TW513755B - Manufacture method of semiconductor device with self-aligned inter-well isolation - Google Patents
Manufacture method of semiconductor device with self-aligned inter-well isolation Download PDFInfo
- Publication number
- TW513755B TW513755B TW90116333A TW90116333A TW513755B TW 513755 B TW513755 B TW 513755B TW 90116333 A TW90116333 A TW 90116333A TW 90116333 A TW90116333 A TW 90116333A TW 513755 B TW513755 B TW 513755B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- patent application
- forming
- semiconductor
- item
- Prior art date
Links
Landscapes
- Element Separation (AREA)
Abstract
Description
513755 五、發明說明(1) 本發明係有關於一種半導體元件的製造方法,特別係 有關於一種具有自行對準井間隔離之半導體元件的製造 法。 目前在積體電路製程技術的領域上一種在絕緣體上有 石夕(Silicon on insulator,s〇I)的技術正被廣泛的應 用。其是在一層覆蓋於一絕緣層上之半導體材料上形成電 晶體’此技術在積體電路發展的領域越來越重要。在一薄 的SOI層上製作積體電路元件,相對於在一較厚的矽結構 中製作相同的IC元件,可得到較低的寄生電容與較大的通 道電流,因此其速度較快。再者,位於s〇!結構的矽層上_ 之場效電晶體,例如金氧半場效電晶體(M〇SFET),比於傳 統石夕基底上所製作的M0SFET具有更多的優點,包括對短通 道效應的電阻、較陡崎的次臨界(subthreshold)斜率、增 加的電流驅動、較高的封裝密度、減小的寄生電容、及簡 單的製程步驟等。此外,近來在S〇 I之矽層品質、埋藏氧 化物品質及產量上的進步使〇 · 1微米以下之極大型積體電 路元件的製造變得可能。由於SO I結構有效地減少寄生元 件’同時增加結構對接面崩潰的容忍度,因此s〇 I技術適 用於高效能及高密度的積體電路。513755 V. Description of the invention (1) The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device with self-aligned interwell isolation. At present, in the field of integrated circuit process technology, a technology having a silicon on insulator (SOI) on an insulator is being widely used. It is to form a transistor on a semiconductor material covered on an insulating layer. This technology is becoming more and more important in the field of integrated circuit development. Compared to fabricating integrated circuit elements on a thin SOI layer, compared with fabricating the same IC element in a thicker silicon structure, lower parasitic capacitance and larger channel current can be obtained, so its speed is faster. Furthermore, field-effect transistors, such as metal-oxide half-field-effect transistors (MOSFETs), located on the silicon layer of the SiO structure, have more advantages than the MOSFETs fabricated on the traditional Shixi substrate, including: Resistance to short-channel effects, steeper subthreshold slopes, increased current drive, higher package density, reduced parasitic capacitance, and simple process steps. In addition, recent advances in the quality of silicon layers, buried oxides, and yields of SOI have made it possible to manufacture very large integrated circuit elements below 0.1 micron. Since the SO I structure effectively reduces the parasitic element ’and increases the tolerance of the structural abutment interface collapse, the SOI technology is suitable for high-efficiency and high-density integrated circuits.
