains.
[0048] また、径が 1000 m以下の長尺体の外表面上に半導体素子を形成するため、真 空装置を用いる必要がなぐ大気圧プロセスが可能である。したがって、全工程を高 価な真空プロセスを使用せずに実施することができるため、設備コストが安い。さらに また、大気圧プロセスを用いることができるため、真空プロセスでは高価な SiO膜や  [0048] Further, since the semiconductor element is formed on the outer surface of the elongated body having a diameter of 1000 m or less, an atmospheric pressure process that does not require the use of a vacuum device is possible. Therefore, the entire process can be performed without using an expensive vacuum process, and the equipment cost is low. Furthermore, since an atmospheric pressure process can be used, an expensive SiO film or
2 2
S13N膜を低コストで成膜できる。このため、これらの膜を保護膜として使用することでS13N film can be formed at low cost. Therefore, using these films as protective films
4 Four
、太陽電池要素の耐候性を著しく向上することができる。  In addition, the weather resistance of the solar cell element can be significantly improved.
[0049] また、長尺体に光透過性に優れた石英ガラスの長繊維を用いれば、長尺体内部で の多重反射効果により、変換効率をさらに向上させることができる。これにより変換効 率を最大 20%以上にまで高めることができる。  [0049] Further, when long fibers of quartz glass having excellent light transmission properties are used for the elongated body, the conversion efficiency can be further improved due to the multiple reflection effect inside the elongated body. This can increase the conversion efficiency to a maximum of 20% or more.
[0050] 本発明の太陽電池モジュールは、径が 1000 m以下の長尺体である太陽電池要 素を少なくとも 2本以上並列および Zまたは直列に配列して形成するため、従来の二 次元ガラス基板を用いた太陽電池モジュールに比べて軽量にすることができる。具 体的には、モジュール自体の重量で比較した場合、従来の二次元ガラス基板を用い た場合に比べて 1Z10以下にすることができる。モジュールが軽量ィ匕されることにより 、該モジュールの部品に要するコストゃ据付けコストを低減することができる。  Since the solar cell module of the present invention is formed by arranging at least two or more long solar cell elements having a diameter of 1000 m or less in parallel and Z or in series, a conventional two-dimensional glass substrate Can be made lighter than a solar cell module using the same. Specifically, when compared with the weight of the module itself, it can be reduced to 1Z10 or less as compared with the case where a conventional two-dimensional glass substrate is used. By reducing the weight of the module, the cost required for parts of the module divided by the installation cost can be reduced.
[0051] さらに、本発明の太陽電池モジュールは、長尺体である太陽電池要素を少なくとも  Further, the solar cell module of the present invention includes at least a long-sized solar cell element.
2本以上並列に配列して形成された場合、長尺体同士を柔軟性をもたせて結合する ことで長尺体の幅方向に可とう性を持たせることができる。また、長尺体自体に石英 ガラス長繊維のような可とう性を有する材料を用いることで、長尺体の長手方向にも 可とう性を有する太陽電池モジュールにすることができる。これにより、変形自在な簾 状の太陽電池モジュールや折り畳み可能な太陽電池モジュールとすることができる。 図面の簡単な説明  When two or more elongated members are arranged in parallel, the elongated members can have flexibility in the width direction of the elongated members by joining them with flexibility. Further, by using a flexible material such as quartz glass long fiber for the elongated body itself, a solar cell module having flexibility in the longitudinal direction of the elongated body can be obtained. As a result, a deformable solar cell module or a foldable solar cell module can be obtained. Brief Description of Drawings
[0052] [図 1]本発明の太陽電池要素の 1構成例の横断面図である。 FIG. 1 is a cross-sectional view of one configuration example of a solar cell element of the present invention.
[図 2]図 1に示す太陽電池要素を A— A線に沿って切断した縦断面図である。  FIG. 2 is a longitudinal sectional view of the solar cell element shown in FIG. 1 cut along line AA.
[図 3]本発明の太陽電池要素の別の 1構成例の横断面図である。 [図 4]図 3に示す太陽電池要素を B— B線に沿って切断した縦断面図である。 FIG. 3 is a cross-sectional view of another configuration example of the solar cell element of the present invention. FIG. 4 is a longitudinal sectional view of the solar cell element shown in FIG. 3, taken along line BB.
[図 5]本発明の太陽電池要素の別の 1構成例の縦断面図である。  FIG. 5 is a longitudinal sectional view of another configuration example of the solar cell element of the present invention.
[図 6]図 5に示す太陽電池要素の部分破断側面図である。  6 is a partially cutaway side view of the solar cell element shown in FIG.
[図 7]本発明の太陽電池要素の別の 1構成例の縦断面図である。  FIG. 7 is a longitudinal sectional view of another configuration example of the solar cell element of the present invention.
[図 8]図 7に示す太陽電池要素の側面図である。  FIG. 8 is a side view of the solar cell element shown in FIG. 7.
[図 9]本発明の太陽電池要素のの 1構成例の縦断面図である。  FIG. 9 is a longitudinal sectional view of one configuration example of the solar cell element of the present invention.
[図 10]本発明の太陽電池要素の接続方法を説明する図である。  FIG. 10 is a diagram illustrating a method for connecting solar cell elements according to the present invention.
[図 11]本発明の太陽電池要素の別の接続方法を説明する図である。  FIG. 11 is a diagram illustrating another method for connecting solar cell elements according to the present invention.
[図 12]本発明の太陽電池モジュールの 1構成例の概念図である。  FIG. 12 is a conceptual diagram of a configuration example of a solar cell module according to the present invention.
[図 13]本発明の太陽電池モジュールにおける多重反射効果を説明するための図で める。  FIG. 13 is a diagram for explaining a multiple reflection effect in the solar cell module of the present invention.
[図 14]本発明の太陽電池モジュールの 1構成例である、簾状の太陽電池モジュール の概念図である。  FIG. 14 is a conceptual diagram of a blind solar cell module, which is one configuration example of the solar cell module of the present invention.
[図 15]本発明の太陽電池モジュールの別の 1構成例の平面図であり、一部拡大して 示されている。  FIG. 15 is a plan view of another configuration example of the solar cell module of the present invention, which is partially enlarged.
[図 16]本発明の太陽電池モジュールを用いた太陽電池システムの 1構成例を示す概 念図である。  FIG. 16 is a conceptual diagram showing one configuration example of a solar cell system using the solar cell module of the present invention.
[図 17]本発明の太陽電池要素の製造に用いる一次元半導体基板の製造方法の一 例を説明するための図である。  FIG. 17 is a diagram illustrating an example of a method for manufacturing a one-dimensional semiconductor substrate used for manufacturing a solar cell element according to the present invention.
[図 18] (a)、 (b)は、本発明の太陽電池要素の製造に用いる一次元半導体基板の縦 断面図である。  FIGS. 18 (a) and (b) are longitudinal sectional views of a one-dimensional semiconductor substrate used for manufacturing a solar cell element of the present invention.
[図 19]本発明の太陽電池要素の製造に用いる一次元半導体基板の製造方法の一 例を説明するための図である。  FIG. 19 is a diagram illustrating an example of a method for manufacturing a one-dimensional semiconductor substrate used for manufacturing a solar cell element according to the present invention.
[図 20]本発明の太陽電池要素の製造に用いる一次元半導体基板の製造方法の一 例を説明するための図である。  FIG. 20 is a diagram illustrating an example of a method for manufacturing a one-dimensional semiconductor substrate used for manufacturing a solar cell element according to the present invention.
[図 21] (a)、(b)は、本発明の太陽電池要素の製造に用いる一次元半導体基板の縦 断面図である。  FIGS. 21 (a) and (b) are longitudinal sectional views of a one-dimensional semiconductor substrate used for manufacturing a solar cell element of the present invention.
[図 22]本発明の太陽電池要素の製造に用いる一次元半導体基板の製造方法の一 例を説明するための図である。 [FIG. 22] An example of a method for manufacturing a one-dimensional semiconductor substrate used for manufacturing a solar cell element of the present invention. It is a figure for explaining an example.
[図 23]—次元半導体基板を用いて本発明の太陽電池要素を製造する工程を示した 図である。  FIG. 23 is a diagram showing a step of manufacturing a solar cell element of the present invention using a one-dimensional semiconductor substrate.
[図 24]—次元半導体基板を用いて本発明の太陽電池要素を製造する工程を示した 図である。  FIG. 24 is a diagram showing a step of manufacturing a solar cell element of the present invention using a one-dimensional semiconductor substrate.
[図 25]—次元半導体基板のセグメント化の一例を示す概念図である。  FIG. 25 is a conceptual diagram showing an example of segmentation of a dimensional semiconductor substrate.
[図 26]—次元基板の製造方法を示す概念図である。 FIG. 26 is a conceptual diagram showing a method for manufacturing a two-dimensional substrate.
[図 27] (a)は一次元 SOI基板の断面を示す図、(b)は被覆付一次元 SOI基板の断面 を示す図である。  FIG. 27 (a) is a diagram showing a cross section of a one-dimensional SOI substrate, and FIG. 27 (b) is a diagram showing a cross section of a coated one-dimensional SOI substrate.
[図 28]—太陽電池モジュール断面図と一次元基板内の多重反射を説明する図であ る。  FIG. 28 is a diagram illustrating a cross-sectional view of a solar cell module and multiple reflection in a one-dimensional substrate.
[図 29]—次元太陽電池素子の断面構造を示す図であり、(a)は I型太陽電池、、 (b) は II型太陽電池の断面を示す図である。  FIG. 29 is a diagram showing a cross-sectional structure of a one-dimensional solar cell element.
[図 30]1型ファイバ太陽電池素子のプロセスフローを説明する図である。  FIG. 30 is a diagram illustrating a process flow of a type 1 fiber solar cell element.
[図 31]11型ファイバ太陽電池素子のプロセスフローを説明する図である。 FIG. 31 is a diagram illustrating a process flow of an 11-type fiber solar cell element.
符号の説明 Explanation of symbols
1、 10、 11、 13 :太陽電池要素  1, 10, 11, 13: Solar cell elements
2 :長尺体  2: Long body
3 : P型多結晶シリコン層  3: P-type polycrystalline silicon layer
4 : P+型多結晶シリコン層  4: P + type polycrystalline silicon layer
5 :N+型多結晶シリコン層 5: N + type polycrystalline silicon layer
6 :光電変換素子  6: Photoelectric conversion element
7 :電極  7: Electrode
8 :配線  8: Wiring
12 :保護膜  12: Protective film
15:太陽電池要素  15: Solar cell element
16 : P型シリコン層  16: P-type silicon layer
17 :N型シリコン層 18:接続部 17: N-type silicon layer 18: Connection
19:線材 19: Wire rod
20:太陽電池モジュール 21:要素  20: Solar cell module 21: Element
22:充放電コントローラ 24:インバータ  22: Charge / discharge controller 24: Inverter
26:負荷 26: Load
28:バッテリー 28: Battery
30:反射板 30: Reflector
40:電力取り出し用の配線 40: Wiring for power extraction
50:光線 50: Ray
60:発電  60: Power generation
71:金属電極膜  71: Metal electrode film
72:ITO膜  72: ITO film
100:駆動軸  100: drive shaft
110:プリフォーム  110: Preform
120、 130、 140、 150:ヒータ 120, 130, 140, 150: heater
160:線引き炉 160: Wire drawing furnace
皿:成膜炉 Plate: deposition furnace
162:連結筒  162: Connecting tube
170:出口  170: Exit
180:冷却装置  180: Cooling device
190:レジスト塗布装置 190: Resist coating device
200:加熱炉 200: heating furnace
210:キヤプスタン  210: Capstan
220:卷取機  220: Winder
230:被覆装置  230: Coating device
240:加熱装置 300 :治具 240: Heating device 300: Jig
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0054] 以下、図面を参照して、本発明の太陽電池要素およびこれを用いた太陽電池モジ ユールについて説明する。但し、図面は、理解を容易にするために具体的な態様の 一例を示したものであり、本発明はこれに限定されない。  Hereinafter, a solar cell element of the present invention and a solar cell module using the same will be described with reference to the drawings. However, the drawings show an example of a specific embodiment for easy understanding, and the present invention is not limited to this.
図 1は、本発明の太陽電池要素の一実施形態の側部断面図であり、図 2は、図 1の A-A線に沿って切断した縦断面図である。  FIG. 1 is a side sectional view of one embodiment of the solar cell element of the present invention, and FIG. 2 is a longitudinal sectional view taken along line AA of FIG.
図 1および図 2に示すように、本発明の太陽電池要素 1は、断面が円形をした長尺 体 2の外表面上に、その長手方向に沿って複数の光電変換素子 6が形成されている 。より具体的には、長尺体 2の外表面上に P型多結晶シリコン層(P— pSi層) 3が形成 されており、該 P— pSi層 3上には、長尺体 2の長手方向の異なる位置に P+型多結晶 シリコン層(P+— pSi層) 4および N+型多結晶シリコン層(N+— pSi層) 5が互いに間 隔を開けて形成されている。ここで、 P-pSi層 3、 P+-pSi層 4および N+-pSi層 5は、 長尺体 2の全周にわたって形成されている。すなわち、本発明の太陽電池要素 1で は、 PIN型半導体素子をなす P— pSi層 3、 P+— pSi層 4および N+— pSi層 5からなる 光電変換素子 6が、長尺体 2の全周にわたつて形成されて 、る。  As shown in FIGS. 1 and 2, the solar cell element 1 of the present invention has a plurality of photoelectric conversion elements 6 formed on the outer surface of a long body 2 having a circular cross section along the longitudinal direction. Yes. More specifically, a P-type polycrystalline silicon layer (P-pSi layer) 3 is formed on the outer surface of the long body 2, and the long side of the long body 2 is formed on the P-pSi layer 3. A P + type polycrystalline silicon layer (P + —pSi layer) 4 and an N + type polycrystalline silicon layer (N + —pSi layer) 5 are formed at different positions in different directions. Here, the P-pSi layer 3, the P + -pSi layer 4 and the N + -pSi layer 5 are formed over the entire circumference of the elongated body 2. That is, in the solar cell element 1 of the present invention, the photoelectric conversion element 6 including the P—pSi layer 3, the P + —pSi layer 4, and the Formed over a long distance.
[0055] 本発明の太陽電池要素 1では、 P+— pSi層 4および N+— pSi層 5上にそれぞれ電極 7が形成されており、異なる光電変換素子 6同士は、電極 7間に配線 8を設けることで 電気的に接続されている。図から明らかなように、電極 7は、長尺体 2の全周にわたつ て形成されている P+— pSi層 4および N+— pSi層 5上において、長尺体 2の周方向の 一部に形成されている。ここで電極 7は、太陽電池要素 1を後述する太陽電池モジュ ールとして使用する際に、該太陽電池モジュールの入射光側に対して裏面側に形成 すれば、入射光に対する光電変換素子 6の有効面積を高めることができるため好まし い。  In solar cell element 1 of the present invention, electrodes 7 are formed on P + —pSi layer 4 and N + —pSi layer 5, respectively, and different photoelectric conversion elements 6 are provided with wiring 8 between electrodes 7. It is electrically connected. As is apparent from the figure, the electrode 7 is partially formed in the circumferential direction of the elongated body 2 on the P + -pSi layer 4 and the N + -pSi layer 5 formed over the entire circumference of the elongated body 2. Is formed. Here, when the solar cell element 1 is used as a solar cell module to be described later, if the electrode 7 is formed on the back side with respect to the incident light side of the solar cell module, the electrode 7 This is preferable because the effective area can be increased.
[0056] 図 3は、本発明の太陽電池要素の別の 1実施形態の側部断面図であり、図 4は、図 3の B— B線に沿って切断した縦断面図である。  FIG. 3 is a side sectional view of another embodiment of the solar cell element of the present invention, and FIG. 4 is a longitudinal sectional view taken along line BB of FIG.
図 3および図 4に示す太陽電池要素 10は、断面が円形をした長尺体 2の外表面上 に、その長手方向に沿って複数の光電変換素子 6が形成されている点は、図 1およ び図 2に示す太陽電池要素 1と同一であるが、光電変換素子 6の構成が図 1および 図 2に示す太陽電池要素 1とは異なっている。すなわち、図 3および図 4に示す太陽 電池要素 10では、長尺体 2の外表面上に、 P+ - pSi層 4が形成されており、該 P+ - p Si層 4上に P— pSi層 3および N+— pSi層 5がこの順に積層して形成されている。すな わち、図 3および図 4に示す太陽電池要素 10では、 P+— pSi層 4、 P— pSi層 3および N+— pSi層 5がこの順に積層してなる PIN型半導体素子として光電変換素子 6が形 成されている。ここで、 P+ pSi層 4、 P— pSi層 3および N+— pSi層 5は、長尺体 2の全 周にわたって形成されている。図 3および図 4に示す太陽電池要素 10においても、 P +— pSi層 4および N+— pSi層 5上に電極 7が形成されており、互いに異なる光電変換 素子 6同士は、電極 7間に配線 8を設けることで電気的に接続されている。また、光電 変換素子 6の側面には、異なる光電変換素子 6間での短絡を防止するため絶縁膜 9 が形成されている。該絶縁膜は一般的には二酸ィ匕ケィ素(SiO )膜、窒化ケィ素(Si The solar cell element 10 shown in FIGS. 3 and 4 is different from the solar cell element 10 in that a plurality of photoelectric conversion elements 6 are formed on the outer surface of a long body 2 having a circular cross section along the longitudinal direction. And 2 and the configuration of the photoelectric conversion element 6 is different from that of the solar cell element 1 shown in FIGS. That is, in the solar cell element 10 shown in FIGS. 3 and 4, the P + -pSi layer 4 is formed on the outer surface of the elongated body 2, and the P-pSi layer 3 is formed on the P + -pSi layer 4. And an N + -pSi layer 5 are laminated in this order. That is, in the solar cell element 10 shown in FIGS. 3 and 4, the photoelectric conversion element is a PIN-type semiconductor element in which the P + —pSi layer 4, the P—pSi layer 3, and the N + —pSi layer 5 are laminated in this order. 6 is formed. Here, the P + pSi layer 4, the P—pSi layer 3 and the N + —pSi layer 5 are formed over the entire circumference of the elongated body 2. Also in the solar cell element 10 shown in FIGS. 3 and 4, the electrodes 7 are formed on the P +-pSi layer 4 and the N +-pSi layer 5, and the mutually different photoelectric conversion elements 6 are wired between the electrodes 7. It is electrically connected by providing 8. In addition, an insulating film 9 is formed on a side surface of the photoelectric conversion element 6 to prevent a short circuit between the different photoelectric conversion elements 6. The insulating film is generally made of silicon dioxide (SiO 2), silicon nitride (Si).
2  2
N )膜またはこの両者である。なお、図 1および図 2に示す太陽電池要素 1において も、異なる光電変換素子 6間での短絡を防止するため、 P-pSi層 3の側面に絶縁膜 が形成されていてもよい。  N) membrane or both. In the solar cell element 1 shown in FIGS. 1 and 2, an insulating film may be formed on the side surface of the P-pSi layer 3 in order to prevent a short circuit between different photoelectric conversion elements 6.
図 1ないし図 4に示した本発明の太陽電池要素 1、 10の各構成要素について、以 下に具体的に説明する。  Each component of the solar cell elements 1 and 10 of the present invention shown in FIGS. 1 to 4 will be specifically described below.
本発明の太陽電池要素 1、 10において、長尺体 2は、径が 1000 m以下の細径 の長尺体であればよぐその断面形状は図示した円形に限定されない。したがって、 長尺体 2は、断面形状が楕円形や、矩形を含む多角形、さらに円弧と矩形を合成し た形状であってもよい。これら断面形状が円形以外の場合、断面形状の長径が 100 0 m以下である。但し、断面形状が円形または楕円形であれば、後述するように口 一ルに卷き取りながら、ロール'ッゥ 'ロールで製造できるので好ましい。また、長尺体 2が断面形状が円形または楕円形であって、かつ光透過性に優れた石英ガラス製で あれば、後で詳述するように、長尺体 2内部における光の多重反射効果を利用するこ とで太陽電池要素 1、 10の光電変換効率を高めることができる。また、断面が楕円形 であれば、太陽電池要素 1、 10の電極 7が形成された面と、電極 7を有しない面とを、 形状カゝら容易に認識することができる。また工程上も、成膜やリフトオフにより、電極 7 や配線 8を形成するのが容易になるので好まし 、。 In the solar cell elements 1 and 10 of the present invention, the elongated body 2 is not limited to the illustrated circular shape as long as the elongated body has a small diameter of 1000 m or less. Therefore, the elongated body 2 may have an elliptical cross section, a polygon including a rectangle, or a shape obtained by combining an arc and a rectangle. When these cross-sectional shapes are other than circular, the major axis of the cross-sectional shape is 1000 m or less. However, it is preferable that the cross-sectional shape is circular or elliptical, since it can be manufactured with a roll 'roll' while being wound around a mouth as described later. Further, if the elongated body 2 has a circular or elliptical cross-sectional shape and is made of quartz glass having excellent light transmittance, multiple reflection of light inside the elongated body 2 will be described in detail later. By utilizing the effect, the photoelectric conversion efficiency of the solar cell elements 1 and 10 can be increased. Further, if the cross section is elliptical, it is possible to easily recognize the surface on which the electrodes 7 of the solar cell elements 1 and 10 are formed and the surface having no electrodes 7 from the shape. Also in the process, the electrode 7 Or because it is easier to form the wiring 8.
[0058] 本発明の太陽電池要素 1、 10において、長尺体 2は、その外表面上に半導体素子 を形成可能な高融点材料である限り特に限定されない。したがって、長尺体 2は、金 、銀、白金、銅、アルミニウム、鉄、ステンレス鋼、マグネシウム、チタン、またはこれら の合金等の導電性の金属材料であってもよぐまたは、シリコンファイバ、石英ガラス または炭素繊維等の長繊維、多成分ガラス、サファイア、アルミナ、炭化ケィ素のよう な導電性または非導電性のセラミックス材料であってもよ 、。これらのうち石英ガラス 長繊維または炭素維維は、光ファイバやガラス繊維強化プラスチック (GFRP)、炭素 繊維強化プラスチック (CFRP)等に幅広く使用されて ヽる。前述した材料の中でも、 石英ガラス長繊維が、耐熱性に優れており、かつ光電変換素子 6をなす半導体素子 を外表面上に形成する際に SOI (silicon on insulator)技術を用いることができる ため好ましい。すなわち、長尺体 2が金属線や炭素繊維のような導電性の材料であつ ても、その外表面に絶縁層を形成し、その上に単結晶または多結晶のシリコン膜を形 成することで、 SOI技術を用いて半導体素子を形成することができる。また、長尺体 2 が絶縁体であり、かつ耐熱性に優れる石英ガラス長繊維であれば、その外表面にそ のまま単結晶または多結晶のシリコン膜をすることで、 SOI技術を適用することができ る。さらにまた、長尺体 2の石英ガラス長繊維が好ましい別の理由として、光透過性に 優れるため、長尺体 2内部での多重反射効果を利用して光電変換効率を高めること ができる点が挙げられる。  [0058] In the solar cell elements 1 and 10 of the present invention, the elongated body 2 is not particularly limited as long as it is a high melting point material capable of forming a semiconductor element on its outer surface. Therefore, the elongated body 2 may be made of a conductive metal material such as gold, silver, platinum, copper, aluminum, iron, stainless steel, magnesium, titanium, or an alloy thereof, or may be made of silicon fiber, quartz, or the like. Conductive or non-conductive ceramic materials such as long fibers such as glass or carbon fiber, multi-component glass, sapphire, alumina, and silicon carbide may be used. Of these, quartz glass long fibers or carbon fibers are widely used for optical fibers, glass fiber reinforced plastics (GFRP), carbon fiber reinforced plastics (CFRP), and the like. Among the above-mentioned materials, long quartz glass fibers have excellent heat resistance, and can use SOI (silicon on insulator) technology when forming a semiconductor element constituting the photoelectric conversion element 6 on the outer surface. preferable. That is, even if the elongated body 2 is made of a conductive material such as a metal wire or carbon fiber, it is necessary to form an insulating layer on its outer surface and form a monocrystalline or polycrystalline silicon film thereon. Thus, a semiconductor element can be formed using SOI technology. In addition, if the long body 2 is an insulator and is a quartz glass long fiber having excellent heat resistance, the SOI technology is applied by forming a single crystal or polycrystalline silicon film on the outer surface of the long fiber 2 as it is. be able to. Furthermore, another reason that the quartz glass long fiber of the elongated body 2 is preferable is that, since it has excellent light transmittance, the photoelectric conversion efficiency can be enhanced by using the multiple reflection effect inside the elongated body 2. No.
[0059] 長尺体 2の径は、 800 μ m以下であることが好ましぐ 150 m以下であることがより 好ましい。本発明の太陽電池要素 1、 10の 1つの利点は、後述するように複数の光電 変換素子 6がその外表面上に形成された連続した長尺体 2として、ロール'ッゥ 'ロー ルでボビンに巻き取りながら製造できることである。長尺体 2の径が 150 μ m以下であ れば、石英ガラス長繊維を用いてロール'ッゥ ·ロールで製造するのにより好ま 、。
Figure imgf000015_0001
、ては、その外表面上に光電変換素子 6やその上に形成される電極 7 および配線 8等の構成要素を形成することが容易であり、かつ光の入射側力 見た、 光電変換素子 6の有効面積が好ましいサイズになることから 30 μ m以上であることが 好ましい。 また 30 /z m以下となると、製作中での破損の確率が高くなる事、アレー化するときの 配列の本数が増えるため時間が掛カりスループットが上がらないという問題が顕著に なる。
[0059] The diameter of the elongated body 2 is preferably 800 µm or less, more preferably 150 m or less. One advantage of the solar cell elements 1 and 10 of the present invention is that, as described later, a plurality of photoelectric conversion elements 6 are formed as a continuous elongated body 2 formed on an outer surface of the solar cell elements 1 and 10 in a roll-shaped roll. It can be manufactured while being wound on a bobbin. If the long body 2 has a diameter of 150 μm or less, it is more preferable to manufacture the long body 2 with a roll-to-roll using long quartz glass fibers.
Figure imgf000015_0001
It is easy to form the components such as the photoelectric conversion element 6 and the electrodes 7 and the wirings 8 formed thereon on the outer surface thereof, and the power on the light incident side is seen. Since the effective area of No. 6 has a preferable size, it is preferably 30 μm or more. If it is less than 30 / zm, the problem that the probability of breakage during the production increases and the number of arrays for arraying increases, which takes time and does not increase the throughput becomes remarkable.
[0060] 本発明の太陽電池要素 1、 10において、長尺体 2の外表面上に形成される光電変 換素子 6は、 PIN接合の半導体ではなぐ PN接合の半導体であってもよい。 PN接合 の半導体の場合、図 1および図 2に示す太陽電池要素 1と同様の構造の太陽電池要 素では、 P— pSi層がなぐ長尺体の外表面上に P+— pSi層および N+— pSi層力 該 長尺体の長手方向にこの順番に、またはこれとは反対の順番に形成される。一方、 図 3および図 4に示す太陽電池要素 10と同様の構造の太陽電池要素では、 P+— pSi 層および N+-pSi層が P-pSi層をはさまずに積層して形成される。  In the solar cell elements 1 and 10 of the present invention, the photoelectric conversion element 6 formed on the outer surface of the elongated body 2 may be a PN junction semiconductor instead of a PIN junction semiconductor. In the case of a PN junction semiconductor, a solar cell element having the same structure as solar cell element 1 shown in Figs. 1 and 2 has a P +-pSi layer and N +- pSi layer force is formed in the longitudinal direction of the elongated body in this order or in the opposite order. On the other hand, in a solar cell element having the same structure as the solar cell element 10 shown in FIGS. 3 and 4, the P + -pSi layer and the N + -pSi layer are formed by laminating the P-pSi layer without sandwiching them.
また、図 3および図 4に示す太陽電池要素 10において、光電変換素子 6における 各層の順番は図示した態様に限定されず、長尺体 2の外表面側力も N+— pSi層、 P— pSi層および P+— pSi層がこの順に形成された NIP接合の半導体素子であってもよい  Further, in the solar cell element 10 shown in FIGS. 3 and 4, the order of each layer in the photoelectric conversion element 6 is not limited to the illustrated embodiment, and the external surface side force of the elongated body 2 is also N + -pSi layer, P-pSi layer And N + junction semiconductor element in which P + and p + pSi layers are formed in this order
[0061] なお、図 3および図 4に示す太陽電池要素 10において、光電変換素子 6は、複数 に分かれて形成されているが、複数に分けて形成せずに、長尺体 2の長手方向に沿 つて 1つの光電変換素子を延在させてもょ 、。 [0061] In the solar cell element 10 shown in Figs. 3 and 4, the photoelectric conversion element 6 is formed in a plurality of pieces. One photoelectric conversion element may be extended along.
また、図 1ないし図 4に示す太陽電池要素 1、 10では、光電変換素子 6をなす各層 が長尺体 2の全周にわたって形成されている力 長尺体の周方向の一部にのみ光電 変換素子をなす各層が形成されていてもよい。この場合、長尺体の外表面上の、光 電変換素子をなす各層が形成されていない部分に、長尺体上に複数形成された光 電変換素子に対する共通電極が該長尺体の長手方向に延びて 、てもよ 、。  Further, in the solar cell elements 1 and 10 shown in FIGS. 1 to 4, each layer constituting the photoelectric conversion element 6 is formed over the entire circumference of the elongated body 2. Each layer constituting the conversion element may be formed. In this case, a common electrode for a plurality of photoelectric conversion elements formed on the elongate body is provided on a portion of the outer surface of the elongate body where the respective layers forming the photoelectric conversion element are not formed, in a longitudinal direction of the elongate body. It extends in the direction.
[0062] 光電変換素子 6を構成する各層の厚さは、必要に応じて適宜選択することができる 力 光電変換素子 6全体としての厚さが 0. 5 μ m以上 50 μ m以下であることが好まし ぐより好ましくは 2 μ m以上 30 μ m以下である。光電変換素子 6の厚さが上記の範 囲であれば、成膜レートが速い本発明の太陽電池要素 1、 10の製造時における利点 を活かす上で好ましぐかつ太陽電池要素 1、 10の光電変換効率に優れている。  [0062] The thickness of each layer constituting the photoelectric conversion element 6 can be appropriately selected as needed. Force The thickness of the photoelectric conversion element 6 as a whole is 0.5 μm or more and 50 μm or less. Is more preferably 2 μm or more and 30 μm or less. When the thickness of the photoelectric conversion element 6 is within the above range, it is preferable to take advantage of the advantage at the time of manufacturing the solar cell elements 1 and 10 of the present invention having a high film forming rate, and the solar cell elements 1 and 10 are preferable. Excellent photoelectric conversion efficiency.
[0063] 本発明の太陽電池要素は、径が 1000 m以下の長尺体の外表面上に、光電変 換素子をなす PN型または PIN型の半導体素子が形成されているのであればよぐ 上記した構成以外の構成であってもよい。図 5は、本発明の太陽電池要素の別の 1 構成例の縦断面図であり、図 6は、図 5に示す太陽電池要素の部分破断側面図であ り、図 5の第 1象限または第 4象限側から見た図である。図 5および図 6の太陽電池要 素 11では、長尺体 2の外表面上に全周にわたつて金属電極膜 71が形成されて ヽる 。ここで金属電極膜を構成する金属材料としては、 Al、 Ag、 Cu、 Mg、 Rh、 Ir、 W、 M o、 Pt、 Tiおよびこれらの合金、タングステンシリサイド(WSi)が例示される。これらの 中でも、耐熱性に優れることから、 W、 WSiが好ましい。金属電極膜 71の外表面上に は、 P+— pSi層 4、 P— pSi層 3および N+— pSi層 5がこの順に積層されて PIN型半導 体素子である光電変換素子 6が形成されている。 N+ -pSi層 5上には、透明電極膜 として錫ドープ酸化インジウム (ITO)膜 72が形成されている。図 5における第 2象限 および第 3象限の ITO膜 72上には A1膜 13が形成されている。 A1膜 13は、反射防止 膜と、 ITO膜の低抵抗ィ匕の役割を担う。したがって、図 5において、第 1象限および第 4象限側が光入射側である。 [0063] The solar cell element of the present invention has a photovoltaic element on the outer surface of a long body having a diameter of 1000 m or less. Any configuration other than the above-described configuration may be used as long as a PN-type or PIN-type semiconductor element serving as a replacement element is formed. FIG. 5 is a longitudinal sectional view of another configuration example of the solar cell element of the present invention, and FIG. 6 is a partially cutaway side view of the solar cell element shown in FIG. It is the figure seen from the 4th quadrant side. In the solar cell element 11 of FIGS. 5 and 6, the metal electrode film 71 is formed on the outer surface of the long body 2 over the entire circumference. Here, examples of the metal material constituting the metal electrode film include Al, Ag, Cu, Mg, Rh, Ir, W, Mo, Pt, Ti and alloys thereof, and tungsten silicide (WSi). Of these, W and WSi are preferred because of their excellent heat resistance. On the outer surface of the metal electrode film 71, a P + -pSi layer 4, a P-pSi layer 3, and an N + -pSi layer 5 are laminated in this order to form a photoelectric conversion element 6, which is a PIN semiconductor element. I have. On the N + -pSi layer 5, a tin-doped indium oxide (ITO) film 72 is formed as a transparent electrode film. The A1 film 13 is formed on the ITO film 72 in the second and third quadrants in FIG. The A1 film 13 plays a role of an anti-reflection film and a low resistance film of the ITO film. Therefore, in FIG. 5, the first quadrant and the fourth quadrant are the light incident sides.
[0064] 図 5および図 6に示す太陽電池要素 11は、例えば以下の手順で製造することがで きる。長尺体 2の外表面上に金属電極膜 71を成膜した後、金属電極膜 71からの金 属原子の拡散を防止するため、アモルファスシリコン (a— Si)膜を成膜し、比較的低 温の高周波 (RF)加熱により膜を結晶化させて、 P+-pSi層 4を形成する。なお、 a-S i膜を結晶化するために RF加熱の代わりにレーザを用いてもよい。また、後述する熱 CVD法を用いて P+-pSi層を直接形成してもよい。ここで P+-pSi層 4の厚さは、例 えば約 lOOnmとすることができる。 The solar cell element 11 shown in FIGS. 5 and 6 can be manufactured, for example, by the following procedure. After the metal electrode film 71 is formed on the outer surface of the elongated body 2, an amorphous silicon (a-Si) film is formed in order to prevent diffusion of metal atoms from the metal electrode film 71. The film is crystallized by low-temperature radio-frequency (RF) heating to form a P + -pSi layer 4. Note that a laser may be used instead of RF heating to crystallize the a-Si film. Further, a P + -pSi layer may be directly formed by using a thermal CVD method described later. Here, the thickness of the P + -pSi layer 4 can be, for example, about 100 nm.
次に、 P+-pSi層 4上に P-Si層 3を形成する。 P-Si層 3の形成には、後述する熱 C VD法を用いて実施してもよぐまたはスラリー状のシリコン粒子を塗布し、加熱焼成さ せて形成してもよい。  Next, a P-Si layer 3 is formed on the P + -pSi layer 4. The P-Si layer 3 may be formed by using a thermal CVD method to be described later, or may be formed by applying slurry-like silicon particles and baking them by heating.
次に、 P-Si層 3上に N+-pSi層 5を形成し、 ITO膜 72を形成し、 A1膜 13を形成す ることで図 5および図 6に示す太陽電池要素 11が得られる。  Next, the N + -pSi layer 5 is formed on the P-Si layer 3, the ITO film 72 is formed, and the A1 film 13 is formed, whereby the solar cell element 11 shown in FIGS. 5 and 6 is obtained.
[0065] 図 7は本発明の太陽電池要素の別の 1構成例の縦断面図であり、図 8はその側面 図である。図 7および図 8に示す太陽電池要素 13では、長尺体 2の外表面上全周に わたって p— Si層 3が形成されている。図 7における第 1象限および第 4象限の p— Si層 3上には P+-pSi層 4が形成されており、第 2象限および第 3象限の p-Si層 3上には、 N+— pSi層 5が形成されている。ここで、 P+— pSi層 4と N+— pSi層 5とが直接接触しな いように、両者は間隔を開けて形成されている。このような構成により、 p— Si層 3、 P+ pSi層 4および N+— pSi層 5が PIN型半導体素子、すなわち光電変換素子 6を形成 する。図 7において、 p— Si層 3の厚さは、例えば 3 μ mであり、 P+— pSi層 4および N+ p Si層 5の厚さは、例えば 1 OOnm—数 1 OOnmである。 FIG. 7 is a longitudinal sectional view of another configuration example of the solar cell element of the present invention, and FIG. 8 is a side view thereof. In the solar cell element 13 shown in FIG. 7 and FIG. A p-Si layer 3 is formed throughout. In FIG. 7, a P + -pSi layer 4 is formed on the p-Si layer 3 in the first and fourth quadrants, and an N +-pSi layer 4 is formed on the p-Si layer 3 in the second and third quadrants. Layer 5 has been formed. Here, the P + -pSi layer 4 and the N + -pSi layer 5 are formed at an interval so as not to directly contact each other. With such a configuration, the p-Si layer 3, the P + pSi layer 4, and the N + -pSi layer 5 form a PIN-type semiconductor element, that is, a photoelectric conversion element 6. In FIG. 7, the thickness of the p-Si layer 3 is, for example, 3 μm, and the thickness of the P + -pSi layer 4 and the N + pSi layer 5 is, for example, 1 OO nm—number 1 OO nm.
[0066] 図 9は本発明の太陽電池要素の別の 1構成例の縦断面図である。図 9に示す太陽 電池要素 15は、 P型シリコン層 16と N型シリコン層 17とから構成され、両者は円周方 向で区分されている。太陽電池要素 15の製法は、まず長尺体 2の外表面上全周に わたって P型多結晶シリコン層 16を成膜し、次に P型多結晶シリコン膜 16の円周方 向の一部分に PSG (phospho-silicate-glass)を長手方向に塗布する。その後に熱処 理(1000°C、 20— 40min)を行い PSGによって生じたガラスをフッ酸により除去するこ とにより N型シリコン層が形成される。本発明の太陽電池要素 15の接続方法を図 10 に示す。図 10では、本発明の太陽電池要素 15を横に配列し、銀ペースト等を用い て接続部 18で接続している。太陽電池要素 15を図 10のように接続することで、起電 力を昇圧することが出来る。また別の接続方法として、図 11のように銅線材等の線材 19を使って接続することも可能である。  FIG. 9 is a longitudinal sectional view of another configuration example of the solar cell element of the present invention. The solar cell element 15 shown in FIG. 9 is composed of a P-type silicon layer 16 and an N-type silicon layer 17, both of which are separated in the circumferential direction. The manufacturing method of the solar cell element 15 is as follows. First, a P-type polycrystalline silicon layer 16 is formed on the entire outer surface of the elongated body 2 and then a part of the P-type polycrystalline silicon film 16 in the circumferential direction is formed. Then, apply PSG (phospho-silicate-glass) in the longitudinal direction. Thereafter, heat treatment (1000 ° C, 20-40 min) is performed, and the glass generated by PSG is removed with hydrofluoric acid to form an N-type silicon layer. FIG. 10 shows a method of connecting the solar cell element 15 of the present invention. In FIG. 10, the solar cell elements 15 of the present invention are arranged side by side, and are connected at a connection portion 18 using silver paste or the like. By connecting the solar cell elements 15 as shown in FIG. 10, the electromotive force can be boosted. As another connection method, it is also possible to connect using a wire 19 such as a copper wire as shown in FIG.
本方法とラミネート法などによりフレキシブル性のある太陽電池を作成することが出来 る。  Flexible solar cells can be produced by this method and lamination method.
不純物のドーピングは、気相ドーピング法を用いて行っても良 、。  The doping of impurities may be performed using a gas phase doping method.
[0067] また、本発明の太陽電池要素において、長尺体の外表面上に形成される光電変換 素子は、 PN型または PIN型の半導体素子であればよぐ上記した多結晶シリコン半 導体素子に限定されない。したがって、アモルファスシリコン型の半導体素子であつ てもよく、また GaAs、 InP、 CdSや CdTe等の二元系化合物半導体素子や、 CuInSe のような三元系の化合物半導体素子であってもよい。さらにまた、多孔質 TiOに色 [0067] In the solar cell element of the present invention, the photoelectric conversion element formed on the outer surface of the elongated body may be a PN-type or PIN-type semiconductor element. It is not limited to. Therefore, it may be an amorphous silicon type semiconductor device, a binary compound semiconductor device such as GaAs, InP, CdS or CdTe, or a ternary compound semiconductor device such as CuInSe. Furthermore, the color of porous TiO
2 2 素を含浸させた色素含浸型の半導体素子であってもよい。 It may be a dye-impregnated semiconductor element impregnated with 22 elements.
[0068] 図 1ないし図 4に示す本発明の太陽電池要素 1、 10では、複数ある光電変換素子 6 が電極 7および配線 8によって直列接続されているがこれに限定されず、光電変換素 子 6同士が互 、に並列接続されるように電極 7および配線 8を配置してもよ 、。 In the solar cell elements 1 and 10 of the present invention shown in FIGS. 1 to 4, a plurality of photoelectric conversion elements 6 Are connected in series by the electrode 7 and the wiring 8, but are not limited thereto, and the electrode 7 and the wiring 8 may be arranged so that the photoelectric conversion elements 6 are connected to each other in parallel.
[0069] 本発明の太陽電池要素は、図示した以外の構成要素を含んでもよい。例えば、太 陽電池要素の外表面を被覆する保護膜を有していてもよぐむしろ好ましい。保護膜 は、絶縁膜と反射防止膜の役割を果たすものであり、通常は二酸ィ匕ケィ素膜、窒化 ケィ素膜またはこの両者である。  [0069] The solar cell element of the present invention may include components other than those illustrated. For example, it is preferable to have a protective film for covering the outer surface of the solar cell element. The protective film serves as an insulating film and an antireflection film, and is usually a silicon dioxide film, a silicon nitride film, or both.
[0070] 次に、上記の太陽電池要素を用いた太陽電池モジュールについて説明する。図 1 2は、本発明の太陽電池モジュールの一実施形態を示す斜視図である。図 12に示 す太陽電池モジュール 20は、径が 1000 m以下の長尺体 2の外表面上に光電変 換素子 6が形成された本発明の太陽電池要素 1、 10を複数本並列に配列して形成さ れる。太陽電池要素について、図 1ないし図 4に示した太陽電池要素 1、 10を挙げて 説明しているが、本発明の太陽電池要素である限り特に限定されず、例えば、図 5お よび図 6に示した太陽電池要素 11であってもよぐ図 7および図 8に示した太陽電池 要素 13であってもよい。  Next, a solar cell module using the above solar cell element will be described. FIG. 12 is a perspective view showing one embodiment of the solar cell module of the present invention. A solar cell module 20 shown in FIG. 12 has a plurality of solar cell elements 1 and 10 of the present invention in which a photoelectric conversion element 6 is formed on the outer surface of a long body 2 having a diameter of 1000 m or less. Formed. Although the solar cell element has been described with reference to the solar cell elements 1 and 10 shown in FIGS. 1 to 4, the solar cell element is not particularly limited as long as it is the solar cell element of the present invention. The solar cell element 11 shown in FIGS. 7 and 8 may be used.
図 12に示す太陽電池モジュール 20では、太陽電池要素 1、 10の外表面上に絶縁 膜および反射防止膜の機能を兼ねる保護膜 12が形成されている。また、図 12に示 す太陽電池モジュール 20では、複数本並列に配列された太陽電池要素 1、 10がな す平面上に、アルミニウム製の反射板 30が設けられている。ここで、反射板 30は、太 陽電池モジュールの入射光に対して裏面側に形成されるため、該反射板 30は、図 1 ないし図 4に示す太陽電池要素 1、 10の電極 7が形成されている側の面に形成され ることが好ましい。  In a solar cell module 20 shown in FIG. 12, a protective film 12 which also functions as an insulating film and an antireflection film is formed on the outer surfaces of the solar cell elements 1 and 10. In the solar cell module 20 shown in FIG. 12, an aluminum reflector 30 is provided on a plane formed by a plurality of solar cell elements 1 and 10 arranged in parallel. Here, since the reflection plate 30 is formed on the back side with respect to the incident light of the solar cell module, the reflection plate 30 is formed with the electrodes 7 of the solar cell elements 1 and 10 shown in FIGS. 1 to 4. It is preferably formed on the surface on the side where it is provided.
[0071] 図 12に示す太陽電池モジュール 20は、長尺体である太陽電池要素 1、 10を複数 本並列に配列することで二次元平面形状をした太陽電池モジュールをなして 、る。こ のため、従来の二次元ガラス基板を用いた太陽電池モジュールのような製造工程上 の制約を受けることなしにモジュールの大きさを選択することができる。つまり、使用 する太陽電池要素 1、 10の長さと、並列に配列させる太陽電池要素 1、 10の本数に よって太陽電池モジュールの大きさを自由に選択することができる。  A solar cell module 20 shown in FIG. 12 has a two-dimensional planar shape by arranging a plurality of long solar cell elements 1 and 10 in parallel. Therefore, the size of the module can be selected without being restricted by the manufacturing process as in the conventional solar cell module using the two-dimensional glass substrate. In other words, the size of the solar cell module can be freely selected according to the length of the solar cell elements 1 and 10 to be used and the number of the solar cell elements 1 and 10 arranged in parallel.
また、径が 1000 m以下と細径の長尺体である太陽電池要素 1、 10を複数本並 列に配列させて太陽電池モジュール 20を形成して 、るので、従来の二次元ガラス基 板を用いた太陽電池モジュールに比べて軽量ィ匕することができる。径が 0. 1mmの 石英ガラス長繊維の外表面上に、厚さ 6 mで光電変換素子を形成した長さ lmの 太陽電池要素 100本を並列に配列させて形成した平面投影面積 lm2の太陽電池モ ジュールの重量は約 700gであり、従来の二次元ガラス基板を用いた場合 (ガラス厚 さ 4mmとすると約 9kg)の 1Z10以下であった。これにより、太陽電池モジュールの 輸送費ゃ据付費や工事費を 20%から 30%低減することができる。また、同様の条件 で径が 0. 2mmの石英ガラス長繊維を用いた場合には、得られる太陽電池モジユー ルの重量は約 3kgである。 In addition, a plurality of solar cell elements 1 and 10 that are long bodies with a diameter of 1000 m or less are arranged side by side. Since the solar cell modules 20 are formed in a row, the weight can be reduced as compared with a conventional solar cell module using a two-dimensional glass substrate. A planar projection area of lm 2 formed by arranging 100 parallel lm solar cell elements with a thickness of 6 m and photoelectric conversion elements on the outer surface of a quartz glass filament with a diameter of 0.1 mm The weight of the solar cell module was about 700 g, which was less than 1Z10 when using a conventional two-dimensional glass substrate (about 9 kg when the glass thickness was 4 mm). As a result, it is possible to reduce solar cell module transportation costs, installation costs, and construction costs by 20% to 30%. Under the same conditions, when a 0.2 mm-diameter quartz glass fiber is used, the weight of the obtained solar cell module is about 3 kg.
[0072] 本発明の太陽電池モジュール 20では、太陽電池要素 1、 10を構成する長尺体 2に 断面形状が円形または楕円形である石英ガラス長繊維を使用し、図 12に示すように 太陽電池モジュール 20の裏面側に反射板 30を形成した場合、多重反射により変換 効率を高めることができる。図 13に、本発明の太陽電池モジュール 20における多重 反射効果を説明するための図である。長尺体 2に光透過性に優れた石英ガラス長繊 維を用いた太陽電池モジュール 20では、太陽電池要素 1表面に形成した保護膜 12 を透過した光は、光電変換素子 6 (半導体層)を抜けると、石英ガラス長繊維 (長尺体 ) 2の中を吸収することなく透過し、一部は反対の光電変換素子 6で吸収される。また 、光線の一部は石英ガラス長繊維 2と光電変換素子 6との界面で反射し、多重反射を しながら光電変換素子 6に吸収される。また再度光電変換素子 6に入射した光は吸 収されつつ透過し、光電変換素子 6と大気の界面で、一部は反射し一部は透過して ゆく。このように石英ガラス長繊維の内部で光が多重反射することで、太陽電池要素 1の周方向の複数の部位で発電 60が行われ、光電変換効率を高めることができる。 これにより変換効率を 12— 15%から 17— 20%に向上させることができる。  [0072] In the solar cell module 20 of the present invention, the elongated body 2 constituting the solar cell elements 1 and 10 uses a quartz glass long fiber having a circular or elliptical cross section, and as shown in FIG. When the reflection plate 30 is formed on the back surface of the battery module 20, the conversion efficiency can be increased by multiple reflection. FIG. 13 is a diagram for explaining the multiple reflection effect in the solar cell module 20 of the present invention. In the solar cell module 20 in which the elongated body 2 uses a quartz glass long fiber having excellent light transmittance, the light transmitted through the protective film 12 formed on the surface of the solar cell element 1 is converted into the photoelectric conversion element 6 (semiconductor layer). After passing through, the light passes through the quartz glass long fiber (long body) 2 without being absorbed, and a part is absorbed by the opposite photoelectric conversion element 6. In addition, a part of the light beam is reflected at the interface between the quartz glass long fiber 2 and the photoelectric conversion element 6, and is absorbed by the photoelectric conversion element 6 while undergoing multiple reflection. Light that has again entered the photoelectric conversion element 6 is transmitted while being absorbed, and is partially reflected and partially transmitted at the interface between the photoelectric conversion element 6 and the atmosphere. By the multiple reflection of light inside the quartz glass long fiber as described above, power generation 60 is performed at a plurality of portions in the circumferential direction of the solar cell element 1, and the photoelectric conversion efficiency can be increased. This can increase the conversion efficiency from 12-15% to 17-20%.
[0073] 本発明の太陽電池モジュールは、径が 1000 m以下の細径の長尺体を、複数本 並列に配列して形成した場合、長尺体同士を柔軟性をもたせて結合させることで、長 尺体の幅方向に可とう性を有するものにすることができる。さらに、長尺体を石英ガラ ス長繊維のように可とう性に優れた材料で形成すれば、長尺体の長手方向にも可とう 性に優れたものにすることができる。本発明の太陽電池モジュールは、可とう性に優 れている特徴を活力して、図 14に示すような簾状の太陽電池モジュール 20や、折り たたみ可能な太陽電池モジュール(図示していない)とすることができる。図 14に示 す太陽電池モジュール 20は、太陽電池要素を複数本並列に配列し、複数ある太陽 電池要素間を共通電極により電気的に接続し、該共通電極力 外部に電力取り出し 用の配線 40をしたものを可とう性を有する透明なシート (ポリエチレンテレフタレート( PET)やアクリル系榭脂、塩ィ匕ビュル系榭脂、ポリカーボネート系の榭脂等)ではさみ ラミネートし接着剤ゃ熱融着することで製造することができる。この場合は、携帯性や 可搬性を考慮して直流で使用する例を示した。このような簾状の太陽電池モジユー ル 20は、自動車内の日よけシートとして使用すれば、太陽電池の発電により小さなフ アンを空車中に回転させ、車内を冷却することができる。また、ペルチェ素子を接続 することによつても車内を空車中に冷却することができる。さらに建物内のブラインド や簾として使用すると扇風機を駆動したり、パソコンの駆動や充電、携帯電話の充電 が行える。 [0073] In the solar cell module of the present invention, when a plurality of long thin bodies having a diameter of 1000 m or less are arranged in parallel and formed, the long bodies are connected with flexibility. In addition, it is possible to have flexibility in the width direction of the elongated body. Further, if the long body is formed of a material having excellent flexibility such as quartz glass long fiber, it is possible to make the long body also excellent in the longitudinal direction. The solar cell module of the present invention has excellent flexibility. By virtue of the features described above, a solar cell module 20 in the form of a blind as shown in FIG. 14 or a foldable solar cell module (not shown) can be obtained. In a solar cell module 20 shown in FIG. 14, a plurality of solar cell elements are arranged in parallel, a plurality of solar cell elements are electrically connected to each other by a common electrode, and a wiring for power extraction is provided outside the common electrode. With a transparent sheet (polyethylene terephthalate (PET), acrylic resin, Shiridani butyl resin, polycarbonate resin, etc.) that is laminated, laminated, adhesively bonded and heat-sealed Can be manufactured. In this case, an example in which DC is used in consideration of portability and portability is shown. If such a blind solar cell module 20 is used as a sunshade sheet in an automobile, a small fan can be rotated in an empty vehicle by the generation of solar cells to cool the interior of the automobile. Also, by connecting a Peltier element, the inside of the vehicle can be cooled while the vehicle is empty. Furthermore, when used as blinds and screens in buildings, it can drive electric fans, drive and charge personal computers, and charge mobile phones.
本発明の太陽電池モジュールにおいて、複数本の太陽電池要素を並列に配列す る代わりに、直列に配列してもよぐまた並列および直列に配列してもよい。図 15は、 太陽電池モジュールの別の 1構成例の平面図であり、太陽電池モジュールは太陽電 池要素を並列および直列に配列して形成されている。図 15では、太陽電池モジユー ルの一部が拡大して示されている。図 15に示す太陽電池モジュール 20では、太陽 電池要素 1を 25本並列に配列したものを 2組直列に配列して構成されて 、る。ここで 、太陽電池要素 1の端部には、電力取り出し用の電極と、太陽電池要素 1同士を結 合するジョイントを兼ねる要素 21が取り付けられている。  In the solar cell module of the present invention, instead of arranging a plurality of solar cell elements in parallel, they may be arranged in series or in parallel and in series. FIG. 15 is a plan view of another configuration example of the solar cell module, and the solar cell module is formed by arranging solar cell elements in parallel and in series. In FIG. 15, a part of the solar cell module is shown in an enlarged manner. In a solar cell module 20 shown in FIG. 15, two sets of 25 solar cell elements 1 arranged in parallel are arranged in series. Here, at an end of the solar cell element 1, an element 21 serving as an electrode for extracting power and a joint for connecting the solar cell elements 1 to each other is attached.
図 12または図 15に示すように、複数本の太陽電池要素 1を並列および Zまたは直 列に配列することで所望の太陽電池モジュール 20を形成することができる。例えば、 径 0. lmm、長さ 50cmの太陽電池要素を 400本並列に配列して形成した太陽電池 モジュール (長さ 50cm、幅 4cm)は、下記性能を有する。  As shown in FIG. 12 or FIG. 15, a desired solar cell module 20 can be formed by arranging a plurality of solar cell elements 1 in parallel and Z or in series. For example, a solar cell module (length 50 cm, width 4 cm) formed by arranging 400 solar cell elements having a diameter of 0.1 mm and a length of 50 cm in parallel has the following performance.
2W (出力) =0. 5V (電圧) X 4A (電流)  2W (output) = 0.5V (voltage) X 4A (current)
ここで、電圧 0. 5Vとは、シリコン系の太陽電池での理想電圧である。出力は、光入 射面の面積が lm2の太陽電池の出力を 100Wと想定した場合の出力である。電流 は、起電力と取り出し電圧とから、上記式を用いて導かれる。 Here, the voltage 0.5 V is an ideal voltage in a silicon-based solar cell. Output is the output when the area of the light input reflecting surface is assumed the output of the solar cell lm 2 and 100W. Current Is derived from the electromotive force and the extraction voltage using the above equation.
同様に、径 0. lmm、長さ lmの太陽電池要素を 200本並列に配列して形成した太 陽電池モジュール (長さ lm、幅 2cm)は、下記性能を有する。  Similarly, a solar cell module (length lm, width 2 cm) formed by arranging 200 solar cell elements having a diameter of 0.1 mm and a length of lm in parallel has the following performance.
2W (出力) =0. 5V (電圧) X 4A (電流)  2W (output) = 0.5V (voltage) X 4A (current)
これらの太陽電池要素を、 50組直列に配列すれば電圧 2. 5V、電流 4Aの太陽電 池モジュールを得ることができる。  If 50 sets of these solar cell elements are arranged in series, a solar cell module with a voltage of 2.5 V and a current of 4 A can be obtained.
[0075] 本発明の太陽電池モジュールは、太陽電池モジュールに通常接続される他の構成 要素と接続して太陽電池システムとしても使用することができる。図 16は、本発明の 太陽電池モジュールを用いた太陽電池システムの 1構成例を示す図である。図 16に 示す太陽電池システムは、交流仕様のシステムであり、本発明の太陽電池モジユー ル 20に、充放電コントローラ 22、インバータ 24が接続されて、外部の機器 (負荷) 26 と接続する構成である。図 16に示すシステムは、昼間の電力を蓄えるためにバッテリ 一 28も接続されている。 [0075] The solar cell module of the present invention can be used as a solar cell system by connecting to other components normally connected to the solar cell module. FIG. 16 is a diagram showing one configuration example of a solar cell system using the solar cell module of the present invention. The solar cell system shown in FIG. 16 is an AC specification system. The solar cell module 20 of the present invention is connected to a charge / discharge controller 22, an inverter 24, and connected to an external device (load) 26. is there. The system shown in FIG. 16 also has a battery 128 connected to store daytime power.
[0076] 以下、本発明の太陽電池要素および該太陽電池要素を用いた太陽電池モジユー ルの製造方法の一例について述べる。但し、本発明の太陽電池要素および太陽電 池モジュールは、前述した構成を実現できる限りどのような方法で製造してもよぐ以 下の方法で製造されるものに限定されない。 Hereinafter, an example of the solar cell element of the present invention and a method of manufacturing a solar cell module using the solar cell element will be described. However, the solar cell element and the solar cell module of the present invention are not limited to those manufactured by any of the following methods as long as the above-described configuration can be realized.
図 17は、本発明の太陽電池要素の製造に使用する一次元半導体基板を製造する 方法を説明するための図であり、該方法に用いる製造装置の一例を示している。 図 17に示す製造装置は、光ファイバの線引装置と基本的な構造は同じであるが、 炉の上部を密閉型としている点、加熱炉内に Arや Heガス等でパブリングする力、直 接原料を加熱させてその蒸気圧を用いて原料ガス (シリコンの原料ガス SiCl、 SiHC  FIG. 17 is a diagram for explaining a method for manufacturing a one-dimensional semiconductor substrate used for manufacturing a solar cell element of the present invention, and shows an example of a manufacturing apparatus used for the method. The manufacturing apparatus shown in Fig. 17 has the same basic structure as the optical fiber drawing apparatus, except that the upper part of the furnace is of a closed type, the force for publishing the inside of the heating furnace with Ar or He gas, and the like. The raw material is heated and the vapor pressure is used to generate the raw material gas (silicon raw material gas SiCl, SiHC
4 Four
1等とドーピングガス PCIや BC1等)を供給し常圧または加圧状態で該石英ガラス長1 and doping gas PCI, BC1, etc.) and supply the quartz glass at normal pressure or under pressure.
3 3 3 3 3 3
繊維の外表面上にシリコン多結晶膜を成膜する点と、複数のヒータにより線引の長手 方向に温度分布をつけている点である。上部のヒータ 120は、駆動軸 100から導入さ れるプリフォーム(母材) 110を加熱溶融するためのもので、他のヒータ 130、 140、 1 50は原料ガスの加熱や、雰囲気の温度を調整するためのものである。ヒータ部 130、 140、 150とプリフォーム 110のある雰囲気は炉心管 160で区切られている。炉心管 160としてはカーボンが用いられる。低温部では石英や SiC、またはカーボンや SiC に SiCコーティング (熱 CVDで成膜されたもの)を施した炉心管や部品を使うことがで きる。また炉内の圧力を大気圧以上、必要によっては加圧雰囲気とするために不活 性ガス (Arや He)ガスが供給される。このようなガスは主として上部より排気される。 原料ガスや反応したガスは、炉の出口側より排気する。好ましくは炉内に雰囲気ガス と原料ガスを分離する遮蔽手段を設ける。これにより両ガスの混合を防止できる。炉 の出口 170にはシャッターがあり出口をしぼっている。好ましくは、大気が入らないよ うに図には示さな 、が不活性ガスを供給して、炉内に大気が入らな 、ようにする。 The point is that a silicon polycrystalline film is formed on the outer surface of the fiber, and a plurality of heaters provide a temperature distribution in the longitudinal direction of the drawing. The upper heater 120 heats and melts the preform (base material) 110 introduced from the drive shaft 100, and the other heaters 130, 140, and 150 heat the source gas and adjust the temperature of the atmosphere. It is for doing. The atmosphere containing the heater sections 130, 140, 150 and the preform 110 is separated by a furnace tube 160. Core tube As 160, carbon is used. In the low-temperature part, furnace tubes and components made of quartz or SiC, or carbon or SiC coated with SiC (formed by thermal CVD) can be used. In addition, an inert gas (Ar or He) gas is supplied to increase the pressure in the furnace above the atmospheric pressure and, if necessary, to create a pressurized atmosphere. Such gas is mainly exhausted from the upper part. Source gas and reacted gas are exhausted from the outlet side of the furnace. Preferably, a shielding means for separating the atmosphere gas and the source gas is provided in the furnace. Thereby, mixing of both gases can be prevented. There is a shutter at the exit 170 of the furnace, which narrows the exit. Preferably, an inert gas, not shown in the figure, is supplied to prevent air from entering the furnace so that air does not enter the furnace.
[0077] 線引炉の第 2のヒータ 130 (上より 2番目)が反応用のヒータで、石英ガラス長繊維の 温度がシリコンの融点(1412°C)よりも高い温度(1430°Cから 1600°C)となる位置で 原料ガスを供給するように調節されて ヽる。石英ガラス長繊維の表面に堆積したシリ コンは、該石英ガラス長繊維の温度がシリコンの融点以上であるため液状となって ヽ るものと思われる。このように、図示した方法の場合、常圧又は加圧状態で熱 CVDで 多結晶シリコン膜を成膜する点が通常の太陽電池の製造方法と異なっている。従来 技術では、 PCVDまたはスパッタ法を用いて真空中で二次元ガラス基板上に多結晶 シリコン膜を成膜している。 [0077] The second heater 130 (second from above) of the drawing furnace is a reaction heater, and the temperature of the quartz glass filament is higher than the melting point of silicon (1412 ° C) (from 1430 ° C to 1600 ° C). (° C) so that the source gas is supplied. It is considered that the silicon deposited on the surface of the quartz glass long fiber becomes liquid because the temperature of the quartz glass long fiber is equal to or higher than the melting point of silicon. As described above, the method shown in the drawing is different from a normal method for manufacturing a solar cell in that a polycrystalline silicon film is formed by thermal CVD under normal pressure or pressure. In the prior art, a polycrystalline silicon film is formed on a two-dimensional glass substrate in a vacuum using a PCVD or sputtering method.
なお、成膜の厚さは、炉心管内の原料濃度、温度、線引炉の第 1ヒータ力 の距離 と圧力で制御することができる。下段に二つのヒータがある炉 140、 150が、粒子成 長用の炉で、適正な温度勾配で冷却することで溶融しているシリコンを冷却させ固め る。この時の温度勾配を線速や多結晶シリコンの成膜厚さに対して制御することで、 線速の変動 (設定線速の 10%から 20%の変動は通常起こりえる)や成膜厚さの変動 に対処することができる。ここで線引速度を上げるに従 、温度分布を長くする。  The thickness of the film can be controlled by the concentration of the raw material in the furnace tube, the temperature, the distance and the pressure of the first heater power of the drawing furnace. Furnace 140, 150 with two heaters in the lower stage is a furnace for particle growth. Cooling with an appropriate temperature gradient cools and solidifies the molten silicon. By controlling the temperature gradient at this time with respect to the linear velocity and the film thickness of polycrystalline silicon, linear velocity fluctuation (a fluctuation of 10% to 20% of the set linear velocity can usually occur) and film thickness To deal with fluctuations in height. Here, as the drawing speed is increased, the temperature distribution is lengthened.
粒子のサイズは、成膜時の核発生条件と結晶成長条件を調整する事で変えられる 。成膜初期のヒータ温度を、核成長時 300°Cから 700°Cとする事で、核の発生を抑制 し、結晶成長時 800°Cから 1, 600°Cとする事で成長速度を向上できる。このように線 引方向の長手方向に温度分布を形成することで、連続的に核発生と結晶成長の制 御が行える。  The particle size can be changed by adjusting nucleation conditions and crystal growth conditions during film formation. The generation of nuclei is suppressed by setting the heater temperature in the initial stage of film formation from 300 ° C to 700 ° C during nucleus growth, and the growth rate is increased by setting the heater temperature from 800 ° C to 1,600 ° C during crystal growth. it can. By forming the temperature distribution in the longitudinal direction in the drawing direction, nucleation and crystal growth can be controlled continuously.
[0078] 線引炉 160より出た一次元半導体基板を冷却装置 180で冷却し (Heガスを用 V、て 冷却する)、レジスト塗布装置 190で一次元半導体基板の表面を榭脂ゃデバイス化 の工程で使用するレジスト等を被覆し、加熱炉 200でレジストを加熱硬化させる。これ は成膜した多結晶シリコン膜を保護するためである。レジスト等で被覆した後、一次 元半導体基板をキヤプスタン 210で引き出して、ダブルスプーラ (連続的に満卷きボ ビンより空ボビンに速度を落とすことなしに巻き取れる卷取機) 220で巻き取る。一つ のボビンの巻き量は 50kmから 200kmとした、 1000km母材では、 5本から 20本の ボビンができることになる。 [0078] The one-dimensional semiconductor substrate coming out of the drawing furnace 160 is cooled by the cooling device 180 (using He gas for V, Then, the surface of the one-dimensional semiconductor substrate is coated with a resist or the like to be used in a resin / device process using a resist coating device 190, and the resist is heated and cured in a heating furnace 200. This is to protect the formed polycrystalline silicon film. After coating with a resist or the like, the one-dimensional semiconductor substrate is pulled out by a capstan 210 and wound up by a double spooler (a winder capable of winding continuously from a full bobbin to an empty bobbin without reducing the speed) 220. The winding amount of one bobbin is set at 50 km to 200 km. With a 1000 km base material, 5 to 20 bobbins will be formed.
[0079] 使用する基材の形状により、一次元半導体基板の断面形状はほぼ決まる。これは プリフォームをあら力じめ所望の形状に加工しておくことで形状をほぼ規定できる。図 18 (a) , (b)は、一次元半導体基板の断面形状の一例を示した図である。(a)は断面 形状が矩形であり、(b)は、断面形状が円形である。どちらも、石英ガラス長繊維 2の 外表面が多結晶シリコン膜 3が形成されている。 (a)に示す断面形状が矩形をした一 次元半導体基板では、角部が多少丸まって R部が大きくなるがほぼ加工した形状を 保つように線引きすることができる。ここで、線引き炉 160内の温度を 2000°C以下で 線引きすると形状の変化を少なくすることができる。温度を下げるには線引用のヒータ を長くすることや、ヒータを複数用いること、あるいは反応用のヒータの温度を高めに 制御することで線引き炉 160内の温度 1800°C程度まで低温ィ匕することができる。 [0079] The cross-sectional shape of the one-dimensional semiconductor substrate is substantially determined by the shape of the base material used. In this case, the shape can be substantially defined by preforming the preform into a desired shape. FIGS. 18A and 18B are diagrams showing an example of a cross-sectional shape of a one-dimensional semiconductor substrate. (A) has a rectangular cross-sectional shape, and (b) has a circular cross-sectional shape. In both cases, the polycrystalline silicon film 3 is formed on the outer surface of the long quartz glass fiber 2. In the one-dimensional semiconductor substrate having a rectangular cross-sectional shape shown in (a), the corners are slightly rounded and the R portion becomes large, but it is possible to draw a line so as to keep the almost processed shape. Here, if the temperature in the drawing furnace 160 is drawn at 2000 ° C. or less, the change in shape can be reduced. To lower the temperature, extend the length of the heater for drawing, use multiple heaters, or control the temperature of the reaction heater to a higher temperature to lower the temperature in the drawing furnace 160 to about 1800 ° C. be able to.
[0080] 形状制御には、通常の光ファイバの線引技術を活用できる。即ち、所望の形状に 加工された母材を線引き炉 160で溶融し紡糸して、線引き炉の出口部分で一次元半 導体基板の形状を外径測定器でまたは形状測定器で測定し、形状が一定となる様 に引き取り速度あるいは母材の送り速度又はその両方を制御しつつ線引き炉 160か ら引き出し、卷取機 220で卷取ることで、 (b)に示す断面形状が円形をした一次元半 導体基板の場合、外径の変動を士 1 μ m以下とすることが可能となって 、る。  For shape control, an ordinary optical fiber drawing technique can be used. That is, the base material processed into a desired shape is melted and spun in a drawing furnace 160, and the shape of the one-dimensional semiconductor substrate is measured at an exit portion of the drawing furnace with an outer diameter measuring device or a shape measuring device. Is drawn out of the drawing furnace 160 while controlling the drawing speed and / or the feeding speed of the base material so that the constant is constant, and the film is wound up by the winder 220. In the case of the original semiconductor substrate, the variation of the outer diameter can be reduced to 1 μm or less.
[0081] 光ファイバの線引技術を使うことで、石英ガラス長繊維を高速で走行させながら高 温プロセスを実施することができる。そのため、真空法を用いて二次元ガラス基板に 成膜する場合に比べて、 10倍から 100倍以上の成膜レートで多結晶シリコン膜を成 膜できると共に、ハイスループット(20mZs以上の高速)で、かつ低コストで一次元半 導体基板を製造することができる。具体的には、平面投影面積 lm2の太陽電池に使 用する基板の重量は、 2次元ガラス基板の場合約 9kgであるが、本発明に使用する 一次元半導体基板の場合、約 700g (径が 0. 1mmの石英ガラス長繊維を使用した 場合)であり基材の使用量を 1Z10以下にすることができる。 [0081] By using the optical fiber drawing technique, a high-temperature process can be performed while running the quartz glass long fiber at high speed. As a result, a polycrystalline silicon film can be formed at a deposition rate of 10 to 100 times or more as compared with the case of forming a film on a two-dimensional glass substrate using a vacuum method, and at a high throughput (high speed of 20 mZs or more). A one-dimensional semiconductor substrate can be manufactured at low cost. More specifically, used in the solar cell of the planar projected area lm 2 The weight of the substrate used is about 9 kg for a two-dimensional glass substrate, but is about 700 g for a one-dimensional semiconductor substrate used in the present invention (when a quartz glass filament having a diameter of 0.1 mm is used). The use amount of the base material can be reduced to 1Z10 or less.
[0082] また、建屋は高い必要があるが、製造装置は半導体装置や液晶用などのガラス基 板の研削 ·研磨製造装置と比較して非常に安く設備投資が抑制できる。また線引きさ れた石英ガラス長繊維は、表面が清浄でかつ粗さが数 nm力 数十 nmと小さ 、ので 、成膜前の洗浄や研磨が不要である。このことも、製造原価を低減できる要因である 。この方法では、形成する多結晶シリコン膜が成膜されるまでに固体物に触れること なく成膜が行え、またレジストで被覆した後にキヤブスタンで引き取られるので、成膜 された多結晶シリコン膜を傷つけることがなく高速で製造することができる。  Further, although the building needs to be expensive, the manufacturing equipment can be very cheap and the capital investment can be suppressed as compared with the manufacturing equipment for grinding and polishing a glass substrate for semiconductor devices and liquid crystals. In addition, the drawn quartz glass long fiber has a clean surface and a small roughness of several tens of nanometers, so that cleaning or polishing before film formation is unnecessary. This is another factor that can reduce manufacturing costs. According to this method, the polycrystalline silicon film to be formed can be formed without touching a solid object until the film is formed. It can be manufactured at high speed without any problems.
[0083] 図 17では、石英ガラス長繊維の線引きと多結晶シリコン膜の成膜を線引き炉 160 内で実施している力 図 19に示すように線引き炉 160と成膜炉 161とが別々の炉で あっても良 ヽ。この場合線引き炉 160でプリフォーム 110から線引きされた石英ガラス 長繊維に対して、成膜炉 161で多結晶シリコン膜の成膜が行われる。但し、大気が成 膜炉 161内に入ると不純物となる、また反応して粒子ができ、それが膜に堆積し欠陥 となるので、線引き炉 160と成膜炉 161の間は気密とすることが必要である。このため 、図 19では線引炉 160と成膜炉 161とが連結筒 162で気密に連結されている。ある いは成膜炉 161内を不活性ガス等の雰囲気とし、大気の進入してこない構造とする 必要がある。このためにも成膜炉 161内の圧力を大気圧よりも高めにすることが好ま しい。  In FIG. 17, the force for drawing the quartz glass long fiber and forming the polycrystalline silicon film in the drawing furnace 160 are different from each other as shown in FIG. 19 in that the drawing furnace 160 and the film forming furnace 161 are separated. A furnace is fine. In this case, a polycrystalline silicon film is formed in the film forming furnace 161 on the quartz glass long fiber drawn from the preform 110 in the drawing furnace 160. However, when the air enters the film forming furnace 161, it becomes an impurity and reacts to form particles, which deposit on the film and cause defects. Therefore, the space between the drawing furnace 160 and the film forming furnace 161 must be airtight. is necessary. For this reason, in FIG. 19, the drawing furnace 160 and the film forming furnace 161 are air-tightly connected by the connecting cylinder 162. Alternatively, the inside of the film forming furnace 161 needs to be made to have an atmosphere of an inert gas or the like so that the atmosphere does not enter. For this reason, it is preferable that the pressure in the film forming furnace 161 be higher than the atmospheric pressure.
[0084] 次に本発明の太陽電池要素の製造に用いる一次元半導体基板の別の態様の製 造方法を説明する。この一次元半導体基板では、石英ガラス長繊維の外表面上に、 P型多結晶シリコン層(P-pSi層)と、 N+型多結晶シリコン層(N+-pSi層)とが積層し て成膜されている。  Next, another embodiment of a method for manufacturing a one-dimensional semiconductor substrate used for manufacturing a solar cell element of the present invention will be described. On this one-dimensional semiconductor substrate, a P-type polycrystalline silicon layer (P-pSi layer) and an N + -type polycrystalline silicon layer (N + -pSi layer) are stacked and formed on the outer surface of long quartz glass fibers. Have been.
図 20は、この製造方法を説明するための図であり、この製造方法に使用する製造 装置の一例を示している。図 20に示す製造方法は、図 17に示す製造方法とほぼ同 様である力 まず P型多結晶シリコンを線引きされた石英ガラス長繊維の外表面上に 成膜した後、さらに N+型多結晶シリコンを成膜する点が異なっている。 P型多結晶シ リコンの場合は、シリコン原料(SiClや SiCl H等)と P型のドーパントとなるボロン(B) FIG. 20 is a diagram for explaining this manufacturing method, and shows an example of a manufacturing apparatus used in this manufacturing method. The manufacturing method shown in Fig. 20 has almost the same force as the manufacturing method shown in Fig. 17. First, a P-type polycrystalline silicon film is formed on the outer surface of a drawn quartz glass filament, and then an N + -type polycrystalline silicon film is formed. The difference is that silicon is deposited. P-type polycrystalline silicon In the case of recon, silicon material (SiCl, SiCl H, etc.) and boron (B), which is a P-type dopant
4 3  4 3
やアルミ (A1)原料を供給し成膜を行う。 N型の多結晶シリコンの場合は、シリコン原 料(SiClや SiCl H等)と N型のドーパントとなるリン(P)やビスマス(Bi)原料を供給し And aluminum (A1) material are supplied to form a film. In the case of N-type polycrystalline silicon, a silicon material (SiCl, SiCl H, etc.) and a phosphorus (P) or bismuth (Bi) material serving as an N-type dopant are supplied.
4 3 4 3
成膜を行う。成膜する半導体のキャリア濃度は、供給するドーパントの濃度により制御 が可能であり、 P型、 P+型、 N型、 N+型の多結晶シリコン層を形成することができる。  A film is formed. The carrier concentration of the semiconductor to be formed can be controlled by the concentration of the supplied dopant, and a P-type, P + -type, N-type, and N + -type polycrystalline silicon layer can be formed.
[0085] 図 21 (a)、 (b)は、図 20に示す方法で製造される一次元半導体基板の断面形状を 示す図である。(a)の基板は、断面形状が矩形であり、(b)の基板は断面形状が円形 である。どちらも、石英ガラス長繊維 2の外表面上に P型多結晶シリコン膜 3が形成さ れており、その上に N+型多結晶シリコン膜 5が形成されている。  FIGS. 21 (a) and 21 (b) are views showing a cross-sectional shape of a one-dimensional semiconductor substrate manufactured by the method shown in FIG. The cross section of the substrate (a) is rectangular, and the cross section of the substrate (b) is circular. In both cases, a P-type polycrystalline silicon film 3 is formed on the outer surface of a quartz glass long fiber 2, and an N + type polycrystalline silicon film 5 is formed thereon.
[0086] 図 22は、本発明の太陽電池要素の製造に使用する一次元半導体基板の別の製 造方法を説明するための図であり、該製造方法に使用する製造装置の一例を示して いる。図 22に示す方法では、線引炉 160では、原料ガスを流さないで石英ガラス長 繊維を線引きし冷却装置 180で冷却した後、被覆装置 230で水やアルコール等とけ ん濁させてスラリー状にしたシリコン粒子で石英ガラス長繊維の外表面を被覆し、カロ 熱装置 240で加熱焼成し、または再溶融させて多結晶シリコン膜を成膜して、その後 レジスト等を被覆して巻き取る。この方法はシリコン以外の半導体膜を形成する場合 にも適用することができる。  FIG. 22 is a diagram for explaining another method for manufacturing a one-dimensional semiconductor substrate used for manufacturing the solar cell element of the present invention, and shows an example of a manufacturing apparatus used for the manufacturing method. I have. According to the method shown in FIG. 22, in the drawing furnace 160, the quartz glass filaments are drawn without flowing the raw material gas, cooled in the cooling device 180, and then suspended in water or alcohol in the coating device 230 to form a slurry. The outer surface of the quartz glass long fiber is coated with the silicon particles thus obtained, and is heated and baked by a calo heating device 240 or re-melted to form a polycrystalline silicon film, and then coated with a resist or the like and wound up. This method can be applied to the case of forming a semiconductor film other than silicon.
さらに、半導体を溶融して直接石英ガラス長繊維の外表面を被覆し半導体膜を成 膜することも可會である。  Furthermore, it is also possible to form a semiconductor film by melting the semiconductor and directly covering the outer surface of the long quartz glass fiber.
[0087] また、 Geをドープした多孔質母材を、カーボン、 Si、 COや SiC等の還元雰囲気で 処理しプリフォームの表面に非晶質シリコン又は多結晶シリコンを形成した母材、ある Vヽは石英母材の上にシリコンを堆積させた母材を用いて、図 22に示す方法で外表 面上にシリコン層が形成された母材にシリコンや半導体膜を成膜すると石英ガラスと の密着性を向上させることができ、また膜厚 5 mの多結晶シリコン膜を容易に成膜 することができる。これにより 30mZs以上の線引き速度での製造が可能となる。この 場合も、成膜した半導体粒子の粒子成長を行うと、変換効率の高い太陽電池要素の 一次元半導体基板とすることができる。 [0087] Further, a base material in which amorphous silicon or polycrystalline silicon is formed on the surface of a preform by treating a Ge-doped porous base material in a reducing atmosphere of carbon, Si, CO, SiC, or the like.ヽ shows that when a silicon or semiconductor film is formed on a base material having a silicon layer formed on the outer surface by the method shown in FIG. 22 using a base material obtained by depositing silicon on a quartz base material, Adhesion can be improved, and a polycrystalline silicon film having a thickness of 5 m can be easily formed. This enables production at a drawing speed of 30 mZs or more. Also in this case, if the film-formed semiconductor particles are grown, a one-dimensional semiconductor substrate of a solar cell element with high conversion efficiency can be obtained.
[0088] 次に、上記手順で製造された一次元半導体基板を用いて本発明の太陽電池要素 および該太陽電池要素を用いた太陽電池モジュールを製造する手順にっ 、て説明 する。 Next, using the one-dimensional semiconductor substrate manufactured by the above procedure, the solar cell element of the present invention A procedure for manufacturing a solar cell module using the solar cell element will be described.
上記手順で製造された一次元半導体基板を用いて、本発明の太陽電池要素を製 造する工程は、保護膜除去工程、半導体膜成膜、ドーピング工程、素子分離工程、 電極形成工程、切断工程よりなる。図 23にこれらの工程の流れを示す。工程設計に よっては各工程ごとにボビンでサプライし、巻き取りする工程を複数回繰り返して実施 してもよい。図 24に、半導体成膜工程力も素子分離工程までを一度に行った後、一 度ボビンに巻き取り電極形成は後で行う場合の工程の流れを示す。この場合好ましく は、処理を行った膜を ヽためな!/、ためにレジスト等を被覆して力ゝら卷き取る。  The steps of manufacturing the solar cell element of the present invention using the one-dimensional semiconductor substrate manufactured by the above procedure include a protective film removing step, a semiconductor film forming step, a doping step, an element separating step, an electrode forming step, and a cutting step. Consisting of Figure 23 shows the flow of these steps. Depending on the process design, the process of supplying and winding with a bobbin for each process may be repeated several times. FIG. 24 shows a process flow in the case where the semiconductor film forming process is performed up to the element isolation process at one time and then wound once on a bobbin to form an electrode later. In this case, it is preferable that the treated film is not damaged!
[0089] なお、生産性を考慮すると、上記の工程は、細径の長尺体である本発明の太陽電 池要素を数本力も数 10本の同時に処理することが好ましい。このため、一次元半導 体基板を集積化し、セグメント化またはアレー化して力も処理することが好ましい。図 25は、セグメント化した一次半導体基板の一例を示す図である。図 25では、円柱状 の治具 300の周囲に複数本の太陽電池要素 1を固定してローラー状の基板として ヽ る。一次元半導体基板を集積化して、セグメント化またはアレー化して、ローラー状の 基板や平面状の基板にすることでコンパクトィ匕をはかり、太陽電池要素の製造工程 に使用する装置のコストを下げると共に、スループットを数十倍力も数百倍あるいは 数千倍に向上することができる。また、一次元半導体基板に過度のテンションをかけ なくてすみ、また非接触でプロセスを進めることが可能である。 In consideration of productivity, it is preferable that the above process simultaneously processes several tens of the solar cell elements of the present invention, which are long bodies having a small diameter, with a power of several tens. For this reason, it is preferable that the one-dimensional semiconductor substrate be integrated, segmented or arrayed, and also handle the force. FIG. 25 is a diagram illustrating an example of a segmented primary semiconductor substrate. In FIG. 25, a plurality of solar cell elements 1 are fixed around a cylindrical jig 300 to form a roller-shaped substrate. A one-dimensional semiconductor substrate is integrated, segmented or arrayed, and formed into a roller-shaped substrate or a planar substrate to reduce the size of the device used in the manufacturing process of the solar cell element while reducing the cost. In addition, the throughput can be increased by several tens or even hundreds or thousands of times. Further, it is not necessary to apply an excessive tension to the one-dimensional semiconductor substrate, and the process can be performed in a non-contact manner.
また、ローラー基板や平面基板の配列と、最終的な太陽電池モジュールにおける 太陽電池要素の配置をあわせておくことで、太陽電池モジュールの組立時間を低減 できる。  In addition, by aligning the arrangement of the roller substrates and the flat substrates with the arrangement of the solar cell elements in the final solar cell module, the assembly time of the solar cell module can be reduced.
[0090] なお、上記した太陽電池要素の製造工程は、差動排気を行!、真空プロセスで処理 してもかまわな 、が、生産性とメンテナンス性を考慮して大気圧プロセスを用いること が好ましい。例えば、大気圧プラズマによる被覆除去、半導体膜の成膜、エッチング や電極形成、ウエットエッチングによる保護膜除去、インクジェットゃデイスペンサある いは印刷技術による配線、レーザによるエッチング等のプロセスが考えられる。また、 セグメント化せずに一次元半導体基板のままで太陽電池要素を製造する場合、生産 性を考慮して大気圧プラズマや高温の熱 CVDを用いて成膜速度をあげて製造する ことが好ましい。 [0090] In the manufacturing process of the solar cell element described above, differential evacuation may be performed and a vacuum process may be performed. However, an atmospheric pressure process may be used in consideration of productivity and maintainability. preferable. For example, processes such as coating removal by atmospheric pressure plasma, formation of a semiconductor film, etching and electrode formation, removal of a protective film by wet etching, wiring by an inkjet dispenser or a printing technique, and etching by a laser can be considered. Also, if solar cell elements are manufactured without segmentation and with one-dimensional semiconductor substrates, It is preferable to increase the film formation rate by using atmospheric pressure plasma or high temperature thermal CVD in consideration of the properties.
また、一次元半導体基板製造工程で、素子分離や電極形成を行うと更に生産性を 向上できる。  Further, if element isolation or electrode formation is performed in the one-dimensional semiconductor substrate manufacturing process, the productivity can be further improved.
産業上の利用可能性 Industrial applicability
長尺体の外表面上に光電変換素子をなす PN型または PIN型の半導体素子を形成 したことで、太陽電池要素及び太陽電池モジュールに容易に適用できる。 By forming a PN-type or PIN-type semiconductor element as a photoelectric conversion element on the outer surface of the elongated body, it can be easily applied to a solar cell element and a solar cell module.

