JPS6039831A - Treatment of semiconductor substrate - Google Patents
Treatment of semiconductor substrateInfo
- Publication number
- JPS6039831A JPS6039831A JP14776483A JP14776483A JPS6039831A JP S6039831 A JPS6039831 A JP S6039831A JP 14776483 A JP14776483 A JP 14776483A JP 14776483 A JP14776483 A JP 14776483A JP S6039831 A JPS6039831 A JP S6039831A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- susceptor
- gas
- reaction tube
- partition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
(al 発明の技術分野
本発明はプラズマ装置を用いて半導体基板に均一な表面
処理を行う処理方法に関する。DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a processing method for uniformly surface-treating a semiconductor substrate using a plasma apparatus.
(bl 技術の背景
現在LSIの製造には薄膜形成技術と写真蝕刻技術(ホ
トリックラフィ)が用いられるがこの工程にプラズマ装
置が使用されることが多い。すなわち酸化硅素(SiO
t)窒化硅素(SiN4)などの絶縁膜の形成、レジス
ト膜の除去或はウェハのエツチングなど処理はこの装置
を用いガスの種類を変えることにより行うことができる
。(bl Technology background) Currently, thin film formation technology and photolithography are used to manufacture LSIs, but plasma equipment is often used in this process.In other words, silicon oxide (SiO
t) Processing such as formation of an insulating film such as silicon nitride (SiN4), removal of a resist film, or etching of a wafer can be performed by using this apparatus and changing the type of gas.
こ\でこれらの処理は複数個のウェハを装置内に配列し
て行われるが総べてのウェア1表面に互って反応は均一
に行われることが必要条件となる。Although these treatments are carried out by arranging a plurality of wafers in the apparatus, it is necessary that the reaction be carried out uniformly on the surface of all the wafers 1.
(C1従来技術と問題点
プラズマ装[Kは高周波電界を印加する電極が反応室内
にあるものと反応室外にあるものがあり、また電極構造
により容量型と肪導型とがある。(C1 Prior Art and Problems) There are two types of plasma devices: one in which the electrode for applying a high-frequency electric field is located inside the reaction chamber, and another in which the electrode for applying a high-frequency electric field is located outside the reaction chamber, and there are also capacitive type and fat conductive type depending on the electrode structure.
第1図は外部電極方式をとる銹導型のプラズマ装置であ
って(4)は正面図、(B)は側断面図である。FIG. 1 shows a plasma device of a rust induction type employing an external electrode system, in which (4) is a front view and (B) is a side sectional view.
以下シリコン(St )ウエノ・上に窒化硅素(Si4
Ng)膜を直接窒化法により形成する場合を例にとりこ
の機能を説明する。反応室1は透明石英などで形成され
前方のキャップ部2にはガス供給口3があり、ガス、フ
ローメータなどを通じ一定流量のガス(この場合アンモ
ニアNHsを主成分としCF”4 、 CHFsなどの
補助ガスを反応促進剤として添加しである)を反応室1
内に供給すると共に排気口4は排気系に接続されて一定
の真空度に保たれている。一方Stウェハ5tl−乗せ
たサセプター16は石英製ホルダ6の上に配列されてキ
ャップ部2から挿入されており、反応管1の外側には高
周波コイル7が巻回されており、13.56MHzの高
周波電源8に結線されている。Silicon (St) wafer below, silicon nitride (Si4) on top
This function will be explained using an example in which a Ng) film is formed by direct nitriding. The reaction chamber 1 is made of transparent quartz, etc., and the front cap part 2 has a gas supply port 3, through which a constant flow of gas (in this case, ammonia NHs as the main component, CF"4, CHFs, etc.) is supplied through a gas, flow meter, etc. An auxiliary gas is added as a reaction promoter) into reaction chamber 1.
The exhaust port 4 is connected to an exhaust system and maintained at a constant degree of vacuum. On the other hand, a susceptor 16 carrying 5 tl of St wafers is arranged on a quartz holder 6 and inserted from the cap part 2, and a high frequency coil 7 is wound around the outside of the reaction tube 1, and a susceptor 16 of 13.56 MHz It is connected to a high frequency power source 8.
さて所定の真空度に達した状態で高周波電界を印加する
とガスは放電を開始してガスプラズマを発生し活性化し
たガスのラジカルはウニノーと反応すると共に残りは排
気口4t−通り排出される。Now, when a high frequency electric field is applied in a state where a predetermined degree of vacuum has been reached, the gas starts discharging and generates gas plasma, the activated gas radicals react with Uni-No, and the remainder is exhausted through the exhaust port 4t.
すなわちこの例の場合
381 + 4NHs−+SiN4 +6Hz”の反応
によりサセプター16に装着されたStウェハ5の表面
にはS i s N4の薄膜が形成される。That is, in this example, a thin film of Sis N4 is formed on the surface of the St wafer 5 mounted on the susceptor 16 by the reaction of 381 + 4NHs-+SiN4 +6Hz.
こ\で5LSN4薄膜の厚さは活性化したガス分子の基
板との衝突頻度により決定されるためガス流の流速分布
がウェハの各表面に互って均一でなければ均等厚の5i
sN4薄膜を作ることは困難である。Here, the thickness of the 5LSN4 thin film is determined by the frequency of collisions of activated gas molecules with the substrate, so if the flow velocity distribution of the gas flow is not uniform on each surface of the wafer, the thickness of the 5LSN4 thin film is determined by the collision frequency of activated gas molecules with the substrate.
It is difficult to make sN4 thin films.
然しウェハ5をセットしたサセプター16は作業効率を
高め不ため第1図に示すように円筒形の反応管1の中央
部にガス流に対し直角に配置しである関係で均一な厚さ
のSi、N、膜を作ることは困難である場合が多くウェ
ハの中心に行くに従って薄くなる。そこでガスの流れを
均等にし、均一なプラズマ放電が行えるように種々の工
夫が施されてきた。However, in order to increase work efficiency, the susceptor 16 on which the wafer 5 is set is placed at right angles to the gas flow in the center of the cylindrical reaction tube 1, as shown in FIG. ,N, is often difficult to fabricate, and becomes thinner toward the center of the wafer. Therefore, various efforts have been made to equalize the flow of gas and achieve uniform plasma discharge.
(d) 発明の目的
本発明の目的はプラズマ装置を用いてウェハの面内分布
が一様な表面処理を行う方法全提供するにある。(d) Object of the Invention An object of the present invention is to provide a method for performing surface treatment on a wafer with uniform in-plane distribution using a plasma apparatus.
(e+ 発明の構成
本発明の目的はウェハを保持したすjセプタと、中央部
にガス流通孔を備え、外径が反応室の内径と等しい隔壁
とを交互に挿入して配置する方法をとることにより達成
することがで色る。(e+ Structure of the Invention The purpose of the present invention is to adopt a method of alternately inserting and arranging a septa holding a wafer and a partition wall having a gas flow hole in the center and having an outer diameter equal to the inner diameter of the reaction chamber. What you achieve is colored by what you achieve.
(fl 発明の実施例
第2図は本発明に係るサセプタで囚は正面図、(6)は
側面図また第3図は隔壁で囚は正面図また(B)は側面
図である。Embodiment of the Invention Figure 2 shows a susceptor according to the present invention, and (6) is a side view, and Figure 3 shows a partition wall, and (B) is a side view.
本発明は反応管1の内径とはy等しい直径をもつ円板状
の隔壁を用いてガス流を変えこれにより面内分布を均一
にするものである。In the present invention, a disk-shaped partition wall having a diameter y equal to the inner diameter of the reaction tube 1 is used to change the gas flow, thereby making the in-plane distribution uniform.
すなわち隔壁10は中央にガス流通口11を備えると共
に周囲に直角な枠部12があり、石英などから形成され
反応管内にスライド可能に形成されている。一方すセプ
タホールダ−13は同様に石英などからなり溝14を備
えた爪部15により炭素あるいは炭化 素などからなる
サセプター16を保持し、隔壁10と同様に反応管内に
スライド可能に形成されている。That is, the partition wall 10 has a gas flow port 11 in the center and a perpendicular frame part 12 around the periphery, and is made of quartz or the like and is slidable into the reaction tube. On the other hand, the susceptor holder 13 is similarly made of quartz or the like and holds a susceptor 16 made of carbon or carbon by means of claws 15 having grooves 14, and is formed so as to be slidable inside the reaction tube like the partition wall 10.