Choi 等人在美國專利US 5, 899, 7 1 2nMethod for _ fabricating silicon - on- insulator device π,揭露一 種井内(intra-wel 1)之部分隔離技術。Koh等人在美國專 利US 5,985,733"Semiconductor device having a T-shaped field oxide layer and a method forChoi et al. In U.S. Patent No. 5,899, 7 1 2nMethod for _ fabricating silicon-on-insulator device π, discloses a partial isolation technique for intra-wel 1. Koh et al., US Patent 5,985,733 " Semiconductor device having a T-shaped field oxide layer and a method for
0503-6150TWF;TSMC2000-0940,0941;ycchen.ptd 第5頁 513755 五、發明說明(2) fabricating the same” ,揭露一種井間(inter-well)之 T-型場氧化層隔離技術。Lee等人在 2000 IEEE International SOI Conference, Oct· 200 0 ρρ· 76-77 所發表之"Performance Improvements in High-Density DRAM Application using 0.15 β\Ά Body-Contacted SOI Technology” ,提出〇·15 /zm動態隨 機存取記憶體之部分隔離技術。H i gash i等人在0503-6150TWF; TSMC2000-0940,0941; ycchen.ptd Page 5 513755 V. Description of the invention (2) Fabricating the same ", revealing an inter-well T-type field oxide layer isolation technology. Lee et al. The "Performance Improvements in High-Density DRAM Application using 0.15 β \ Ά Body-Contacted SOI Technology" published by the 2000 IEEE International SOI Conference, Oct · 200 0 ρρ · 76-77, proposed 0.15 / zm dynamic randomization Partial isolation technology for accessing memory. H i gash i and others in
Extended Abstracts of the 2000 International Conference on Solid State Devices and Materials, Sendai, 2 0 0 0 pp 376-377 所發表之’’Ultra-Low Standby Current in ^ SOI-CMOS LSI Circuits by Using Body-Bias-Control Technology” ,提出16位元中央處理器(0.35 //m)之雙區域 氧化隔離技術。 請參考第1 A至1 D圖,其顯示習知的製作方法之製程剖 面圖。如第1A圖所示,一半導體基底1〇上具有一埋藏絕緣 層12及一半導體層14之絕緣體上有矽(SOI)之晶圓,用以 做為啟始材料。接著,在半導體層丨4上成長一墊氧化物層 1 6之後,於墊氧化物層丨6上沉積一氮化矽層丨8。 然後,如第1B圖所示,施行微影及姓刻製程來定義氮< 化石夕層1 8及墊氧化物層1 6以形成井間隔離區2 〇 〇及井内隔 離區2 2。 再者,如第1C圖所示,對於半導體基底1〇上施行一區 域氧化製程使得井間隔離區2〇及井内隔離區22之半導體層Extended Abstracts of the 2000 International Conference on Solid State Devices and Materials, Sendai, 2 0 0 0 pp 376-377, "Ultra-Low Standby Current in ^ SOI-CMOS LSI Circuits by Using Body-Bias-Control Technology" , Proposed a dual-zone oxidation isolation technology for a 16-bit CPU (0.35 // m). Please refer to Figures 1 A to 1 D, which shows a cross-sectional view of the process of a conventional manufacturing method. As shown in Figure 1A, A semiconductor substrate 10 has a buried insulating layer 12 and a semiconductor layer 14 with silicon (SOI) on the insulator as a starting material. Then, a pad oxide is grown on the semiconductor layer 4 After layer 16, a silicon nitride layer 8 is deposited on the pad oxide layer 6. Then, as shown in FIG. 1B, a lithography and surname process is performed to define the nitrogen < fossil evening layer 18 and the pad The oxide layer 16 is used to form the interwell isolation area 2000 and the intrawell isolation area 22. Furthermore, as shown in FIG. 1C, a regional oxidation process is performed on the semiconductor substrate 10 so that the interwell isolation area 20 and Semiconductor layer in the well isolation region 22
0503-6150TW;TSMC2000-0940,0941;ycchen.ptd 第6頁 513755 五、發明說明(3) 1 4被氧化成氧化矽層24而與埋藏絕緣層1 2形成連續之絕緣 層。 最後,如第1D圖所示,去除氮化矽層18。 SO I積體電路元件製程使用區域氧化法來形成絕緣層 以隔離N井區、P井區及井内區域,若井内是為部分隔離曰則 使得井體(wel Ι-body)可與本體偏壓(b〇dy bias)相互連 接,井間之全隔離可消除井間之交互作用,如鎖住討 干=lk n〇ise)等,而獲致s〇i積體電路之 減小的寄生電容之優點。 要達成井間之全隔離及井内之部分隔離,若 八 步驟形成井間及井内絕緣層,即單猶 刀 r- ,. 干竭形成井間之令 區,則a增加光罩次數與製程步驟 且會發生不對準的情形。 &成製程之複雜度, 為了解決上述問題,本發明之 自行對準金屬源/汲極之半導體元的即在提供一種具有 自行對準金屬源/没極取代傳統石夕換=造方法。其利用 化溫度及減小寄生電阻。 "雜源及極,以降低活 因此,本發明提供一種具有自^ 體元件的製造方法,包括下列步驟订對準井間隔離之半導 成一埋藏絕緣層及一半導體層;於·於一半導體基底上形 化物層;於此墊氧化物層上^成二此半導體層成長一墊氧《 層、此墊氧化物層及部分此^導硬罩幕層;於此硬罩幕 一井内隔離區;於此硬罩幕層上]層形成一井間隔離區及 間隔離區;自行對準去降二 %成一遮蔽層且露出此井 a际m开間隐魅 離區内之此半導體層;0503-6150TW; TSMC2000-0940, 0941; ycchen.ptd Page 6 513755 V. Description of the invention (3) 1 4 is oxidized to form a silicon oxide layer 24 to form a continuous insulating layer with the buried insulating layer 12. Finally, as shown in FIG. 1D, the silicon nitride layer 18 is removed. The SO I integrated circuit element process uses an area oxidation method to form an insulation layer to isolate the N well area, the P well area, and the well area. If the well is partially isolated, the well body (wel Ι-body) can be biased with the body. (B〇dy bias) is connected to each other, and the full isolation between the wells can eliminate the interaction between the wells, such as locking for discussion = lk n〇ise), etc., resulting in a reduced parasitic capacitance of the soi integrated circuit. advantage. To achieve full isolation between wells and partial isolation within the wells, if an eight-step formation of an interwell and an inner insulation layer, namely a single still knife r- ,. is done to form a command zone between the wells, a increase the number of masks and process steps And misalignment can occur. In order to solve the complexity of the manufacturing process, in order to solve the above problems, the semiconductor element of the self-aligned metal source / drain electrode of the present invention provides a method with a self-aligned metal source / electrode instead of the traditional stone chip replacement method. It utilizes temperature and reduces parasitic resistance. " Miscellaneous sources and electrodes to reduce activity. Therefore, the present invention provides a method for manufacturing a self-contained device, which includes the following steps: aligning a semiconducting layer between wells to form a buried insulating layer and a semiconductor layer; A semiconductor layer is formed on the semiconductor substrate; on the pad oxide layer, the semiconductor layer is grown into an oxygen pad layer, the pad oxide layer, and a part of the conductive hard mask layer; the hard mask is isolated in a well. Layer; on this hard cover curtain layer] layer to form an inter-well isolation zone and inter-isolation zone; self-align to reduce two% to form a shielding layer and expose the semiconductor layer in the well a-m open space hidden charm area ;
0503-6150TWF;TSMC2000.0940.0941ivcchen 第7頁 5137550503-6150TWF; TSMC2000.0940.0941ivcchen Page 7 513755
五、發明說明(4) *匕 去除此遮蔽層;以及形成一絕緣層填入此井間隔離隱 井内隔離區。 為讓本發明之上述目的、特徵及優點能更明顯易陳 下文特舉較佳實施例,並配合所附圖式,做詳細説明如 下0 圖式簡單說明 第1 A -1 D圖係顯示習知的製作方法之製程剖面圖。 第2 A-2E圖係顯示本發明實施例1之具有自行對準井間 隔離之半導體元件之製程剖面圖。 丨 第3 A - 3 D圖係顯示本發明實施例2之具有自行對準弁 隔離之半導體元件之製程剖面圖。 ^間 符號說明 10、60〜基底; 14、64〜半導體層; 18、68〜氮化矽層; 22、72、82〜井内隔離 24、76 '86 '88〜氧化 1 2、6 2〜埋藏絕緣層; 16、66〜塾氧化物層; 20、70、80〜井間隔離區 ;7 4、8 4〜光阻層; 層。 實施例1 本發明提供一種具有自行對準井間隔離之· 的製:方法。其利用自行對準方式而同時完 = 離及井内之部分隔離。 之王隔 首先’請參照第2A圖’在一半導體基底6〇上形成—埋V. Description of the invention (4) * Remove the shielding layer; and form an insulating layer to fill the isolation zone in the well. In order to make the above-mentioned objects, features, and advantages of the present invention more obvious and easy to present, preferred embodiments are described below, and in accordance with the accompanying drawings, detailed descriptions are as follows. Process cross-sectional view of known manufacturing method. Figures 2A-2E are cross-sectional views showing the manufacturing process of a semiconductor device with self-aligned interwell isolation in Embodiment 1 of the present invention.丨 3A-3D are cross-sectional views showing a process of a semiconductor device with self-alignment and isolation according to Embodiment 2 of the present invention. Symbols indicate 10, 60 ~ substrate; 14, 64 ~ semiconductor layer; 18, 68 ~ silicon nitride layer; 22, 72, 82 ~ in-well isolation 24, 76 '86 '88 ~ oxidation 1 2, 6 2 ~ buried Insulating layer; 16, 66 ~ hafnium oxide layer; 20, 70, 80 ~ well separation area; 7 4, 8 4 ~ photoresist layer; layer. Embodiment 1 The present invention provides a manufacturing method with self-aligned interwell isolation: a method. It utilizes self-alignment to simultaneously complete the separation and part isolation in the well. First of all, please "refer to Figure 2A" on a semiconductor substrate 60-buried
