JPS604264A - Insulated gate type fet - Google Patents

Insulated gate type fet

Info

Publication number
JPS604264A
JPS604264A JP11201583A JP11201583A JPS604264A JP S604264 A JPS604264 A JP S604264A JP 11201583 A JP11201583 A JP 11201583A JP 11201583 A JP11201583 A JP 11201583A JP S604264 A JPS604264 A JP S604264A
Authority
JP
Japan
Prior art keywords
side wall
etching
channel
region
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11201583A
Other languages
Japanese (ja)
Inventor
Keimei Mikoshiba
御子柴 啓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP11201583A priority Critical patent/JPS604264A/en
Publication of JPS604264A publication Critical patent/JPS604264A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To attain a short channel without keeping a deep junction region too much close to a channel region, by forming a tapered side wall sufficiently thick. CONSTITUTION:The etching of an oxide film over the entire surface of a substrate by a reactive ion etching method enables to form the side wall 8 in the side surface of a polycrystalline Si. At this time, when the etching is carried out with the substrate inclined by an angle theta to the direction 10 of etchant infiltration and while it is rotated around the center axis 12, the thickness of the wall 8 increases because of being etched with taper in the shaded part. As a result, the deep junction region 9 comes off from the channel region, therefore punch through becomes difficult to occur, and the step part of the Si becomes gentle, resulting in the facilitation of fine Al wiring.

Description

【発明の詳細な説明】 木兄り」は、絶縁ゲート型電界効果トシンジスタ(以下
MO8]・’ETという)にかかり、とくにゲート長が
1μm%度以下の短チャンネルMOB F)、Tの構造
に関する。
[Detailed Description of the Invention] The present invention relates to insulated gate field effect transistors (hereinafter referred to as MO8) and 'ET', and particularly relates to the structure of short channel MOBs (F) and T with a gate length of 1 μm or less. .

MOS FE’l”ので1ぺ細化は、高年私密度および
高速化のために必要不可欠でおる。特にチャンネル長を
短かくすることは、高速化にとって効果的である。短チ
ャンネルにするためには、パンチスルーを防止するため
にソース・ドレイン接合深さを浅くする必要がある。し
かし、浅い接合は層抵抗が高くなシ、ソース・ドレイン
寄生抵抗が増加するため、動作速度が遅くなる。従って
、浅い接合を実現すると同時に、寄生抵抗を小さくする
工夫が必要である。
Since MOS FE'l'' is made smaller, it is indispensable for high density and high speed. In particular, shortening the channel length is effective for high speed. In order to prevent punch-through, it is necessary to reduce the depth of the source/drain junction.However, a shallow junction has a high layer resistance and increases the source/drain parasitic resistance, which slows down the operation speed. Therefore, it is necessary to create a shallow junction and at the same time reduce the parasitic resistance.

従来よシ、このだめの方法としてサイドウオールを用い
る素子構造が提案されている。
Conventionally, element structures using sidewalls have been proposed as a method to avoid this problem.

この従来技術によるサイド・ウオール法を第1図(a)
 、 (b)に示す。1はシリコン基板、2はゲート酸
化膜、3は多結晶シリコンであシ、通常のシリコン・ゲ
ートMOSトランジスターの構造をしている。多結晶シ
リコンのバターニング後s I X 10tscI!L
′″2程度のドーズ量でドーパントをイメン注入し、浅
い接合4を形成する。次に、厚さ0.5〜1μm程度の
酸化膜5を気相成長する。′次に、基板全面をリアクテ
ィブ・イオン・エツチング(RIE) 法で酸化膜をエ
ツチングすると、多結晶シリコンの側面にサイド・ウオ
ール6が形成される。このサイド・ウオールをイオン注
入のマスクに用いて、5x10”cm−z程度のイオン
注入を行い、深い接合7を形成する。
This conventional side wall method is shown in Figure 1(a).
, shown in (b). 1 is a silicon substrate, 2 is a gate oxide film, and 3 is polycrystalline silicon, and has the structure of a normal silicon gate MOS transistor. After buttering polycrystalline silicon, s I X 10tscI! L
A dopant is implanted at a dose of approximately 2 to form a shallow junction 4. Next, an oxide film 5 with a thickness of approximately 0.5 to 1 μm is grown in a vapor phase. When the oxide film is etched using the active ion etching (RIE) method, a side wall 6 is formed on the side surface of the polycrystalline silicon.This side wall is used as a mask for ion implantation, and the oxide film is etched by about 5 x 10" cm-z. ion implantation is performed to form a deep junction 7.

