JPS6041539A - Apparatus for removing automatically deposited product - Google Patents

Apparatus for removing automatically deposited product

Info

Publication number
JPS6041539A
JPS6041539A JP15008883A JP15008883A JPS6041539A JP S6041539 A JPS6041539 A JP S6041539A JP 15008883 A JP15008883 A JP 15008883A JP 15008883 A JP15008883 A JP 15008883A JP S6041539 A JPS6041539 A JP S6041539A
Authority
JP
Japan
Prior art keywords
gas
reaction
discharge pipe
reaction vessel
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15008883A
Other languages
Japanese (ja)
Inventor
Masanobu Yoshida
吉田 公信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP15008883A priority Critical patent/JPS6041539A/en
Publication of JPS6041539A publication Critical patent/JPS6041539A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/002Avoiding undesirable reactions or side-effects, e.g. avoiding explosions, or improving the yield by suppressing side-reactions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00252Formation of deposits other than coke

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning In General (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To prevent clogging of a discharge pipe by excessive reaction product and to proceed reaction smoothly to cause a reaction in a reaction vessel by providing many small holes to discharge pipe for excessive reaction product fitted to the reaction vessel and ejecting gas from the pipe. CONSTITUTION:A seed bar 3 is suspended in a reaction vessel 1 and gaseous raw material is ejected from the bottom through an oxyhydrogen burner 2 and base material for optical fiber 4 is deposited to the tip of the seed bar 3 by causing flame hydrolysis. The excessive reaction product in the furnace is discharged from a discharge passage 5; many ejection holes 14 for gas are provided to the gas ejection pipe 12. The gas is fed from a gas feeding port 13 and ejected into the inside of the gas discharge pipe 12. The excessive reaction product is discharged together with the gas preventing clogging of the gas discharge pipe 12 due to deposition of the product on the inside surface of the gas discharge pipe 12. By this way, reaction conditions in the reaction vessel 1 are held always constant and variation of quality (distribution of refractive index) of the base material 4 is prevented.

Description

【発明の詳細な説明】 本発明は、反応容器から排気される反応余剰物が排気路
に付着堆積するのを防止する堆積物自動除去装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic deposit removal device that prevents reaction surpluses exhausted from a reaction vessel from depositing in an exhaust passage.

反応容器内に反応に必要な原料並びに反応媒体を供給し
所定の反応物を得る際には、反応余剰物を生じるため、
この反応余剰物等全圧送、吸引あるいは自然流動にて排
気するための排出路が一般に設けられている。このよう
な反応容器としてVAD法により光フアイバ母材を製造
する反応装置を第1図に示す。同図に示さ扛るように反
応容器1内にはシード棒3が垂直に吊り下げられ、該シ
ード棒3に対向して酸水素炎バーナ2がその底面に設置
されている。この酸水素炎バーナ2からガラス原料等を
噴出させてこれらを火炎加水分解反応させ、生成したガ
ラス微粒子をシード棒3に付着堆積させ、同時にシード
棒3を引き上げて多孔質母材4を製造している。この時
、ガラス原料、ガラス微粒子等は全て反応に参加し、シ
ード棒3に付着堆積するとは限らず、これらの残部を反
応余剰物として排出するための排出路5が反応容器1に
接続されている。この排出路5は図示省略の余剰物 処
理装置に接続されており、大半の反応余剰物はこの排出
路5を通じて余剰物処理装置に吸引されることとなる。
When supplying the raw materials and reaction medium necessary for the reaction into the reaction vessel to obtain the desired reactant, a reaction surplus is generated.
A discharge passage is generally provided for exhausting the reaction surplus by full pressure, suction, or natural flow. As such a reaction vessel, a reaction apparatus for producing an optical fiber preform by the VAD method is shown in FIG. As shown in the figure, a seed rod 3 is vertically suspended within the reaction vessel 1, and an oxyhydrogen flame burner 2 is installed on the bottom surface of the reaction vessel 1, facing the seed rod 3. Glass raw materials and the like are ejected from this oxyhydrogen flame burner 2 to cause a flame hydrolysis reaction, and the generated glass particles are deposited on a seed rod 3, and at the same time, the seed rod 3 is pulled up to produce a porous base material 4. ing. At this time, all of the glass raw materials, glass fine particles, etc. participate in the reaction and do not necessarily adhere to and accumulate on the seed rod 3. A discharge passage 5 is connected to the reaction vessel 1 to discharge the remainder as a reaction surplus. There is. This discharge path 5 is connected to a surplus treatment device (not shown), and most of the reaction surplus is sucked into the surplus treatment device through this discharge path 5.