五、發明說明(5) 藏絕緣層62及一半導體層64,本眘 石夕(S Ο Ϊ)之晶圓為例,用以做為本則以一絕緣體上有 ⑻MOX)或是SmartCut0技術來得到。材枓’可利用植入氧 制。半導體層⑽層)64-般是厚^離但並不以此為限 料。埋藏絕緣㈣一般是Λ疋化 執-fi 1在丰導體層64上成長一墊氧化物層66 ’如使用 上形成-硬罩幕層68,如,於f氧化物層66 化條8,但並不以此為:: 沉積製程沉積一氮 化矽第=所示’施行微影及蝕刻製程來定義氮· ^層68、墊氧化物層66及部分之半導體層64以形成井間 (^ter-well)隔離區7〇及井内(intra_we⑴隔離㈣。微V. Description of the invention (5) The Tibetan insulating layer 62 and a semiconductor layer 64 are taken as an example. A wafer of Ben Shenshi Xi (S Ϊ Ϊ) is used as an example. It is obtained by using an insulator with MOX or SmartCut0 technology. . The material material can be implanted with oxygen. The semiconductor layer (layer) is generally thick but not limited to this. The buried insulating layer is generally Λ 疋 -Fi 1 grown on the abundance conductor layer 64 to form a pad oxide layer 66 'if used-a hard cover curtain layer 68, such as the oxide layer 66 on the f oxide layer 8, but This is not the case: The deposition process deposits a silicon nitride. The lithography and etching process is performed to define the nitrogen layer ^ layer 68, pad oxide layer 66, and a portion of the semiconductor layer 64 to form an interwell (^ ter-well) isolation zone 70 and intra_we (isolation) micro.
Git括一般傳統之曝光顯影技術,曝光技術包括光學 2 J曝先技術。蝕刻製程可使用等向性濕蝕刻製程、非 專向性乾蝕刻製程或反應離子蝕刻(Reactive ion etching,RIE)製程,但並不以此為限制。 〜其_人,如第2C圖所示,藉由微影製程於半導體基底6〇 =義一遮蔽層74,如光阻層74,使露出井間隔離區7〇。 :’利用姓刻製程自行對準去除井間隔離區7 〇上之半導 卞二64。微影程序包括一般傳統之曝光顯影技術,曝光技《 :11光學步進機曝光技術。蝕刻製程可使用等向性濕蝕 乂 ,耘、非等向性乾蝕刻製程或反應離子蝕刻製程,但並 不以此為限制。 然後’如第2D圖所示,於去除光阻層74後,沈積一絕Git includes the conventional exposure and development technology. The exposure technology includes the optical 2 J exposure technology. The etching process may use an isotropic wet etching process, a non-specific dry etching process, or a reactive ion etching (RIE) process, but it is not limited thereto. ~ Its person, as shown in FIG. 2C, the lithographic process is performed on the semiconductor substrate 60 = meaning a masking layer 74, such as a photoresist layer 74, so that the interwell isolation region 70 is exposed. : ’Self-alignment using the last name engraving process to remove semi-conductors on the well isolation zone 70 卞 2 64. The lithography program includes the conventional exposure and development technology, the exposure technology ": 11 optical stepper exposure technology. The etching process may use an isotropic wet etching process, an isotropic dry etching process, or a reactive ion etching process, but it is not limited thereto. Then, as shown in FIG. 2D, after removing the photoresist layer 74, a
513755513755
接著,去除氧化石夕層 導?基底60上的部分,如施行化學機械研 下其填在井間隔離區70及井内隔離區72中的部 緣層76, 7 2並覆蓋 7 6位於半 程,而留 分。 最後 性濕蝕刻 碎層6 8。 在上 半導體基 構及一對 本發 半導體層 層,使得 達到埋藏 制如第2Ε圖所示,去除氮化石夕層68,可施行等 1程使用氫氟酸或熱磷酸作為蝕刻劑來去除氮化 述實施例之後尚可施行傳統之積體電路程序,於 底上形成電晶體元件,電晶體元件包括一閘極結# 源極/汲極擴散區。 明之實施例1利用自行對準去除井間隔離區上之 ,再同時於井間隔離區及井内隔_區沈積絕緣 井間絕緣層可達到埋藏絕緣層而井内絕緣層不會 絕緣層,而完成井間之全隔離及井内之部分隔 實施例2 首先依照第2 Α圖,進行同實施例1之各項製程步驟與 程序,且同一標號為具有相同功能之元件。 《 然後’如第3 A圖所示,施行微影及蝕刻製程來定義氮 化石夕層68及墊氧化物層66以形成井間隔離區80及井内隔離 區82。微影程序包括一般傳統之曝光顯影技術,曝光技術 包括光學步進機曝光技術。蝕刻製程可使用等向性濕蝕刻Next, remove the oxide layer. The portion on the substrate 60, such as the marginal layers 76, 7 2 and 76 covering the inter-well isolation area 70 and the in-well isolation area 72, is located in the middle, leaving a space, for example, when chemical mechanical research is performed. Final wet etch fragmentation 6 8. On the upper semiconductor structure and a pair of intrinsic semiconductor layers, as shown in FIG. 2E, the nitrided layer 68 is removed, and the nitride can be removed by using hydrofluoric acid or hot phosphoric acid as an etchant for one pass. After the described embodiment, a conventional integrated circuit procedure can still be performed to form a transistor element on the bottom. The transistor element includes a gate junction source / drain diffusion region. The first embodiment of the invention uses self-alignment to remove the interwell isolation area, and then deposits the