この方法で実現されるMOS FETのソース・ドレイ
ン領域は、層抵抗は高いが浅い接合と、層抵抗が低い深
い接合とが組み合わされている。この構造では、チャン
ネル長は浅い接合で決定される。
The source/drain regions of the MOS FET realized by this method are a combination of a shallow junction with high layer resistance and a deep junction with low layer resistance. In this structure, the channel length is determined by the shallow junction.

深い接合は、寄生抵抗を下げるために効果がある。Deep junctions are effective in reducing parasitic resistance.

この従来技術によるサイド・ウオール構造の欠点は、サ
イド・ウオール6の厚みが少ないことにある。このため
、深い接合領域がチャンネル領域に近づきすぎるため、
パンチ・スルーが起こシ易く、短チャンネル化に限界が
あった。
A disadvantage of this prior art side wall structure is that the side wall 6 has a small thickness. This causes the deep junction region to be too close to the channel region.
Punch-through was easy to occur, and there was a limit to the shortening of the channel.

本発明の目的はかかる従来技術の欠点を除去した有効な
MO8B”ETを提供することである。
The object of the present invention is to provide an effective MO8B''ET that eliminates the drawbacks of the prior art.

本発明の特徴は、ゲート電極の側面に傾斜がつけられた
絶縁膜を具え、前記ゲート電極と前記絶縁膜とを合せた
断面形状がほぼ台形であり、前記・ゲート電極によシ自
動的に位置決めされた浅い拡散層と、前記絶縁膜により
自動的に位置決めされた深い拡散層とを具えたMOS 
FETの構造にある。
The present invention is characterized in that the side surface of the gate electrode is provided with an insulating film with a slope, and the combined cross-sectional shape of the gate electrode and the insulating film is approximately trapezoidal. A MOS comprising a positioned shallow diffusion layer and a deep diffusion layer automatically positioned by the insulating film.
It's in the structure of the FET.

このような本発明による新サイド・ウオール構造を用い
ると、十分に厚くかつ傾斜がつけられたサイド・ウオー
ルが形成できるため、深い接合領域とチャンネル領域が
近づきすぎることがなく、容易に短チャンネルが達成で
きる。
By using the new side wall structure according to the present invention, a sufficiently thick and sloped side wall can be formed, so that the deep junction region and the channel region do not come too close together, making it easy to form a short channel. It can be achieved.

第2図に、本発明の実施例を示す。本発明のサイド・ウ
オールを形成するまでの工程は、従来技術第1図(a)
と同一である。新しい点は、サイド・ウオールのための
几IEにおいて、第3図に示す様に、エッチャントの進
入方向1oに対して、基板を角度θだけ傾け、中心軸1
2を中心に回転させながらエツチングするととにある。
FIG. 2 shows an embodiment of the invention. The process up to forming the side wall of the present invention is similar to that of the prior art shown in Fig. 1(a).
is the same as The new point is that in the side wall IE, as shown in Fig. 3, the substrate is tilted by an angle θ with respect to the etchant entrance direction 1o, and the central axis 1
If you do the etching while rotating around 2, it will be there.

この方法によシ、影になる部分にテーパーが付けられて
エツチングされるため、第2図に示されるように、ツ・
イド・ウオール8の厚みが増す。その結果、深い接合領
域9がチャンネル領域から離れるから、パンチ・スルー
が起こシにくくなる。また、多結晶シリコンの段部がな
だらかになシ、微細なアルミ配線が容易になる。
With this method, the shaded area is tapered and etched, resulting in
The thickness of the id wall 8 increases. As a result, since the deep junction region 9 is separated from the channel region, punch-through is less likely to occur. In addition, the steps of the polycrystalline silicon are smooth, making it easier to form fine aluminum wiring.

