JPS59937A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59937A
JPS59937A JP10931782A JP10931782A JPS59937A JP S59937 A JPS59937 A JP S59937A JP 10931782 A JP10931782 A JP 10931782A JP 10931782 A JP10931782 A JP 10931782A JP S59937 A JPS59937 A JP S59937A
Authority
JP
Japan
Prior art keywords
active region
etching
region
insulating film
thick insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10931782A
Other languages
Japanese (ja)
Inventor
Shuichi Oya
大屋 秀市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP10931782A priority Critical patent/JPS59937A/en
Publication of JPS59937A publication Critical patent/JPS59937A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To form an active region pattern which has almost no conversion error for a mask pattern by forming an impurity layer shallowly on a nonactive region and deeply on the active region. CONSTITUTION:Impurity ions of the same conductive type as a substrate 1 are implanted simultaneously on a nonactive region 4 covered with a thick insulating film 2 and on an active region exposed on the surface of the substrate, thereby simultaneously forming the shallow impurity layer 8 to become a channel stopper on the nonactive region 4 and a deep impurity layer for preventing a punch through between a source and a drain on the channel region 11 of an active region 6 and particularly on an MOS transistor channel region 11. In this manner, the channel stopper impurity layer can be formed in a self-aligning manner on the active region.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関し、特にMO8集積
回路における素子間分離方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for isolating elements in an MO8 integrated circuit.

従来MO8集積回路の素子間分離法として基板に埋設せ
る酸化膜を設ける選択酸化法が一般に使用されている。
Conventionally, a selective oxidation method in which an oxide film is provided buried in a substrate has been generally used as a device isolation method for MO8 integrated circuits.

この選択酸化法は、活性領域を耐酸化性材料で覆い、非
活性領域のシリコン表面を厚く酸化する。また、耐酸化
性材料パターンをマスクにして、非活性領域のシリコン
基体中にのみいわゆるチャネルストッパ不純物を導入す
ることができる。これにより、活性領域に自己整合的に
非活性領域の厚いシリコン酸化膜の形成と、チャネルス
トッパ不純物層の形成が可能とな!0 、MOB集積回
路の高集積化に大きく貢献してきた。
This selective oxidation method covers the active region with an oxidation-resistant material and thickly oxidizes the silicon surface of the non-active region. Furthermore, using the oxidation-resistant material pattern as a mask, a so-called channel stopper impurity can be introduced only into the silicon substrate in the non-active region. This makes it possible to form a thick silicon oxide film in the inactive region and a channel stopper impurity layer in a self-aligned manner in the active region! 0, has greatly contributed to the high integration of MOB integrated circuits.

しかし、最近のMO8集積回路の微細化、高性能化から
の要求に対してこの選択酸化法では応じきれない不都合
が生じてきft、この選択酸化法の有する第一の不都合
は、非活性領域のシリコンを厚く酸化する模に、耐酸化
性材料で覆われた活性領域に、バーズビークと呼ばれる
酸化膜のくい込みが発生することである。バーズビーク
の大きさハ、製造プロセスによって異なるが、非活性領
域上のシリコン酸化膜厚に近い値だけ、活性領域中へ侵
入し、活性領域が縮むこと全考慮する必要がある。特に
、チャネル幅の小さなMOS)ランジスタにおいては、
バーズビークによるチャネル幅減少はトランジスタの特
性に大きな影響を及ぼす為に、その妙計値を、端的には
、バーズビーク量の2倍よりも小さくできない。第二の
不都合は。
However, this selective oxidation method has been unable to meet the recent demands for miniaturization and higher performance of MO8 integrated circuits.The first disadvantage of this selective oxidation method is that the inactive region In the active region covered with an oxidation-resistant material, an oxidation film called a bird's beak appears, imitating the thick oxidation of silicon. Although the size of the bird's beak varies depending on the manufacturing process, it is necessary to take into account that the bird's beak penetrates into the active region by a value close to the thickness of the silicon oxide film on the non-active region, causing the active region to shrink. Especially in MOS transistors with small channel width,
Since the channel width reduction due to the bird's beak has a large effect on the characteristics of the transistor, the optimum value cannot be made smaller than twice the bird's beak amount. The second inconvenience is.