しかし、火炎加水分解反応直後の反応余剰物は微細かつ
高温であるため排出路5内部を通過する際に冷却され、
排出路5の内壁に徐々に付着堆積し、ついには排気路5
の閉塞に到ることすらある。VAD法による光フアイバ
母材の製造方法において特に重要なことは、酸水素炎バ
ーナ2とシード棒3に至るまでの空間内のガラス微粒子
の分布が所定の屈折率分布が得られるように形成され、
このガラス微粒子の分布が所定の時間変動せずに維持さ
れdことである。しかし、上述のように排出路5に反応
余剰物が堆積物6として付着堆積して排出路5の径が挟
まり6、排出路5が閉塞すると、反応余剰物の排出量等
が変化し、ガラス微粒子の分布を上記のように維持する
ことができず所定の屈折率分布を得ることが困難となる
ばかりでなく、VAD法の特長である連続製造を不可能
としている。
However, since the reaction surplus immediately after the flame hydrolysis reaction is fine and has a high temperature, it is cooled when passing through the inside of the discharge passage 5.
It gradually adheres and accumulates on the inner wall of the exhaust passage 5, and finally the exhaust passage 5
It may even lead to blockage. What is particularly important in the method for producing an optical fiber base material by the VAD method is that the distribution of glass particles in the space between the oxyhydrogen flame burner 2 and the seed rod 3 is formed so that a predetermined refractive index distribution is obtained. ,
This distribution of glass particles is maintained without fluctuation for a predetermined period of time. However, as mentioned above, if the reaction surplus adheres and accumulates in the discharge path 5 as deposits 6 and the diameter of the discharge path 5 is pinched 6 and the discharge path 5 is blocked, the discharge amount of the reaction surplus changes, etc. The distribution of the fine particles cannot be maintained as described above, which not only makes it difficult to obtain a predetermined refractive index distribution, but also makes continuous production, which is a feature of the VAD method, impossible.

このように従来のVAD法による光フアイバ母材の反応
装置では、排出路5に反応余剰物が付着堆積するため、
反応容器内の反応条件を一定に維持できず、所定の屈折
率分布を有する光フアイバ母材を連続して製造すること
ができなかった。
In this way, in the conventional VAD-based optical fiber base material reaction device, reaction surplus adheres and accumulates in the discharge path 5.
It was not possible to maintain the reaction conditions in the reaction vessel constant, and it was not possible to continuously produce an optical fiber preform having a predetermined refractive index distribution.

本発明は、上記実情に鑑み、排出路に反応余剰物が付着
堆積するのを防止し、反応容器内の反応条件を一定に維
持することを目的とする。薪かる目的を達成する本発明
の構成は反応容器から反応余剰物を排気する排出路にお
いて、該排出路の内壁にガス噴出口を配設すると共に該
ガスの噴出口とガス供給源とを連通し、排出路に対する
前記反応余剰物の付着堆積を防止したことを特徴とする
In view of the above circumstances, it is an object of the present invention to prevent reaction surpluses from adhering and accumulating in the discharge path, and to maintain constant reaction conditions within the reaction vessel. The structure of the present invention that achieves the purpose of saving firewood is that a gas outlet is disposed on the inner wall of the exhaust passage for exhausting the reaction surplus from the reaction vessel, and the gas outlet is communicated with a gas supply source. The present invention is characterized in that the reaction surplus is prevented from adhering to and depositing on the discharge channel.

以下、本発明の堆積物自動除去装置を図面に示す実施例
に基づいて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The automatic deposit removal device of the present invention will be described in detail below based on embodiments shown in the drawings.

第2図に本発明の一実施例を示す。同図に示す実施例の
ように本発明ではガスを噴出して反応余剰物の付着堆積
を防止するようにしたものである。
FIG. 2 shows an embodiment of the present invention. In the present invention, as in the embodiment shown in the same figure, gas is ejected to prevent the reaction surplus from adhering and accumulating.