insulating interwell insulation layer on the interwell isolation area and the interwell isolation area at the same time to achieve the buried insulation layer and the in-well insulation layer does not have the insulation layer. Full isolation between wells and partial separation within the wells Example 2 First, according to Figure 2A, the process steps and procedures of the same embodiment 1 are performed, and the same reference numerals are components with the same function. << Then, as shown in FIG. 3A, a lithography and etching process is performed to define a nitrided oxide layer 68 and a pad oxide layer 66 to form an interwell isolation region 80 and an intrawell isolation region 82. The lithography process includes the conventional exposure and development technology, and the exposure technology includes the optical stepper exposure technology. Isotropic wet etching
以I為非等向性乾蝕刻製程或反應離子蝕刻製程,但並不 限制。 其次, 上弋義一遮 !著,利用 一自行對準 巧由錯、銦 傳統之曝光 術。 如第3B圖所示,藉由微影製程於半導體基底6〇 蔽層84,如光阻層84,使露出井間隔離^8〇。 一重離子對於井間隔離區80之半導體層64施行 預先非晶質摻雜製程。其中,所使用之重離子 、銻、氬、砷或氧中選用。微影程序包括一般 顯影技術,曝光技術包括光學步進機曝光技 再者,如第3C圖所示,對於半導體基底6〇上施行一區· 妙製程使得井間隔離區8〇之半導體層64被氧化成氧化 =86而與埋藏絕緣層62形成連續之絕緣層,在此同時井 隔離區82之半導體層64亦被氧化成氧化矽層88。 最後,如第3D圖所示,去除氮化矽層68,可施行等向 濕蝕刻製程使用氫氟酸或熱磷酸作為蝕刻劑來去除氮 矽層6 8。 在上述實施例之後尚可施行傳統之積體電路程序,於 “導體基底上形成電晶體元件,電晶體元件包括一閘極結 構及一對源極/汲極擴散區。 本發明之實施例2利用一重離子對於井間隔離區施行_ 一預,非晶質摻雜製程以促進井間氧化層的成長,當進行 區域氧化步驟時,可藉由調整製程相關參數,如溫度、時 間、氣氛等,使得井間氧化層可達到埋藏絕緣層而井内氧 化層不會達到埋藏絕緣層,而完成井間之全隔離及井内之I is an anisotropic dry etching process or a reactive ion etching process, but it is not limited. Secondly, the upper righteousness is covered by a traditional exposure technique using self-alignment Qiaoyouzuo and Indium. As shown in FIG. 3B, a lithography process is used on the semiconductor substrate 60 to shield the layer 84, such as a photoresist layer 84, to isolate the exposed wells from each other. A heavy ion performs a pre-amorphous doping process on the semiconductor layer 64 of the inter-well isolation region 80. Among them, the heavy ions used, antimony, argon, arsenic or oxygen are selected. The lithography process includes general development technology, and the exposure technology includes an optical stepper exposure technology. As shown in FIG. 3C, a region on the semiconductor substrate 60 is implemented. The process makes the semiconductor layer 64 of the interwell isolation region 80. It is oxidized to oxidation = 86 and forms a continuous insulating layer with the buried insulating layer 62. At the same time, the semiconductor layer 64 of the well isolation region 82 is also oxidized to a silicon oxide layer 88. Finally, as shown in FIG. 3D, the silicon nitride layer 68 is removed, and an isotropic wet etching process may be performed using hydrofluoric acid or hot phosphoric acid as an etchant to remove the silicon silicon layer 68. After the above embodiments, a conventional integrated circuit program can be implemented to form a transistor element on a "conductor substrate. The transistor element includes a gate structure and a pair of source / drain diffusion regions. Embodiment 2 of the present invention Use of a heavy ion to implement the interwell isolation region_ A preliminary, amorphous doping process to promote the growth of interwell oxidation layer, when performing the regional oxidation step, you can adjust the process related parameters, such as temperature, time, atmosphere, etc. So that the inter-well oxide layer can reach the buried insulation layer and the intra-well oxide layer will not reach the buried insulation layer, and complete isolation between wells and in-well
513755 五、發明說明(8) 部分隔離。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。513755 5. Description of the invention (8) Partial isolation. Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art can make some modifications and retouching without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be determined by the scope of the attached patent application.