耐酸化性材料をマスクとして、基体の非活性領域を厚く
酸化する工程が、活性領域と非活性領域の境界に大きな
応力を発生させる為に、転位等の結晶欠陥が発生し易く
、ジャン゛クションリークの原因となシ得ることである
The process of thickly oxidizing the non-active region of the substrate using an oxidation-resistant material as a mask generates large stress at the boundary between the active region and the non-active region, making it easy for crystal defects such as dislocations to occur, resulting in junctions. This will not cause leaks.

本発明の目的は上記の従来の選択酸化法の不都合を取り
除きMO8集積回路の高集積化に適した素子間分離構造
の製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing an isolation structure suitable for high integration of MO8 integrated circuits, which eliminates the disadvantages of the conventional selective oxidation method.

本発明は、−導電型半導体基体上に厚い絶縁膜を形成す
る工程と、耐エツチング材料を用いて、将来非活性領域
となる領域を覆うパターンを形成する工程と、このパタ
ーンをエツチングマスクとして、活性領域上の厚い絶縁
膜をエツチング除去する工程と、半導体基体全面に、基
体と同導電型でかつ基体よりも高濃度の不純物を前記の
厚い絶縁膜を貫通するに充分な加速エネルギでイオン打
ち込みして、非活性領域には浅く、活性領域には深く前
記の不純物層を形成する工程とを含むことを骨子とする
The present invention comprises: - a step of forming a thick insulating film on a conductive semiconductor substrate; a step of forming a pattern using an etching-resistant material to cover a region that will become an inactive region in the future; and using this pattern as an etching mask. A step of etching away the thick insulating film on the active region, and implanting ions into the entire surface of the semiconductor substrate with an impurity of the same conductivity type as the substrate and at a higher concentration than the substrate with sufficient acceleration energy to penetrate the thick insulating film. The main point is to form the impurity layer shallowly in the non-active region and deeply in the active region.

さらに本発明は、上記の構成に加えて、特に活性領域上
の厚い絶縁膜をエツチング除去する工程が、厚い絶縁膜
表面に、次工程の等方的エツチング法に対して、増速エ
ツチング効果を有する表面層を形成する工程と、耐エツ
チング羽料パターンをマスクとして、活性領域上の厚い
絶縁膜の一部を等方的工、チング法によって工、チング
し、次いで活性領域上の残された部分の絶縁膜を異方的
工、チング法によってエツチング除去する工程とから成
ること全骨子とする。
Furthermore, in addition to the above-mentioned structure, the present invention particularly provides that the step of etching away the thick insulating film on the active region has an accelerated etching effect on the surface of the thick insulating film with respect to the isotropic etching method in the next step. Using the etching-resistant feather pattern as a mask, a part of the thick insulating film on the active region is etched and etched by an isotropic etching method, and then the etching-resistant feather pattern is used as a mask. The entire process consists of etching and removing the insulating film in a portion using an anisotropic process and a etching method.

本発明によれば、活性領域の形状決足は、エツチングに
よるから、従来の選択酸化法によるバーズビークの発生
はなく、通常はフォトレジストとiスキング技術による
ところの耐工、チングマスクパターンの製造技術と絶縁
農工、チング技術の許容する寸法まで、活性領域の微細
化が化膜である。現在の、一般的な異方性の強い工、チ
ング技術、例えば几IE(リア)ティプイオンエ、チン
グ)vI−用いれば、マスクパターンに対して、はとん
ど変換誤差の無い活性領域パターンの形成は容易である
According to the present invention, since the shape of the active region is determined by etching, there is no occurrence of bird's beaks caused by conventional selective oxidation methods. The miniaturization of the active region to the dimensions allowed by insulation technology and coating technology is a chemical film. If current general techniques with strong anisotropy are used, such as ⇠IE (rear) tipion etching, ching), it is possible to form active region patterns with almost no conversion errors for mask patterns. is easy.

更に、第二の発明の如き、エツチング方法を使用すれば
、活性領域を取り囲む厚い絶縁膜の側壁に適当な傾斜を
設けることが可能で、これは上層の配線層の断線防止に
有効である。
Furthermore, by using the etching method as in the second invention, it is possible to provide an appropriate slope to the sidewalls of the thick insulating film surrounding the active region, which is effective in preventing disconnection in the upper wiring layer.

本発明では厚い絶縁膜で覆われた非活性領域と、基体表
面の露出した活性領域に同時に、基体と同導電型で高濃
度の不純物イオンを打ち込むことによシ、非活性領域で
は、いわゆるチャネルスト。
In the present invention, by simultaneously implanting highly concentrated impurity ions of the same conductivity type as the substrate into the non-active region covered with a thick insulating film and the active region exposed on the surface of the substrate, the non-active region has a so-called channel. Strike.

パ層となる浅い不純物層を、また活性領域、特にMOB
)ランジスタのチャネル領域では、ソース・ドレイン間
のパンチスルー防止用の深い不純物層を同時に形成する
。これによって、チャネルストッパ不純物層は、活性領
域に自己整合的に形成されることになる。
A shallow impurity layer that becomes a para layer is also used in the active region, especially in the MOB.
) In the channel region of the transistor, a deep impurity layer is simultaneously formed to prevent punch-through between the source and drain. As a result, the channel stopper impurity layer is formed in a self-aligned manner with the active region.

また、本発明によれば耐酸化性材料をマスクとした厚い
熱酸化膜の形成というような、大きな局部応力を発生さ
せる工程が不要となカ、基体中の結晶欠陥の発生を最小
限に抑えることができる。
Furthermore, according to the present invention, there is no need for a process that generates large local stress, such as forming a thick thermal oxide film using an oxidation-resistant material as a mask, and the occurrence of crystal defects in the substrate is minimized. be able to.

以下に不発8At実施例に基すき、詳しく説明する。A detailed explanation will be given below based on an unexploded 8At example.

以下の実施例はNチャネル型MO8集積回路に適用する
場合について述べるが、一般的なMO8集積回路に適用
することは容易である。
The following embodiments will be described with reference to the case where they are applied to an N-channel type MO8 integrated circuit, but they can easily be applied to a general MO8 integrated circuit.

P型単結晶シリコン基体1上に、熱酸化法にょJ600
0Aのシリコン酸化膜2金成長する。これは、もちろん
、CVD或は、スパッタリング等で形成される堆積膜で
もさしつかえない。次に、厚いシリコン酸化膜2の表面
上に、リン15Qkevの加速エネルギーでlXl0”
7cm2 のドーズ量だけイオン注入して、シリコン酸
化膜2表面近傍に、イオン注入層3を形成する。次に、
通常の7オトレジストとマスキングの技術を用いて将来
非活性領域となる領域4′t−覆うフォトレジストパタ
ーン5を形成し、第1図(a)の断面形状を得る。
Thermal oxidation method J600 was applied on the P-type single crystal silicon substrate 1.
A silicon oxide film of 2 gold is grown at 0A. Of course, this may also be a deposited film formed by CVD, sputtering, or the like. Next, on the surface of the thick silicon oxide film 2, lXl0'' is applied with acceleration energy of phosphorus 15Qkev.
Ion implantation is performed at a dose of 7 cm 2 to form an ion implantation layer 3 near the surface of the silicon oxide film 2 . next,
A photoresist pattern 5 covering a region 4't- which will become an inactive region in the future is formed using conventional photoresist and masking techniques to obtain the cross-sectional shape shown in FIG. 1(a).

次に、HF系工、チンダ液により、シリコン酸化膜2を
約500OAだけエツチング除去すると、イオン注入層
3は非注入領域のシリコン酸化膜よりもエツチングレー
トが速い為に、第1図(b)のごとく、緩やかな傾斜1
持つ形状が得られる。
Next, when the silicon oxide film 2 is etched away by approximately 500 OA using an HF-based etching agent and a tinting liquid, the etching rate of the ion-implanted layer 3 is faster than that of the silicon oxide film in the non-implanted region, as shown in FIG. 1(b). As shown, gentle slope 1
You can get the shape you want.

その後CFJ系ガスを用いたRI E(リアクティブイ
オンエツチング)により、活性領域上の残9のシリコン
酸化膜2をエツチング除去し、活性領域6の形状を決定
し、第1図(C)を得る。この様にして得られる第1図
(C)では、上方で緩やかなテーパを有し、下部では、
フォトレジストパターンからほとんど変換誤差の無い側
壁7を実現できる。
Thereafter, the remaining 9 silicon oxide films 2 on the active region are etched and removed by RIE (reactive ion etching) using CFJ-based gas, and the shape of the active region 6 is determined to obtain FIG. 1(C). . In FIG. 1(C) obtained in this way, the upper part has a gentle taper, and the lower part has a
The sidewall 7 with almost no conversion error can be realized from the photoresist pattern.

不実施例では、側壁7に、テーパをつける為に、シリコ
ン酸化膜2の表面にリンイオン注入層3を、HF系工、
チンダ液に対する増速エツチング層として形成したが、
必要とするテーパに応じて、イオン打込のエネルギドー
ズ量の変更、更には、リン以外のイオン種を用いること
が可能であるし、また、リンシリカ・ガラス等のエツチ
ング速度の速い膜の堆積によっても同様の効果を達成で
き、製造プ日セメに合わせて適宜選択できる。
In the non-embodiment, a phosphorus ion implantation layer 3 was applied to the surface of the silicon oxide film 2 using an HF-based process to form a taper on the sidewall 7.
It was formed as a speed-enhancing etching layer for the tinda solution, but
Depending on the required taper, it is possible to change the energy dose of ion implantation, use ion species other than phosphorus, and deposit a film with a high etching rate such as phosphorus silica glass. can achieve the same effect and can be selected appropriately according to the manufacturing schedule.

次に、厚いシリコン酸化膜2上の7オトレジスト膜を除
去し、P型溝電型不純物であるポロン全3QQkevの
加速エネルギでlXl0 7cmのドーズ量だけ基体1
0表面全面にイオン打ち込みする。この時非活性領域4
では、厚いシリコン酸化膜2が存在する為に、分布中心
が基体表面から約200OAの深さにある浅いボロン注
入領域8が、また、活性領域5では、打込イオンを阻止
するシリコン酸化膜が存在しない為に、ボロンイオンの
分布中心がシリフン表面から約800OAの深さに位置
する深いボロン注入領域9が形成され第1図(d)を得
る。第1図(d)の如き構造においては、非活性領域4
のシリコン基体1表面近傍に高濃度ボロン領域が存在し
、チャネルスト、パとなる為に高いフィールド反転電圧
が得られるが、活性領域6においては、高濃度ボロン領
域が深い位置に存在する為に、MOS)ランジスタのス
レショルド電圧の上昇はそれ程大きくない。
Next, the photoresist film 7 on the thick silicon oxide film 2 is removed, and the substrate 1 is removed by a dose of l
0Ion implantation into the entire surface. At this time, the inactive area 4
In this case, due to the presence of the thick silicon oxide film 2, there is a shallow boron implanted region 8 whose distribution center is approximately 200 OA deep from the substrate surface, and in the active region 5, there is a silicon oxide film that blocks implanted ions. Since there is no boron ion, a deep boron implanted region 9 is formed in which the distribution center of boron ions is located at a depth of about 800 OA from the silicon surface, resulting in the formation of FIG. 1(d). In the structure shown in FIG. 1(d), the non-active region 4
A high concentration boron region exists near the surface of the silicon substrate 1 and serves as a channel striker, resulting in a high field reversal voltage. , MOS) The increase in the threshold voltage of the transistor is not so large.

更に、チャネル領域の深い位置に存在する高濃度ボロン
は、ソース・ドレイン間のパンチスルー防止不純物層と
しての役割りを担うことができる。
Further, the highly concentrated boron present deep in the channel region can serve as an impurity layer to prevent punch-through between the source and drain.

次に、活性領域6のシリコン基体表面に、通常の熱酸化
法によりゲートシリコン酸化膜10を成長し、スレショ
ルド電圧調整用の不純物イオン打ち込みを行ない、不純
物層11’t−形成し第1図(e)を得る。ここで、ス
レショルド電圧調整用不純物層11の形成条件は、先の
チャネルスト、パ及び、パンチスルー防止用ボロン領域
の形成条件と密接に関連しており、必要に応じて任意に
設定できる。
Next, a gate silicon oxide film 10 is grown on the silicon substrate surface of the active region 6 by a normal thermal oxidation method, and impurity ions for threshold voltage adjustment are implanted to form an impurity layer 11't-. obtain e). Here, the conditions for forming the threshold voltage adjusting impurity layer 11 are closely related to the conditions for forming the channel strike, impurity, and punch-through prevention boron regions described above, and can be arbitrarily set as necessary.

もちろん、先のボロンイオン打ち込み条件も、フィール
ド反転電圧、MUD)ランジスタのスレショルド電圧、
パンチスルー電圧の目標値に合わせて適当に変更し得る
Of course, the above boron ion implantation conditions also apply to the field reversal voltage, MUD) transistor threshold voltage,
It can be changed appropriately according to the target value of the punch-through voltage.

以下、集積回路装置完成までの工程は、公知となってい
る任意のNチャネル型MO8型デバイスの製造方法を適
用でき、本発明にとって本質的ではないので省略する。
Hereinafter, any known N-channel type MO8 type device manufacturing method can be applied to the steps up to completion of the integrated circuit device, and since they are not essential to the present invention, they will be omitted.

以上の如く1本発明の実施例によれば、工、チングマス
クパターンに対して、はとんど変換誤差のない活性領域
の形成と、活性領域に内含整合的なチャネルスト、バネ
純物層が形成される事が示された。また、活性領域の形
状決電工、チングの選択によシ非活性領域との間に生ず
る厚いシリコン酸化膜の段部に、適当なテーパをつけ得
ることが示された。
As described above, according to an embodiment of the present invention, it is possible to form an active region with almost no conversion error and to form a matching channel strike and spring pure layer in the active region with respect to a processing mask pattern. It was shown that a layer was formed. Furthermore, it has been shown that by determining the shape of the active region and selecting the electrical process and the coating, it is possible to provide an appropriate taper to the stepped portion of the thick silicon oxide film that occurs between the active region and the non-active region.

上述の実施例は、単に例示の為のものであり、本発明が
これに限定されるものでないことは実施例本文から明ら
かである。即ち、本発明の要旨を免税しない範囲で、特
に個々の工程の内容は幾通フにも変更可能である。
It is clear from the text of the examples that the above-described examples are merely for illustrative purposes and the invention is not limited thereto. That is, the contents of individual steps can be modified in any number of ways without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(8)は本発明の一実施例の製造方法を
工程順に説明する断面図である。 なお図において、 1・・・・・・P型単結晶シリコン基体、2・・・・・
・厚いシリコン醸化膜、3・・・・・・増速エツチング
層、4・・・・・・非活性領域、5・・・・・・フォト
レジスト膜、6・・・・・・活性領域、7・・・・・・
活性領域側壁、8・・・・・・浅いボロン注入領域、9
・稈・・深いボロン注入領域、10・・・・・・ゲート
シリコン酸化膜、11・・・・・・スレショルド電圧調
整用不純物層、である。
FIGS. 1(a) to 1(8) are cross-sectional views illustrating a manufacturing method according to an embodiment of the present invention in the order of steps. In the figure, 1... P-type single crystal silicon substrate, 2...
・Thick silicon enhancement film, 3... speed-up etching layer, 4... inactive region, 5... photoresist film, 6... active region ,7...
Active region sidewall, 8...Shallow boron implantation region, 9
- Culm: deep boron implantation region, 10: gate silicon oxide film, 11: threshold voltage adjustment impurity layer.

Claims (2)

【特許請求の範囲】[Claims] (1)−導電型半導体基体上に厚い絶縁膜を形成する工
程と、耐エツチング材料を用いて非活性領域となる領域
を覆う工程と、該耐エツチング材料をマスクとして、活
性領域上のNil記厚い絶縁膜をエツチング除去する工
程と、前記半導体基体全面に一導電型不純物を前記厚い
絶縁膜全貫通するに充分な加速エネルギでイオン打ち込
みして、該不純物を前記活性領域の基体中で、前記非活
性領域の基体中におけるよりも深くまで導入する工程と
を含むことを特徴とする半導体装置の製造方法。
(1) - A step of forming a thick insulating film on a conductive semiconductor substrate, a step of covering a region that will become a non-active region using an etching-resistant material, and a step of forming a Nil mark on an active region using the etching-resistant material as a mask. etching away the thick insulating film, and ion implanting impurities of one conductivity type into the entire surface of the semiconductor substrate with sufficient acceleration energy to completely penetrate the thick insulating film, and implanting the impurities into the substrate in the active region. 1. A method for manufacturing a semiconductor device, comprising the step of introducing the non-active region deeper into the substrate.
(2)活性領域上の厚い絶縁膜を工、チング除去する工
程が特に、前記厚い絶縁膜表面に次工程の等方的エツチ
ング方法に対して増速工、チング効果を有する表面層を
形成する工程と、耐エツチング材料をマスクとして、活
性領域上の厚い絶縁膜の一部を等方的なエツチング方法
で工。 チング除去する工程と、次いで前記活性領域上の厚い絶
縁膜の残部を異方的な工、チング方法でエツチング除去
する工程とを含んで構成さ・・れることを特徴とする特
許請求の範囲第(1)項記載の半導体装置の製造方法。
(2) The step of removing the thick insulating film on the active region by etching and etching particularly forms a surface layer on the surface of the thick insulating film that has a speed-up and etching effect for the isotropic etching method in the next step. Using an etching-resistant material as a mask, a portion of the thick insulating film over the active region is etched using an isotropic etching method. and then etching away the remainder of the thick insulating film on the active region using an anisotropic etching method. A method for manufacturing a semiconductor device according to item (1).
JP10931782A 1982-06-25 1982-06-25 Manufacture of semiconductor device Pending JPS59937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10931782A JPS59937A (en) 1982-06-25 1982-06-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10931782A JPS59937A (en) 1982-06-25 1982-06-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59937A true JPS59937A (en) 1984-01-06

Family

ID=14507147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10931782A Pending JPS59937A (en) 1982-06-25 1982-06-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59937A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034335A (en) * 1987-05-26 1991-07-23 U.S. Philips Corp. Method of manufacturing a silicon on insulator (SOI) semiconductor device
JPH03257946A (en) * 1990-03-08 1991-11-18 Matsushita Electron Corp Semiconductor device and manufacture thereof
US5342803A (en) * 1993-02-03 1994-08-30 Rohm, Co., Ltd. Method for isolating circuit elements for semiconductor device
US5821145A (en) * 1994-07-28 1998-10-13 Lg Semicon Co., Ltd. Method for isolating elements in a semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034335A (en) * 1987-05-26 1991-07-23 U.S. Philips Corp. Method of manufacturing a silicon on insulator (SOI) semiconductor device
JPH03257946A (en) * 1990-03-08 1991-11-18 Matsushita Electron Corp Semiconductor device and manufacture thereof
US5342803A (en) * 1993-02-03 1994-08-30 Rohm, Co., Ltd. Method for isolating circuit elements for semiconductor device
US5821145A (en) * 1994-07-28 1998-10-13 Lg Semicon Co., Ltd. Method for isolating elements in a semiconductor device

Similar Documents

Publication Publication Date Title
EP0077387A1 (en) Process for manufacturing cmos semiconductor devices
US6399448B1 (en) Method for forming dual gate oxide
JPH0697665B2 (en) Method of manufacturing integrated circuit structure
JP2929419B2 (en) Method for manufacturing semiconductor device
US4398964A (en) Method of forming ion implants self-aligned with a cut
JPH06318634A (en) Isolating method for element in semiconductor device
US6221736B1 (en) Fabrication method for a shallow trench isolation structure
JPS59937A (en) Manufacture of semiconductor device
KR940012493A (en) Integrated circuit manufacturing method
US5763316A (en) Substrate isolation process to minimize junction leakage
JPS61123152A (en) Separation of semiconductor device
US7061128B2 (en) Semiconductor device and manufacturing method of the same
US6291284B1 (en) Method of fabricating semiconductor device
JPS62298130A (en) Element isolation method
JPS5917865B2 (en) hand tai souchi no seizou houhou
JPS58200554A (en) Manufacture of semiconductor device
JP4180809B2 (en) Manufacturing method of semiconductor device
EP0111097B1 (en) Method for making semiconductor devices having a thick field dielectric and a self-aligned channel stopper
JPS6199376A (en) Manufacture of semiconductor device
KR100271661B1 (en) Method for fabricating semiconductor device
JPH0479336A (en) Production of semiconductor device
JPS60236247A (en) Manufacture of semiconductor device
KR100268867B1 (en) Semiconductor device and method for fabricating the same
KR19990053223A (en) Gate oxide film formation method of a semiconductor device
KR100337073B1 (en) Isolation method of semiconductor device