即ち反応容器(図示省略)に排出路として接続される排
気管12は同図に示すように二重管構造となっており、
内側の管の内壁にはガス噴出口14がその全面に亘って
多数個穿設されている。この排気管12にはガス供給口
13が突設され、このガス供給口】3とガス供給源(図
示省略)とがパイプ等にて接続されている。又この排気
管12と余剰物処理装置(図示省略)との間には排気管
11が介装されている。従って、反応容器から排気管1
2.11Wr通じて反応余剰物を余剰物処理装置に吸引
する際、ガス供給源からガス供給口13を通じて排気管
12にガスを供給しガス噴出口14よりガスを噴出させ
れば、反応余剰物は吹き飛ばされて排気管12の内壁に
付着堆積することがない。また、同図中に矢印で示すよ
うに、ガス噴出口14からのガス噴出方向を、反応余剰
物の吸引方向に向けて傾斜させたので、吸引効果の向上
に寄与できる。尚、使用するガスの種類には特に限定は
なく、またその噴出方法も常時でも間欠的でも良い。又
、ガスの噴出を間欠的とした場合には、中断中に反応余
剰物が内壁に付着堆積するが、この堆積物は噴出を再開
した時に吹き飛され、速やかに除去することができる。
That is, the exhaust pipe 12 connected to the reaction vessel (not shown) as a discharge path has a double pipe structure as shown in the figure.
A large number of gas jet ports 14 are provided in the inner wall of the inner tube over the entire surface thereof. A gas supply port 13 is provided protruding from the exhaust pipe 12, and the gas supply port 3 is connected to a gas supply source (not shown) via a pipe or the like. Further, an exhaust pipe 11 is interposed between the exhaust pipe 12 and a surplus processing device (not shown). Therefore, from the reaction vessel to the exhaust pipe 1
2. When sucking the reaction surplus into the surplus processing device through the 11 Wr, if gas is supplied from the gas supply source to the exhaust pipe 12 through the gas supply port 13 and the gas is ejected from the gas outlet 14, the reaction surplus can be removed. will not be blown away and deposited on the inner wall of the exhaust pipe 12. Further, as shown by the arrow in the figure, the direction of gas ejection from the gas ejection port 14 is inclined toward the suction direction of the reaction surplus, which can contribute to improving the suction effect. The type of gas used is not particularly limited, and the method of ejecting it may be constant or intermittent. Furthermore, when gas is ejected intermittently, reaction surpluses adhere to and accumulate on the inner wall during interruption, but these deposits are blown away when ejection is restarted and can be quickly removed.

以上、実施例に基づいて具体的に説明したように本発明
では排出路の内壁にガス噴出口を配設し、このガス噴出
口からガスを噴出させて反応余剰物を吹き飛ばすように
したので、排出路に反応余剰物が付着堆積し々くなった
。このため排気量等の排気条件が変わることもなく、反
応容器内の反応条件が一定に保持されるようになった。
As described above in detail based on the embodiments, in the present invention, a gas outlet is provided on the inner wall of the discharge passage, and the gas is ejected from the gas outlet to blow off the reaction surplus. Reaction surplus was often deposited in the exhaust channel. Therefore, the reaction conditions inside the reaction vessel were kept constant without changing the exhaust conditions such as the exhaust amount.

特に本発明1VAD法による光フアイバ母材の反応装置
に適用した場合には、排気条件が不変なため、酸水素炎
バーナからシード棒に至るまでの空間のガラス微粒子の
分布を時間変動せず一定に維持でき、所定の屈折率分布
を有する光フアイバ母材を連続して製造することが可能
となる。
In particular, when the present invention 1 is applied to a reaction device using an optical fiber base material using the VAD method, the exhaust conditions remain unchanged, so the distribution of glass particles in the space from the oxyhydrogen flame burner to the seed rod remains constant without time fluctuations. It becomes possible to continuously manufacture an optical fiber base material having a predetermined refractive index distribution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のVAD法による光フアイバ母材の反応装
置の概略構造図、第2図は本発明の堆積物自動除去装置
の一実施例の断面図である。 図 面 中、 11.12は排気管、 13はガス供給口、 14はガス噴出口である。 特許出願 人 住友電気工業株式会社 代理人 弁理士 光石士部(他1名) 第 1 図 第 2 図
FIG. 1 is a schematic structural diagram of a reaction device for an optical fiber base material using the conventional VAD method, and FIG. 2 is a sectional view of an embodiment of the automatic deposit removal device of the present invention. In the drawing, 11 and 12 are exhaust pipes, 13 is a gas supply port, and 14 is a gas jet port. Patent applicant: Sumitomo Electric Industries, Ltd. agent Patent attorney: Shibu Mitsuishi (and one other person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 反応容器から反応余剰物を排気する排出路において、該
排出路の内壁にガス噴出口を配設すると共に該ガス噴出
口とガス供給源とを連通し、排出路に対する前記反応余
剰物の付着堆積全防止したことを特徴とする堆積物自動
除去装置。
In a discharge passage for discharging reaction surplus from the reaction vessel, a gas outlet is disposed on the inner wall of the discharge passage, and the gas outlet is communicated with a gas supply source to prevent the reaction surplus from adhering to the discharge passage. An automatic deposit removal device that completely prevents deposits.
JP15008883A 1983-08-16 1983-08-16 Apparatus for removing automatically deposited product Pending JPS6041539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15008883A JPS6041539A (en) 1983-08-16 1983-08-16 Apparatus for removing automatically deposited product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15008883A JPS6041539A (en) 1983-08-16 1983-08-16 Apparatus for removing automatically deposited product