0503-6150TWF;TSMC2000-0940,0941;yc chen.p t d 第12頁0503-6150TWF; TSMC2000-0940,0941; yc chen.p t d p. 12
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90116333A TW513755B (en) | 2001-07-04 | 2001-07-04 | Manufacture method of semiconductor device with self-aligned inter-well isolation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90116333A TW513755B (en) | 2001-07-04 | 2001-07-04 | Manufacture method of semiconductor device with self-aligned inter-well isolation |
Publications (1)
Publication Number | Publication Date |
---|---|
TW513755B true TW513755B (en) | 2002-12-11 |
Family
ID=27752295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW90116333A TW513755B (en) | 2001-07-04 | 2001-07-04 | Manufacture method of semiconductor device with self-aligned inter-well isolation |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW513755B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1318917C (en) * | 2002-12-27 | 2007-05-30 | 海力士半导体有限公司 | Method for producing semiconductor device using argon fluoride exposure light source |
-
2001
- 2001-07-04 TW TW90116333A patent/TW513755B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1318917C (en) * | 2002-12-27 | 2007-05-30 | 海力士半导体有限公司 | Method for producing semiconductor device using argon fluoride exposure light source |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5573961A (en) | Method of making a body contact for a MOSFET device fabricated in an SOI layer | |
KR100445923B1 (en) | A METHOD TO FABRICATE A STRAINED Si CMOS STRUCTURE USING SELECTIVE EPITAXIAL DEPOSITION OF Si AFTER DEVICE ISOLATION FORMATION | |
US6200866B1 (en) | Use of silicon germanium and other alloys as the replacement gate for the fabrication of MOSFET | |
US6611023B1 (en) | Field effect transistor with self alligned double gate and method of forming same | |
JP2647134B2 (en) | Method for manufacturing semiconductor device | |
JP2003512724A (en) | Field effect transistor with non-floating body and method for forming the transistor on a bulk silicon wafer | |
KR970023995A (en) | Trench element isolation | |
TW200421594A (en) | Self-aligned planar double-gate process by amorphization | |
JP2002506579A (en) | Method of forming side dielectric insulated semiconductor device and MOS semiconductor device manufactured by this method | |
US6897122B1 (en) | Wide neck shallow trench isolation region to prevent strain relaxation at shallow trench isolation region edges | |
US5915181A (en) | Method for forming a deep submicron MOSFET device using a silicidation process | |
JP2895845B2 (en) | Method for simultaneously forming polysilicon gate and polysilicon emitter in semiconductor device | |
JPH07153839A (en) | Integrated circuit with self-alignment separation | |
JPS59208851A (en) | Semiconductor device and manufacture thereof | |
JP4110089B2 (en) | Manufacturing method of double gate type field effect transistor | |
JPH07153952A (en) | Semiconductor device and manufacture thereof | |
TW513755B (en) | Manufacture method of semiconductor device with self-aligned inter-well isolation | |
KR0151053B1 (en) | Fabrication method of semiconductor device with soi structure | |
EP0615282A2 (en) | Methods for making MOSFET's with drain separated from channel | |
JPH05299497A (en) | Semiconductor device and manufacture of the same | |
JPS60241261A (en) | Semiconductor device and manufacture thereof | |
JPH09148449A (en) | Manufacture of semiconductor device | |
KR101130331B1 (en) | An advanced technique for forming transistors having raised drain and source regions with different height | |
JP3645032B2 (en) | A method for producing a silicon quantum wire structure. | |
TW200411778A (en) | Short channel transistor fabrication method for semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |