JPS6084886A - Linear amorphous solar battery - Google Patents

Linear amorphous solar battery

Info

Publication number
JPS6084886A
JPS6084886A JP58193213A JP19321383A JPS6084886A JP S6084886 A JPS6084886 A JP S6084886A JP 58193213 A JP58193213 A JP 58193213A JP 19321383 A JP19321383 A JP 19321383A JP S6084886 A JPS6084886 A JP S6084886A
Authority
JP
Japan
Prior art keywords
wire
solar cell
linear
conductive film
electricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58193213A
Other languages
Japanese (ja)
Inventor
Hideo Itozaki
糸崎 秀夫
Yoshihiko Doi
良彦 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58193213A priority Critical patent/JPS6084886A/en
Publication of JPS6084886A publication Critical patent/JPS6084886A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To enable the titled device to be used in a flexible and knitting structure and to become sensitive to lights from all directions by a method wherein a linear or pipe form is used as a substrate. CONSTITUTION:Either structure of a linear pipe or a hollow pipe is used as the center conductor 1. Its material should have a strength necessary to support the whole and a good electric conductivity; e.g., an Al wire or an SUS wire is used. The amorphous solar battery part 2 has a P-I-N structure or a structure of the repetition thereof or a Schottky structure, and light is converted into electricity in this part. A transparent conductive film 3 is an electrode that leads out the electricity generating in the layer 2 along with the center conductor, and ITO or SnO2 is used for the electrode. Since the transparent conductive film 3 does not have so large an electric conductivity, an electricity lead 5 which leads electricity to the end of the wire is mounted on this conductive film. The material of the lead 5 is needed to be a good conductor, and an Al wire, Au wire, or the like is used.

Description

【発明の詳細な説明】 (1)技術分野 非晶質太陽電池は、1976年にCaresonらによ
り発明されて以来、急速にその性能を向上させコストダ
ウンも計られ実用化が進んでいる。非晶質太陽電池はシ
ランガスの放電分解法を用いることにより結晶シリコン
に比べて大きい面積に均一につけることができるために
、電力用として開発が進められている。またこの放電分
解法を用いると種々の形態をもつものの表面に均一に太
陽電池を形成できる特徴がある。この特徴を利用した線
状非晶質太陽電池構造が本発明であり、線状の特徴を利
用した今までに考えられなかった広い分野への応用価値
がある。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical field Since amorphous solar cells were invented by Careson et al. in 1976, their performance has been rapidly improved and costs have been reduced, and their practical use has progressed. Amorphous solar cells are being developed for use in electric power because they can be uniformly applied over a larger area than crystalline silicon by using the discharge decomposition method of silane gas. Furthermore, this discharge decomposition method has the characteristic that solar cells can be uniformly formed on the surface of objects with various shapes. The present invention is a linear amorphous solar cell structure that takes advantage of this feature, and has application value in a wide range of fields that have not been thought of until now.

(2ン従来技術とその問題点(発明の背景)非晶質太陽
電池は従来ガラスやステンレス板高分子板の工うな平板
上に形成し、太陽光に垂直にあてる構造を有していた。
(2) Prior art and its problems (background of the invention) Amorphous solar cells have conventionally been formed on a flat plate of glass, stainless steel, or polymer plate, and have a structure in which they are exposed to sunlight perpendicularly.

また、屈曲性を持たせるために、薄いSUS板や高分子
膜が用いられている。しかし、あくまで平面構造である
ために、使用土の制限があった。
Further, in order to provide flexibility, a thin SUS plate or a polymer film is used. However, since it was a planar structure, there were restrictions on the amount of soil that could be used.

本発明は、これらの点を改善すべく、線状の太陽電池を
考案したものである。
The present invention devises a linear solar cell in order to improve these points.

本発明に上ると線状であるために平板状のものよりも屈
曲性に富んでふ・り線を編むことで編組構造にして用い
ることができる。また、断面形状が円型であるために、
全方位からの光に感する特長を有している。
According to the present invention, since the wire is linear, it has better flexibility than a flat wire, and can be used in a braided structure by weaving loose wires. In addition, since the cross-sectional shape is circular,
It has the characteristic of being sensitive to light from all directions.

(3)発明の構成 第1図に本発明の実施例である線状太陽電池の断面構造
図を示す。
(3) Structure of the Invention FIG. 1 shows a cross-sectional structural diagram of a linear solar cell according to an embodiment of the invention.

lは、中心導体であり、図のように線状のものと、中空
のパイプのいづれかの構造のものを用0る。
1 is the center conductor, and it can be either a linear conductor as shown in the figure or a hollow pipe structure.

l質は、全体を支えるに必要な強度を持ち、かつ電気伝
導性の良いものである。
The material has the strength necessary to support the whole structure and has good electrical conductivity.

たとえばAl線、SUS線、などがあげられろ。2は、
非晶質太陽゛亀池部であり、Pinまたは、これをくり
かえした構造又はショットキー型構造を有する。
Examples include Al wire, SUS wire, etc. 2 is
It is an amorphous solar pond part, and has a Pin structure, a repeating structure thereof, or a Schottky structure.

この部分において光が電気に変換される。3は透明導電
膜であり、2の層で発生した電気を1とと5n02 な
どを用いる。透明導電膜は、電気伝導度た電気を外部へ
導く、4の材料としては良導体である必要があり、AI
!、Au線などがあげられる。
In this part, light is converted into electricity. 3 is a transparent conductive film, and 1 and 5n02 are used for the electricity generated in layer 2. The transparent conductive film must be a good conductor as it conducts electricity to the outside.
! , Au wire, etc.

4は3の周囲にらせん状に巻きつける方式をとることも
できる。すなわち電気は中心導体lと電気取出線4より
外部へ取り出すことになる。さらに、がある。
4 can also be wound around 3 in a spiral manner. In other words, electricity is taken out from the center conductor l and the electrical lead-out line 4. Furthermore, there is.

代表的な材料としては、シリコン樹脂、5i3N47z
とがある。
Typical materials include silicone resin, 5i3N47z
There is.

(4)実施例 実施例1゜ 中心導体lには、直径5關のアルミ&全用いて、膜し、
その上に透明導電膜3として5n02とITOの複合膜
を積層した。さらに電気取出線4としては、直径0,5
龍のアルミ線をピッチ20間で巻キつけた。全体の保護
膜としては、Si3N4を数ミクロン被覆した後、4リ
コン樹側を約1間の厚みに被覆した。よって、最終的に
は直径約7間の線状太陽電池を構成した。
(4) Examples Example 1゜The center conductor l is made of aluminum with a diameter of 5 mm,
A composite film of 5n02 and ITO was laminated thereon as a transparent conductive film 3. Furthermore, as the electrical lead-out wire 4, the diameter is 0.5
I wrapped Dragon's aluminum wire with a pitch of 20. As the overall protective film, after coating several microns of Si3N4, the 4-recon wood side was coated to a thickness of about 1 inch. Therefore, a linear solar cell with a diameter of about 7 mm was finally constructed.

非晶質太陽電池部の作成条件はガラス基板上に作成した
場合で8%の効率をAMl、0にて出すものである。変
換効率の測定には長さ20cmに切ったものを用いた。
The conditions for creating the amorphous solar cell section are such that when it is created on a glass substrate, an efficiency of 8% is achieved at AMl, 0. A piece cut into a length of 20 cm was used to measure the conversion efficiency.

特性は、 Voc=0.9V Jsc=14(h+tA FF=O
16である。本太陽電池の照射面積を(長さ)X(線の
直径)とすると照射面積はIOdとなり、変換効率は7
.56%であり、線状にしたことによる損失は5%程度
でめった。
The characteristics are: Voc=0.9V Jsc=14(h+tA FF=O
It is 16. If the irradiation area of this solar cell is (length) x (wire diameter), the irradiation area is IOd, and the conversion efficiency is 7
.. 56%, and the loss due to the linear shape was only about 5%.

さらに第2図のごと<、鏡に太陽光を反射させて、線状
太陽電池の上下両面より光を入射した場合には、 Voc’=0.9 V、 Jsc’==280nLo、
 F F ’ =0.6となり、出力電流が2倍となり
、繊状構造の特徴が生かせた。この場合、太陽入射面積
に対しては、変換効率は、2倍の15%になり、反射光
の有効利用を示している。
Furthermore, as shown in Figure 2, when sunlight is reflected by a mirror and light is incident from both the upper and lower surfaces of the linear solar cell, Voc'=0.9 V, Jsc'==280nLo,
F F '=0.6, the output current was doubled, and the characteristics of the fibrous structure were utilized. In this case, the conversion efficiency is doubled to 15% with respect to the solar incident area, indicating effective use of reflected light.

実施例2゜ 中心導体にはステンレス管(外径20mm内径I9朋)
のものを用いた。長さは111Lo非晶質太陽電池部、
透明導電膜、電気取出課、保護膜は実施例1と同様のも
のである。特性評価には、AM 1.0の平行光線を(
5)一方向より当てる方式と(B)二方向より当る方式
にて行なった。(5)(B)での出力特性は、表1にま
とめた。
Example 2゜The center conductor is a stainless steel tube (outer diameter 20 mm, inner diameter I9)
I used the one from The length is 111Lo amorphous solar cell part,
The transparent conductive film, the electrical outlet, and the protective film are the same as in Example 1. For characteristic evaluation, a parallel beam of AM 1.0 (
5) A method of hitting from one direction and (B) a method of hitting from two directions. (5) The output characteristics in (B) are summarized in Table 1.

表 1 せてパイプの温度上昇を熱エネルギーとして熱交換器に
より取り出してみたところ、507nWと1007zx
Wが取り出せ、パイプ状にしたことにより、電気、熱両
方のエネルギーを同時に取り出すことができた。又、こ
の方式では、太陽電池の温度上昇を水の冷却により防げ
るために、太陽電池の動作中の出力特性が、水を通さな
かった場合より、5%向」ユするとともに、長期劣化度
も、大巾に向上することが期待される。
Table 1 When the temperature rise in the pipe was extracted as thermal energy by a heat exchanger, it was 507nW and 1007zx
By extracting W and making it into a pipe shape, it was possible to extract both electrical and thermal energy at the same time. In addition, with this method, since the temperature rise of the solar cells can be prevented by cooling the solar cells with water, the output characteristics of the solar cells during operation are improved by 5% compared to when no water passes through them, and the degree of long-term deterioration is also reduced. , is expected to improve significantly.

以上実施例ではpin構造の非晶質シリコン太陽電池を
用いたが、pinを多層に積み重ねた構造やショットキ
ー型の太陽電池を用いることができることは、jうまで
もない。さらに、p層を太陽光入射側とするpin又は
その積層構造のほか、n層を入射光側とする逆タイプを
用いることができる。
In the above embodiments, an amorphous silicon solar cell with a pin structure was used, but it goes without saying that a structure in which pins are stacked in multiple layers or a Schottky type solar cell can also be used. Furthermore, in addition to a pin or its laminated structure in which the p layer is on the sunlight incident side, a reverse type in which the n layer is on the incident light side can be used.

−気を取出すために、透明導電膜の周囲にらせん状に巻
いた電線について、電気接触性11はを向上させる為に
、透明導電膜と電線の間に導電性接着材を用いたり、ハ
ンダを用いることができる。さらに、電線をらせん状に
巻く他に、透明導電股上にストライブ状に電線を取付け
ることもできる。
- In order to improve the electrical contact property 11 of electric wires spirally wound around a transparent conductive film in order to remove air, conductive adhesive or solder is used between the transparent conductive film and the wire. Can be used. Furthermore, in addition to winding the electric wire in a spiral shape, it is also possible to attach the electric wire in a stripe shape to the transparent conductive crotch.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による線状非晶質′太陽電池の断面猜造
図である。 第2図は本発明の線状非晶質太陽電池の特性評価方法を
示した図である。 l・・中心導体、2 ・非晶質太陽電池部、3 ・透明
導電膜、4・・・′1d気取出線、5・・渫護膜、6・
・太陽光、7・・・反射した太陽光、8 線状非晶質太
陽電池、9・・鏡。 代理人 弁理士 上 代 哲 司a’、ll’、’:・
−11,− 芹IV 芳
FIG. 1 is a cross-sectional view of a linear amorphous solar cell according to the present invention. FIG. 2 is a diagram showing a method for evaluating the characteristics of a linear amorphous solar cell according to the present invention. 1. Central conductor, 2. Amorphous solar cell part, 3. Transparent conductive film, 4.'1d air intake line, 5. Waterproof film, 6.
・Sunlight, 7...Reflected sunlight, 8 Linear amorphous solar cell, 9...Mirror. Agent Patent Attorney Satoshi Tsukasa a',ll',':・
-11,- Seri IV Yoshi

Claims (1)

【特許請求の範囲】 (り線あるいはパイプの形状を基体しkことを特徴とす
る線状非晶質太陽電池。 (2)線あるいはパイプ状基体の材料として電気伝導度
の大きい材料を用いて電極としても用いることを特徴と
する特許請求範囲第1項記載の線状非晶質太陽電池。 (3)取出電極として、電気伝導度の大きい材料の細線
を線状太陽電池の透明導電膜上にらせん状に巻いたこと
を特徴とする特許請求範囲第1項及び第2項記載の線状
非晶質太陽電池。 (4)起電力発生層である非晶質膜として、ショットキ
ー型を用いる方式あるいはPinを1層または多層積重
おた構造を有することを特徴とする特許請求範囲第1.
2.8項記載の線状非晶質太陽電池。
[Scope of Claims] (A linear amorphous solar cell characterized in that the substrate has the shape of a wire or pipe. (2) A material with high electrical conductivity is used as the material of the wire or pipe-shaped substrate. The linear amorphous solar cell according to claim 1, which is also used as an electrode. (3) As an extraction electrode, a thin wire made of a material with high electrical conductivity is placed on the transparent conductive film of the linear solar cell. A linear amorphous solar cell according to claims 1 and 2, characterized in that the solar cell is wound spirally. Claim 1 is characterized in that it has a method used or a structure in which the pins are stacked in one layer or in multiple layers.
Linear amorphous solar cell according to Section 2.8.
JP58193213A 1983-10-14 1983-10-14 Linear amorphous solar battery Pending JPS6084886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58193213A JPS6084886A (en) 1983-10-14 1983-10-14 Linear amorphous solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58193213A JPS6084886A (en) 1983-10-14 1983-10-14 Linear amorphous solar battery

Publications (1)

Publication Number Publication Date
JPS6084886A true JPS6084886A (en) 1985-05-14

Family

ID=16304181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58193213A Pending JPS6084886A (en) 1983-10-14 1983-10-14 Linear amorphous solar battery

Country Status (1)

Country Link
JP (1) JPS6084886A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995022177A1 (en) * 1994-02-15 1995-08-17 Cole Eric D Semiconductor fiber solar cells and modules
JPH10256579A (en) * 1997-03-13 1998-09-25 Toshiba Corp Photoelectric conversion element
WO2003094247A1 (en) * 2002-05-02 2003-11-13 Ideal Star Inc. Solar battery and clothes
WO2005029657A1 (en) * 2003-09-19 2005-03-31 The Furukawa Electric Co., Ltd. Solar cell module and its element
WO2007002110A2 (en) * 2005-06-20 2007-01-04 Solyndra, Inc. Bifacial elonagated solar cell devices
ES2288356A1 (en) * 2005-06-21 2008-01-01 Angel Lopez Rodriguez Photovoltaic filament for generating photovoltaic energy using solar radiation, has multilayer thread structure with determined length and section, where transparent polymer coating is provided
US7394016B2 (en) 2005-10-11 2008-07-01 Solyndra, Inc. Bifacial elongated solar cell devices with internal reflectors
JP2010171364A (en) * 2009-01-23 2010-08-05 Samsung Electronics Co Ltd Method for forming silicon film, method for forming pn junction, and pn junction formed by using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995022177A1 (en) * 1994-02-15 1995-08-17 Cole Eric D Semiconductor fiber solar cells and modules
JPH10256579A (en) * 1997-03-13 1998-09-25 Toshiba Corp Photoelectric conversion element
WO2003094247A1 (en) * 2002-05-02 2003-11-13 Ideal Star Inc. Solar battery and clothes
WO2005029657A1 (en) * 2003-09-19 2005-03-31 The Furukawa Electric Co., Ltd. Solar cell module and its element
JPWO2005029657A1 (en) * 2003-09-19 2007-11-15 古河電気工業株式会社 Solar cell module and its elements
JP4609856B2 (en) * 2003-09-19 2011-01-12 古河電気工業株式会社 One-dimensional solar cell, solar cell module, and solar cell power generation system
WO2007002110A2 (en) * 2005-06-20 2007-01-04 Solyndra, Inc. Bifacial elonagated solar cell devices
WO2007002110A3 (en) * 2005-06-20 2007-08-30 Solyndra Inc Bifacial elonagated solar cell devices
ES2288356A1 (en) * 2005-06-21 2008-01-01 Angel Lopez Rodriguez Photovoltaic filament for generating photovoltaic energy using solar radiation, has multilayer thread structure with determined length and section, where transparent polymer coating is provided
US7394016B2 (en) 2005-10-11 2008-07-01 Solyndra, Inc. Bifacial elongated solar cell devices with internal reflectors
JP2010171364A (en) * 2009-01-23 2010-08-05 Samsung Electronics Co Ltd Method for forming silicon film, method for forming pn junction, and pn junction formed by using the same

Similar Documents

Publication Publication Date Title
US6506622B1 (en) Method of manufacturing a photovoltaic device
JP4429306B2 (en) Solar cell and solar cell module
US20180331244A1 (en) Small gauge wire solar cell interconnect
US7705523B2 (en) Hybrid solar nanogenerator cells
JP3352252B2 (en) Solar cell element group, solar cell module and method of manufacturing the same
US20100326503A1 (en) Fiber Optic Solar Nanogenerator Cells
JPWO2007055253A1 (en) Photoelectric conversion device
JP2009253289A (en) Photovoltaic device
JPS6084886A (en) Linear amorphous solar battery
CN109616540B (en) Battery string and photovoltaic module
EP2528101A2 (en) Dye sensitized solar cell
CN205050848U (en) Half flexible solar cell of printing opacity board that generates electricity
JP2008205045A (en) Manufacturing method of solar cell module
JP2010016246A (en) Solar cell module and method of manufacturing the same
TW201322468A (en) Pigment sensitized solar battery and method for manufacturing same
JPH07297438A (en) Solar battery module
JP7457768B2 (en) Solar Cell Module
CN209418512U (en) Double-side solar cell interconnection architecture
JPH06204529A (en) Solar cell
JP2010123720A (en) Solar cell backside sheet and solar cell module
JP2011044751A (en) Solar cell module
JPH0897458A (en) Solar cell module
CN206976365U (en) Photovoltaic module
JP2009094501A (en) Photoelectric conversion device
JPH0897457A (en) Solar cell module