Publications (1)

Publication Number Publication Date
JPS6041539A true JPS6041539A (en) 1985-03-05

Family

ID=15489248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15008883A Pending JPS6041539A (en) 1983-08-16 1983-08-16 Apparatus for removing automatically deposited product

Country Status (1)

Country Link
JP (1) JPS6041539A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246232A (en) * 1984-05-18 1985-12-05 Nippon Sheet Glass Co Ltd Manufacture of optical fiber preform
EP0610930A3 (en) * 1993-02-10 1995-03-15 Sumitomo Electric Industries Process for production of glass preform for optical fiber and apparatus for the same.
US6006627A (en) * 1997-06-27 1999-12-28 Honda Giken Kogyo Kabushiki Kaisha Operation lever unit for engine-powered working machine
EP0967374A2 (en) 1998-06-26 1999-12-29 Honda Giken Kogyo Kabushiki Kaisha Operation-control lever unit for engine-powered working machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246232A (en) * 1984-05-18 1985-12-05 Nippon Sheet Glass Co Ltd Manufacture of optical fiber preform
EP0610930A3 (en) * 1993-02-10 1995-03-15 Sumitomo Electric Industries Process for production of glass preform for optical fiber and apparatus for the same.
US5639290A (en) * 1993-02-10 1997-06-17 Sumitomo Electric Industries, Ltd. Process for producing a glass preform for an optical fiber and apparatus for the same
CN1042523C (en) * 1993-02-10 1999-03-17 住友电气工业株式会社 Process for production of glass preform for optical fiber and apparatus for the same
US6006627A (en) * 1997-06-27 1999-12-28 Honda Giken Kogyo Kabushiki Kaisha Operation lever unit for engine-powered working machine
EP0967374A2 (en) 1998-06-26 1999-12-29 Honda Giken Kogyo Kabushiki Kaisha Operation-control lever unit for engine-powered working machine
US6209412B1 (en) 1998-06-26 2001-04-03 Honda Giken Kogyo Kabushiki Kaisha Operation-control lever unit for engine-powered working machine

Similar Documents

Publication Publication Date Title
JPS58145633A (en) Manufacture and device for light conductive preform
JP2867306B2 (en) Method and apparatus for producing semiconductor grade polycrystalline silicon
JP3362169B2 (en) Method and apparatus for producing carbon-coated optical fiber
US4435199A (en) Exhaust system for a vapor deposition chamber
JPS6041539A (en) Apparatus for removing automatically deposited product
JP3998450B2 (en) Porous optical fiber preform manufacturing equipment
WO1986002632A1 (en) Method and apparatus for the production of glass filaments
JP2006248884A (en) Method and apparatus for manufacturing porous glass preform
CN219217830U (en) High-purity low-hydroxyl quartz glass feeding device
JP4454992B2 (en) Optical fiber preform manufacturing equipment
JP5150365B2 (en) Apparatus and method for manufacturing glass preform for optical fiber
JP2010042940A (en) Apparatus and method for producing glass parent material
JP7399835B2 (en) Method for manufacturing porous glass deposit for optical fiber
JP4444941B2 (en) Porous glass base material manufacturing equipment
JPS62138338A (en) Device for automatically removing deposit
JP5655418B2 (en) Method and apparatus for producing porous glass base material
JP3619637B2 (en) Porous optical fiber preform manufacturing equipment
GB2143519A (en) Optical fibre preform manufacture
CN110736027A (en) Pressure linkage control system and method for multi-branch axial vapor deposition reaction
JP2010285330A (en) Method for producing glass porous body and apparatus for producing glass porous body
JP2005179077A (en) Method and apparatus for manufacturing porous preform, and synthetic quartz glass manufactured by using the method of manufacturing porous preform
JPH01242431A (en) Fine glass particle depositing device
JP4993337B2 (en) Porous glass base material manufacturing equipment
JP2006248824A (en) Method and apparatus for manufacturing glass
JPS6041540A (en) Apparatus for removing automatically deposited product