Claims

請求の範囲 The scope of the claims
[1] 径が 1000 μ m以下の長尺体の外表面上に、光電変換素子をなす PN型または PI [1] PN type or PI on the outer surface of a long body with a diameter of 1000 μm or less
N型の半導体素子が形成された太陽電池要素。 A solar cell element on which an N-type semiconductor element is formed.
[2] 前記 PN型または PIN型の半導体は、多結晶シリコン半導体であることを特徴とする 請求項 1に記載の太陽電池要素。 [2] The solar cell element according to claim 1, wherein the PN type or PIN type semiconductor is a polycrystalline silicon semiconductor.
[3] 前記多結晶シリコン半導体は、前記長尺体の外表面上に形成され、かつ互いに電 気的に接続される、 P型多結晶シリコン層(P-pSi層)、 P+型多結晶シリコン層(P+- pSifi)および N+型多結晶シリコン層(N+-pSi層)よりなる請求項 2に記載の太陽電 池要素。 [3] The polycrystalline silicon semiconductor is formed on an outer surface of the elongated body and is electrically connected to each other, a P-type polycrystalline silicon layer (P-pSi layer), a P + type polycrystalline silicon. 3. The solar cell element according to claim 2, comprising a layer (P + -pSifi) and an N + type polycrystalline silicon layer (N + -pSi layer).
[4] 前記 P型多結晶シリコン層は、前記長尺体の外表面上に形成されており、前記 P+ 型多結晶シリコン層および前記 N+型多結晶シリコン層は、それぞれ該 P型多結晶シ リコン層上に形成されている請求項 3に記載の太陽電池要素。  [4] The P-type polycrystalline silicon layer is formed on an outer surface of the elongated body, and the P + -type polycrystalline silicon layer and the N + -type polycrystalline silicon layer are respectively formed by the P-type polycrystalline silicon layer. 4. The solar cell element according to claim 3, which is formed on a recon layer.
[5] 前記 P+型多結晶シリコン層、前記 P型多結晶シリコン層および前記 N+型多結晶シ リコン層は、前記長尺体の外表面上に該長尺体の外表面側からこの順に、またはこ の反対の順に、積層される請求項 3に記載の太陽電池要素。 [5] The P + -type polycrystalline silicon layer, the P-type polycrystalline silicon layer, and the N + -type polycrystalline silicon layer are formed on the outer surface of the elongated body in this order from the outer surface side of the elongated body. 4. The solar cell element according to claim 3, wherein the solar cell elements are stacked in the reverse order.
[6] 前記多結晶シリコン半導体は、 P型多結晶シリコン層と、前記 P型多結晶シリコン層の 円周方向の一部分をドーピングにより N型とした N型多結晶シリコン層とからなること を特徴とする請求項 2に記載の太陽電池要素。 [6] The polycrystalline silicon semiconductor includes a P-type polycrystalline silicon layer and an N-type polycrystalline silicon layer in which a part of the P-type polycrystalline silicon layer in the circumferential direction is made N-type by doping. 3. The solar cell element according to claim 2, wherein
[7] 前記光電変換素子は、前記長尺体の長手方向に沿って複数形成されており、複数 ある光電変換素子間は、配線により電気的に接続されて 、る請求項 1な 、し 6の 、ず れかに記載の太陽電池要素。 [7] The plurality of photoelectric conversion elements are formed along the longitudinal direction of the elongated body, and the plurality of photoelectric conversion elements are electrically connected by wiring. The solar cell element according to any one of the above.
[8] 複数ある光電変換素子間には、二酸ィ匕ケィ素または窒化ケィ素のうち、少なくとも 一方を含む絶縁膜が形成されている請求項 7に記載の太陽電池要素。 [8] The solar cell element according to claim 7, wherein an insulating film containing at least one of silicon dioxide and silicon nitride is formed between the plurality of photoelectric conversion elements.
[9] さらに、太陽電池要素の外表面上には、二酸ィ匕ケィ素または窒化ケィ素のうち、少 なくとも一方を含む保護膜が形成されている請求項 1ないし 8のいずれかに記載の太 [9] The protective film according to any one of claims 1 to 8, wherein a protective film containing at least one of silicon dioxide and silicon nitride is formed on the outer surface of the solar cell element. Thick of description
[10] 前記長尺体は、石英ガラスの長繊維からなる請求項 1な!、し 9の 、ずれかに記載の 太陽電池要素。 [10] The solar cell element according to any one of claims 1 to 9, wherein the elongated body is made of long fibers of quartz glass.
[11] 請求項 1ないし 10のいずれかに記載の太陽電池要素を少なくとも 2本以上並列お よび Zまたは直列に配列させてなる太陽電池モジュール。 [11] A solar cell module comprising at least two or more solar cell elements according to any one of claims 1 to 10 arranged in parallel and Z or in series.
[12] さらに、異なる太陽電池要素間を電気的に接続する共通配線を有する請求項 11に 記載の太陽電池モジュール。  12. The solar cell module according to claim 11, further comprising a common wiring for electrically connecting different solar cell elements.
[13] さらに、少なくとも 2本以上並列および Zまたは直列に配列された太陽電池要素が なす平面上に、反射板が設けられている請求項 11または 12に記載の太陽電池モジ ユーノレ o [13] The solar cell module according to claim 11 or 12, wherein a reflector is provided on a plane formed by at least two or more solar cells arranged in parallel and Z or in series.
[14] 線状の一次元基材の表面に半導体薄膜を成膜した一次元半導体基板を用いて太 陽電池となる素子 (以下では太陽電池素子と!/ヽぅ)を形成することを特徴とする一次 元太陽電池。  [14] An element that becomes a solar cell (hereinafter referred to as a solar cell element! / ヽ ぅ) is formed using a one-dimensional semiconductor substrate in which a semiconductor thin film is formed on the surface of a linear one-dimensional base material. One-dimensional solar cell.
[15] 前記一次元基材の長手方向に前記太陽電池素子が複数形成されていることを特徴 とする請求項 14に記載の一次元太陽電池。  15. The one-dimensional solar cell according to claim 14, wherein a plurality of the solar cell elements are formed in a longitudinal direction of the one-dimensional substrate.
[16] 複数の前記太陽電池素子が直列または並列に接続されていることを特徴とする請求 項 14または請求項 15に記載の一次元太陽電池。 [16] The one-dimensional solar cell according to claim 14 or 15, wherein a plurality of the solar cell elements are connected in series or in parallel.
[17] 前記一次元基材として石英ガラス、多成分ガラス、サフアイャ、アルミナ、カーボン、 炭化珪素等のセラミックス等高融点材料を用いることを特徴とする請求項 14から請求 項 16のいずれか 1項に記載の一次元太陽電池。 17. The material according to claim 14, wherein a high melting point material such as ceramics such as quartz glass, multi-component glass, sapphire, alumina, carbon, and silicon carbide is used as the one-dimensional base material. A one-dimensional solar cell according to item 1.
[18] 前記一次元基板に成膜してある一つの前記薄膜が、ドープしていない前記半導体 薄膜、または P型又は N型にドーピングされた前記半導体薄膜のどちらかであることを 特徴とする請求項 14から請求項 17のいずれか 1項に記載の一次元太陽電池。 [18] The one thin film formed on the one-dimensional substrate is either the undoped semiconductor thin film or the P-type or N-type doped semiconductor thin film. A one-dimensional solar cell according to any one of claims 14 to 17.
[19] 前記半導体薄膜の膜厚が 0.5 μ m以上 20 μ m以下であることを特徴とする請求項 14 力 請求項 18のいずれか 1項に記載の一次元太陽電池。 19. The one-dimensional solar cell according to claim 18, wherein the semiconductor thin film has a thickness of 0.5 μm or more and 20 μm or less.
[20] 前記太陽電池素子の構造が、前記薄膜の厚さ方向に、 PN接合または PIN接合また は NP接合または NIP接合を一つ以上形成することを特徴とする請求項 14から請求 項 19のいずれか 1項に記載の一次元太陽電池。 20. The structure of claim 14, wherein the structure of the solar cell element forms at least one PN junction, PIN junction, NP junction, or NIP junction in the thickness direction of the thin film. 12. The one-dimensional solar cell according to claim 1.
[21] 前記一次元基材の長手方向に PN接合又は PIN接合を一つ以上形成することを特徴 とする請求項 14から請求項 20のいずれか 1項に記載の一次元太陽電池。 21. The one-dimensional solar cell according to claim 14, wherein one or more PN junctions or PIN junctions are formed in a longitudinal direction of the one-dimensional base material.
[22] 前記太陽電池素子を形成し前記各太陽電池素子を配線し接続した後に、二酸化珪 素 (Si02)又は窒化珪素 (SiN)ある 、はその両方の前記薄膜を形成することを特徴と する請求項 14から請求項 21のいずれか 1項に記載の一次元太陽電池。 [22] After forming the solar cell elements and wiring and connecting the respective solar cell elements, silicon dioxide 22. The one-dimensional solar cell according to claim 14, wherein silicon (Si02) or silicon nitride (SiN) forms both of the thin films.
[23] 前記太陽電池素子の接続する配線が、周方向の一部に形成してありし力も長手方向 にほぼ一直線状に並んで形成していることを特徴とする請求項 14力も請求項 22の いずれか 1項に記載の一次元太陽電池。  [23] The power to be connected to the solar cell element is formed in a part of the circumferential direction, and the force is formed substantially in a straight line in the longitudinal direction. The one-dimensional solar cell according to any one of the above.
[24] 前記一次元基材の断面形状が円形、多角形、矩形、円弧と矩形の合成した形状の いずれかを持つ前記一次元基材を用いることを特徴とする請求項 14から請求項 23 の!、ずれか 1項に記載の一次元太陽電池。  24. The one-dimensional base material according to claim 14, wherein the one-dimensional base material has any one of a circular, polygonal, rectangular, and a composite shape of an arc and a rectangle. of! The one-dimensional solar cell according to item 1.
[25] 前記 1次元基板が導電性のファイバ(ワイヤー)であることを特徴とする請求項 14から 請求項 24の 、ずれか 1項に記載の一次元太陽電池。  [25] The one-dimensional solar cell according to any one of claims 14 to 24, wherein the one-dimensional substrate is a conductive fiber (wire).
[26] 前記ファイバ(ワイヤー)の材質がアルミ、銅、鋼、タングステン、モリブデンのいずれ 力 またはそれらの合金であることを特徴とする請求項 25に記載の一次元太陽電池  26. The one-dimensional solar cell according to claim 25, wherein the material of the fiber (wire) is any one of aluminum, copper, steel, tungsten, and molybdenum or an alloy thereof.
[27] 前記ワイヤーの表面に形成した酸ィ匕膜を除去して力 太陽電池となる半導体層を形 成することを特徴とする請求項 25または請求項 26に記載の一次元太陽電池。 27. The one-dimensional solar cell according to claim 25 or claim 26, wherein the oxide film formed on the surface of the wire is removed to form a semiconductor layer to be a solar cell.
[28] 半導体が、シリコン、 GaAs等の 2元系、又は CuInS2等の 3元系半導体、又は ZnOや Ή02等の色素増感された半導体であることを特徴とする請求項 14から請求項 27の いずれか 1項に記載の一次元太陽電池。  [28] The semiconductor according to claims 14 to 27, wherein the semiconductor is a binary semiconductor such as silicon or GaAs, a ternary semiconductor such as CuInS2, or a dye-sensitized semiconductor such as ZnO or Ή02. The one-dimensional solar cell according to any one of the above.
[29] 一次元太陽電池を複数並べて配列しそれぞれを配線接続した一次元太陽電池ァレ 一が架台にパッケージされ、前記配線を接続する端子が架台に設けられて 、ることを 特徴とする太陽電池モジュール。  [29] The sun characterized in that a one-dimensional solar cell array in which a plurality of one-dimensional solar cells are arranged and connected by wiring is packaged on a mount, and terminals for connecting the wiring are provided on the mount. Battery module.
[30] 前記一次元太陽電池を平面状又は曲面状に集積してあることを特徴とする請求項 2 9に記載の太陽電池モジュール。  30. The solar cell module according to claim 29, wherein said one-dimensional solar cells are integrated in a planar or curved shape.
[31] 前記各一次元太陽電池に接続された前記配線が前記一次元太陽電池アレーの受 光面側と反対側に設けられていることを特徴とする請求項 29または請求項 30に記載 の太陽電池モジュール。  31. The method according to claim 29, wherein the wiring connected to each of the one-dimensional solar cells is provided on a side opposite to a light receiving surface side of the one-dimensional solar cell array. Solar cell module.
[32] 前記一次元太陽電池を複数並べて接続し、可とう性の透明なシートに直接固定する 力またはシートではさんで固定することを特徴とする太陽電池モジュール。 [32] A solar cell module characterized in that a plurality of the one-dimensional solar cells are arranged and connected, and are directly fixed to a flexible transparent sheet.
[33] 前記一次元太陽電池を繊維や線材で連結してすだれ状にすることを特徴とする太陽 電池モジュール。 [33] A solar cell module, wherein the one-dimensional solar cells are connected to each other with fibers or wires to form an interdigital shape.
[34] 厚さが 0.04mm以上 10mm以下であることを特徴とする請求項 29から請求項 30のいず れか 1項に記載の太陽電池モジュール。  [34] The solar cell module according to any one of claims 29 to 30, wherein the thickness is 0.04 mm or more and 10 mm or less.
[35] 前記一次元太陽電池で構成された前記太陽電池モジュールを一個または複数個連 結して太陽電池アレーとし、前記太陽電池モジュールまたは太陽電池アレーと充放 電コントローラが接続されていることを特徴とする太陽電池発電システム。  [35] It is preferable that one or a plurality of the solar cell modules including the one-dimensional solar cells are connected to form a solar cell array, and the solar cell module or the solar cell array is connected to a charge / discharge controller. Characteristic solar cell power generation system.
[36] 更にインバータが接続されていることを特徴とする請求項 35に記載の太陽電池シス テム。  36. The solar cell system according to claim 35, further comprising an inverter.
[37] 更にバッテリーが接続されていることを特徴とする請求項 35または請求項 36に記載 の太陽電池システム。  37. The solar cell system according to claim 35, wherein a battery is further connected.
PCT/JP2004/013772 2003-09-19 2004-09-21 Solar cell module and its element WO2005029657A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005514094A JP4609856B2 (en) 2003-09-19 2004-09-21 One-dimensional solar cell, solar cell module, and solar cell power generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003328860 2003-09-19
JP2003-328860 2003-09-19

Publications (2)

Publication Number Publication Date
WO2005029657A1 true WO2005029657A1 (en) 2005-03-31
WO2005029657A8 WO2005029657A8 (en) 2005-05-12

Family

ID=34372917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013772 WO2005029657A1 (en) 2003-09-19 2004-09-21 Solar cell module and its element

Country Status (2)

Country Link
JP (1) JP4609856B2 (en)
WO (1) WO2005029657A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352051A (en) * 2005-06-20 2006-12-28 Kazuhiro Toida Photoelectric converter for telemeter power source and optical waveguide using it
JP2007308756A (en) * 2006-05-18 2007-11-29 Furukawa Electric Co Ltd:The Thin-film silicon substrate and production method therefor
WO2008060538A2 (en) * 2006-11-15 2008-05-22 Solyndra, Inc. Arrangement for securing elongated solar cells
WO2008137140A2 (en) * 2007-05-03 2008-11-13 Solyndra, Inc. Monolithic integration of nonplanar solar cells
WO2008051275A3 (en) * 2006-03-18 2009-02-12 Solyndra Inc Monolithic integration nonplanar solar cells
JP2009535841A (en) * 2006-05-01 2009-10-01 ウェイク フォレスト ユニバーシティ Organic optoelectronic devices and their applications
JP2009535860A (en) * 2006-05-01 2009-10-01 ウェイク フォレスト ユニバーシティ Fiber photovoltaic devices and their applications
JP2010171364A (en) * 2009-01-23 2010-08-05 Samsung Electronics Co Ltd Method for forming silicon film, method for forming pn junction, and pn junction formed by using the same
JP2011503849A (en) * 2007-11-01 2011-01-27 ウェイク フォレスト ユニバーシティ Lateral organic photoelectric device and use thereof
US8227684B2 (en) 2006-11-14 2012-07-24 Solyndra Llc Solar panel frame
JP2012186233A (en) * 2011-03-03 2012-09-27 Jsr Corp Device and manufacturing method therefor
JP2012186231A (en) * 2011-03-03 2012-09-27 Jsr Corp Solar cell
JP2013175746A (en) * 2006-03-18 2013-09-05 Solyndra Inc Elongated photovoltaic cells in casings
US8530737B2 (en) 2006-11-15 2013-09-10 Solyndra Llc Arrangement for securing elongated solar cells
WO2013174548A3 (en) * 2012-05-22 2014-06-19 Crystalsol Gmbh Method for producing interconnected optoelectronic components, and interconnected optoelectronic components

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101358857B1 (en) * 2012-05-18 2014-02-06 최대규 Solar cell
DE102015117793A1 (en) 2015-10-19 2017-04-20 Hanwha Q Cells Gmbh Rear side element for a solar module

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833718B2 (en) * 1975-12-26 1983-07-21 株式会社ポリトロニクス Multilayer coaxial fibrous solar cell
JPS6042876A (en) * 1983-08-19 1985-03-07 Masahisa Muroki Cloth-like solar battery
JPS6084887A (en) * 1983-10-14 1985-05-14 Sumitomo Electric Ind Ltd Manufacture of linear amorphous solar battery
JPS6084886A (en) * 1983-10-14 1985-05-14 Sumitomo Electric Ind Ltd Linear amorphous solar battery
JPS60200578A (en) * 1984-03-26 1985-10-11 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric converter
JPS648614A (en) * 1987-06-30 1989-01-12 Kanegafuchi Chemical Ind Film formation of filamentary substrate
JPH0738130A (en) * 1993-06-28 1995-02-07 Matsushita Electric Ind Co Ltd Battery controlling method of solar cell power supply system
JPH0745853A (en) * 1993-07-29 1995-02-14 Sanyo Electric Co Ltd Photovoltaic device and manufacture thereof
JP2000022184A (en) * 1998-07-03 2000-01-21 Nippon Telegr & Teleph Corp <Ntt> Spherical or rod-shaped crystal solar cell and its manufacture
JP2002112461A (en) * 2000-09-29 2002-04-12 Canon Inc Power converter and power generator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833718B2 (en) * 1975-12-26 1983-07-21 株式会社ポリトロニクス Multilayer coaxial fibrous solar cell
JPS6042876A (en) * 1983-08-19 1985-03-07 Masahisa Muroki Cloth-like solar battery
JPS6084887A (en) * 1983-10-14 1985-05-14 Sumitomo Electric Ind Ltd Manufacture of linear amorphous solar battery
JPS6084886A (en) * 1983-10-14 1985-05-14 Sumitomo Electric Ind Ltd Linear amorphous solar battery
JPS60200578A (en) * 1984-03-26 1985-10-11 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric converter
JPS648614A (en) * 1987-06-30 1989-01-12 Kanegafuchi Chemical Ind Film formation of filamentary substrate
JPH0738130A (en) * 1993-06-28 1995-02-07 Matsushita Electric Ind Co Ltd Battery controlling method of solar cell power supply system
JPH0745853A (en) * 1993-07-29 1995-02-14 Sanyo Electric Co Ltd Photovoltaic device and manufacture thereof
JP2000022184A (en) * 1998-07-03 2000-01-21 Nippon Telegr & Teleph Corp <Ntt> Spherical or rod-shaped crystal solar cell and its manufacture
JP2002112461A (en) * 2000-09-29 2002-04-12 Canon Inc Power converter and power generator

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352051A (en) * 2005-06-20 2006-12-28 Kazuhiro Toida Photoelectric converter for telemeter power source and optical waveguide using it
JP2013175746A (en) * 2006-03-18 2013-09-05 Solyndra Inc Elongated photovoltaic cells in casings
JP2014168085A (en) * 2006-03-18 2014-09-11 Solyndra Inc Monolithic integration of nonplanar solar cell
CN101517740B (en) * 2006-03-18 2013-03-27 索林塔有限公司 Monolithic integration nonplanar solar cells
US8742252B2 (en) 2006-03-18 2014-06-03 Solyndra, Llc Elongated photovoltaic cells in casings with a filling layer
CN103236432A (en) * 2006-03-18 2013-08-07 索林塔有限公司 Monolithic integration of non-planar solar cells
WO2008051275A3 (en) * 2006-03-18 2009-02-12 Solyndra Inc Monolithic integration nonplanar solar cells
JP2009530858A (en) * 2006-03-18 2009-08-27 ソルインドラ,インコーポレーテッド Monolithic integration of nonplanar solar cells
US8772629B2 (en) 2006-05-01 2014-07-08 Wake Forest University Fiber photovoltaic devices and applications thereof
JP2009535860A (en) * 2006-05-01 2009-10-01 ウェイク フォレスト ユニバーシティ Fiber photovoltaic devices and their applications
JP2009535841A (en) * 2006-05-01 2009-10-01 ウェイク フォレスト ユニバーシティ Organic optoelectronic devices and their applications
US8558105B2 (en) 2006-05-01 2013-10-15 Wake Forest University Organic optoelectronic devices and applications thereof
JP2007308756A (en) * 2006-05-18 2007-11-29 Furukawa Electric Co Ltd:The Thin-film silicon substrate and production method therefor
US8227684B2 (en) 2006-11-14 2012-07-24 Solyndra Llc Solar panel frame
US8530737B2 (en) 2006-11-15 2013-09-10 Solyndra Llc Arrangement for securing elongated solar cells
WO2008060538A3 (en) * 2006-11-15 2008-11-13 Solyndra Inc Arrangement for securing elongated solar cells
WO2008060538A2 (en) * 2006-11-15 2008-05-22 Solyndra, Inc. Arrangement for securing elongated solar cells
WO2008137140A3 (en) * 2007-05-03 2008-12-31 Solyndra Inc Monolithic integration of nonplanar solar cells
WO2008137140A2 (en) * 2007-05-03 2008-11-13 Solyndra, Inc. Monolithic integration of nonplanar solar cells
JP2011503849A (en) * 2007-11-01 2011-01-27 ウェイク フォレスト ユニバーシティ Lateral organic photoelectric device and use thereof
JP2010171364A (en) * 2009-01-23 2010-08-05 Samsung Electronics Co Ltd Method for forming silicon film, method for forming pn junction, and pn junction formed by using the same
JP2012186231A (en) * 2011-03-03 2012-09-27 Jsr Corp Solar cell
JP2012186233A (en) * 2011-03-03 2012-09-27 Jsr Corp Device and manufacturing method therefor
WO2013174548A3 (en) * 2012-05-22 2014-06-19 Crystalsol Gmbh Method for producing interconnected optoelectronic components, and interconnected optoelectronic components
US9343611B2 (en) 2012-05-22 2016-05-17 Crystalsol Gmbh Method for producing interconnected optoelectronic components, and interconnected optoelectronic components

Also Published As

Publication number Publication date
JP4609856B2 (en) 2011-01-12
WO2005029657A8 (en) 2005-05-12
JPWO2005029657A1 (en) 2007-11-15

Similar Documents

Publication Publication Date Title
WO2005029657A1 (en) Solar cell module and its element
JP3152328B2 (en) Polycrystalline silicon device
EP1968121B1 (en) Method for manufacturing single crystal silicon solar cell and single crystal silicon solar cell
TWI500172B (en) Photoelectric conversion device and manufacturing method thereof
US8390086B2 (en) Solar cell employing a nanowire
CN101794834B (en) High-efficiency thin-film solar cell provided with up-conversion fluorescent material film and film preparation method thereof
US20080121278A1 (en) Method of manufacturing single crystal silicon solar cell and single crystal silicon solar cell
US20090242019A1 (en) Method to create high efficiency, low cost polysilicon or microcrystalline solar cell on flexible substrates using multilayer high speed inkjet printing and, rapid annealing and light trapping
US6211038B1 (en) Semiconductor device, and method for manufacturing the same
US8778719B2 (en) Linear semiconductor substrate, and device, device array and module, using the same
US8110419B2 (en) Process of manufacturing photovoltaic device
CN103107228B (en) Photoelectric conversion device
JP2001177137A (en) Manufacturing method of thin-film photoelectromotive force module with highly uniformed interconnection and double-layer contact
CN101681945B (en) High efficiency solar cell, method of fabricating the same and apparatus for fabricating the same
US20120247543A1 (en) Photovoltaic Structure
US20080236665A1 (en) Method for Rapid Liquid Phase Deposition of Crystalline Si Thin Films on Large Glass Substrates for Solar Cell Applications
JP3025179B2 (en) Method for forming photoelectric conversion element
US20180240920A1 (en) Solar cell, method for manufacturing the same, and electrical equipment
JPH1012908A (en) Manufacture of semiconductor device and particulate semiconductor film, and photoelectric conversion element
Sethi et al. Cost Boundary in Silicon Solar Panel
TWI405343B (en) Flexible solar cell with high conversion efficiency and the manufacturing method
US20130095296A1 (en) Photovoltaic Substrate
JP2004095881A (en) Thin film solar cell
JPS6384076A (en) Photovoltaic element
CN104835860A (en) Solar cell possessing double passivation layers and method for preparing same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

WR Later publication of a revised version of an international search report
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514094

Country of ref document: JP

122 Ep: pct application non-entry in european phase