本発明のサイド・ウオール構造によって実現されるMO
SFETは、従来のものに比べてチャンネル長を短かく
することが可能である。又、同じチャンネル長にした場
合には、深い接合t1域の接合深さをより深くできるた
め、アルミ配線とのコンタクト形成が容易になシ、よシ
微細なコンタクト構造が可能に々る。このことは、トラ
ンジスター寸法の縮小および高集積化にとってきわめて
有利である。また、多結晶シリコンの側面に、テーパー
のついたサイド・ウオールが形成されるため、この部分
の段差がなたらかになシ、微細な金り配線が可能になる
という利点がある。
MO achieved by the side wall structure of the present invention
SFETs can have a shorter channel length than conventional ones. Further, when the channel lengths are the same, the junction depth in the deep junction t1 region can be made deeper, which facilitates the formation of contact with the aluminum wiring and enables a finer contact structure. This is extremely advantageous for reducing transistor size and increasing integration. Furthermore, since a tapered side wall is formed on the side surface of the polycrystalline silicon, there is an advantage that the step in this part is not rounded and fine gold wiring can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および(b)は従来技術による製造方法を
説明するだめの素子断面図、第2図および第3図は本発
明の詳細な説明するだめの素子断面図およびエツチング
方法の説明図である。 尚、図において、1・・・・・・シリコン基板、2・・
・・・・ゲート酸化膜、計・・・・・多結晶シリコン、
4・・・・・・浅い接合、5・・・・・・酸化膜、6,
8・・・・・・サイド・ウオール、7,9・・・・・・
深い接合、10・・・・・・エツチングガスの進入路、
11・・・・・・基板、12・・・・・・中心ホHであ
る。 代理人 弁理士 内 原 晋
FIGS. 1(a) and (b) are cross-sectional views of a device to explain a manufacturing method according to the prior art, and FIGS. 2 and 3 are cross-sectional views of a device to explain the present invention in detail and an explanation of an etching method. It is a diagram. In the figure, 1... silicon substrate, 2...
...gate oxide film, total ...polycrystalline silicon,
4... Shallow junction, 5... Oxide film, 6,
8...Side wall, 7,9...
Deep bonding, 10... Etching gas entrance path,
11...Substrate, 12...Center H. Agent Patent Attorney Susumu Uchihara

Claims (1)

【特許請求の範囲】[Claims] ゲート電極の側面に傾斜がつけられた絶縁膜を具え、前
記ゲート電極と前記絶縁膜とを合せた断面形状がほぼ台
形であシ、前記ゲート電極によシ自動的に位置決めされ
た浅い拡散層と、前記絶縁膜によシ自動的に位置決めさ
れた深い拡散層とを具えることを特徴とする絶縁ゲート
型電界効果トランジスタ。
A shallow diffusion layer is provided with an insulating film having a sloped side surface of the gate electrode, the combined cross-sectional shape of the gate electrode and the insulating film is approximately trapezoidal, and the shallow diffusion layer is automatically positioned by the gate electrode. and a deep diffusion layer automatically positioned by the insulating film.
JP11201583A 1983-06-22 1983-06-22 Insulated gate type fet Pending JPS604264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11201583A JPS604264A (en) 1983-06-22 1983-06-22 Insulated gate type fet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11201583A JPS604264A (en) 1983-06-22 1983-06-22 Insulated gate type fet

Publications (1)

Publication Number Publication Date
JPS604264A true JPS604264A (en) 1985-01-10

Family

ID=14575837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11201583A Pending JPS604264A (en) 1983-06-22 1983-06-22 Insulated gate type fet

Country Status (1)

Country Link
JP (1) JPS604264A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755479A (en) * 1986-02-17 1988-07-05 Fujitsu Limited Manufacturing method of insulated gate field effect transistor using reflowable sidewall spacers
US4868137A (en) * 1987-12-29 1989-09-19 Nec Corporation Method of making insulated-gate field effect transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755479A (en) * 1986-02-17 1988-07-05 Fujitsu Limited Manufacturing method of insulated gate field effect transistor using reflowable sidewall spacers
US4868137A (en) * 1987-12-29 1989-09-19 Nec Corporation Method of making insulated-gate field effect transistor

Similar Documents

Publication Publication Date Title
JPH02239630A (en) Manufacture of semiconductor device
JPH11111983A (en) Semiconductor device and its manufacture
JPH11204782A (en) Semiconductor device and manufacture therefor
JPH0322695B2 (en)
JPH04234146A (en) Formation method of field oxide film for semiconductor device
JPH0521450A (en) Semiconductor device and its manufacture
JPH02277253A (en) Manufacture of semiconductor device
JPS604264A (en) Insulated gate type fet
JPH08274333A (en) Manufacture of self-alignment electrostatic induction transistor
JPS61247051A (en) Manufacture of semiconductor device
US5763316A (en) Substrate isolation process to minimize junction leakage
JP2793141B2 (en) Method of manufacturing semiconductor device having trench element isolation film
JPS6173371A (en) Semiconductor device and manufacture thereof
JPS59155943A (en) Manufacture of semiconductor device
JP2531688B2 (en) Method for manufacturing semiconductor device
JPS62296472A (en) Manufactore of semiconductor device
JP2000306991A (en) Fabrication of semiconductor device
JPS63313834A (en) Semiconductor integrated circuit
JPS59937A (en) Manufacture of semiconductor device
JPS61125087A (en) Insulated gate type field effect semiconductor device and manufacture thereof
TW513755B (en) Manufacture method of semiconductor device with self-aligned inter-well isolation
JPS61220372A (en) Manufacture of semiconductor device
JPH0212838A (en) Manufacture of semiconductor device
JPS62298170A (en) Manufacture of semiconductor device
JPS59936A (en) Forming method for insulator isolating film