第4図は本発明に係る実施例で蓋部2を開け、反応管1
の中に隔壁10とサセプター16をセットしたサセブタ
ーホールダ−13を交互に挿入し従来と同様にガス供給
口3よりガスを供給し排気口4よ抄排気しながら高周波
電界を与えてプラズマを発生させる。FIG. 4 shows an embodiment of the present invention in which the lid part 2 is opened and the reaction tube 1 is
A susceptor holder 13 with a partition wall 10 and a susceptor 16 set therein is alternately inserted, and as in the conventional case, gas is supplied from the gas supply port 3 and exhausted through the exhaust port 4 while applying a high frequency electric field to generate plasma. let
こ\で隔壁10は反応管1の内壁に接して設けられてお
り、またサセプター16は隔壁に較べると適度に直径が
少でまた反応管1の中心軸に沿って位置決めされている
ので反応ガスプラズマは反応管1の中を矢印で示すよう
に隔壁10の中央にあるガス流通口11を通りサセプタ
−16に沿って拡がり再び隣接する隔壁10のガス流通
口11を通ると云う行程を繰り返して排気される。Here, the partition wall 10 is provided in contact with the inner wall of the reaction tube 1, and the susceptor 16 has a suitably smaller diameter than the partition wall, and is positioned along the central axis of the reaction tube 1, so that the reaction gas As shown by the arrow in the reaction tube 1, the plasma passes through the gas flow port 11 in the center of the partition wall 10, spreads along the susceptor 16, and then passes through the gas flow port 11 in the adjacent partition wall 10 again, repeating the process. Exhausted.
なお本実施例の場合隔壁10とサセプタホールダ−13
とを接続して設けたが間隔をあけて設けることは随意で
ある。In this embodiment, the partition wall 10 and the susceptor holder 13
Although they are connected and provided, it is optional to provide them with an interval between them.
このように本発明に係る場合は反応ガスプラズマKjり
生じたラジカルを強制的にウェハ面に沿って流通させる
ため反応が均一に起り、膜厚、エツチングなどの膜厚分
布を均等化することが可能となる。As described above, in the case of the present invention, the radicals generated by the reactive gas plasma Kj are forced to flow along the wafer surface, so that the reaction occurs uniformly, and the film thickness distribution such as film thickness and etching can be made uniform. It becomes possible.
表は直径3〔インチ〕のSiウェハ上にプラズマによる
直接窒化によりSi、N、絶縁膜を厚さ100(A)
Th目標として形成した場合の膜厚分布で平均値をそれ
ぞれ100として+側および一側の偏差をめた。The table shows Si, N, and insulating films formed to a thickness of 100 (A) by direct nitriding using plasma on a Si wafer with a diameter of 3 inches.
The average value of the film thickness distribution when formed as a Th target was set to 100, and the deviations on the + side and one side were calculated.
なおNH,の通量は200 (C94)でありまた^9
度は40(Pg)である。In addition, the throughput of NH is 200 (C94) and ^9
The degree is 40 (Pg).
以上の結果から判るように従来法に較べ遥かに均一な面
内分布を得ることができる。上記の実施例では、クエハ
ーはサセプタの片面に置いたが、両面でもよく、又、用
いるガス會変えることにより、CVD−Eたは工、チン
グを行なうことができる。As can be seen from the above results, a much more uniform in-plane distribution can be obtained compared to the conventional method. In the above embodiment, the quefer was placed on one side of the susceptor, but it may be placed on both sides, and by changing the gas system used, CVD-E or processing can be performed.
(g) 発明の効果
本発明は半導体チップの製造に使−用するウェハの径が
増大するに従ってプラズマ装置を用いてエツチング或は
膜形成を行う際の膜厚分布が不均一となり歩留りが低下
するのを防ぐためになされたもので本発明の実施により
膜厚分布が均等化することができる。(g) Effects of the invention As the diameter of wafers used in the manufacture of semiconductor chips increases, the film thickness distribution becomes uneven when etching or film formation is performed using a plasma device, and the yield decreases. The film thickness distribution can be made uniform by implementing the present invention.
第1図は従来のプラズマ装置で(4)は正面図、(B)
側断面図、第2図はサセプタで(4)は正面図、(B)
は側面図、第3図は隔壁で囚は正面図、(B)は側面図
、第4図は本発明を実施したプラズマ装置の側断面図で
ある。
図において
1は反応室、3はガス供給口、4は排気口、5はウェハ
、10は隔壁、11はガス流通口、13はサセプタホー
ルダー、16はサセプタ。Figure 1 shows a conventional plasma device, (4) is a front view, and (B)
Side sectional view, Figure 2 is the susceptor, (4) is the front view, (B)
3 is a side view, FIG. 3 is a partition wall, and FIG. 3 is a front view, FIG. 4 is a side view, and FIG. 4 is a side sectional view of a plasma device embodying the present invention. In the figure, 1 is a reaction chamber, 3 is a gas supply port, 4 is an exhaust port, 5 is a wafer, 10 is a partition, 11 is a gas flow port, 13 is a susceptor holder, and 16 is a susceptor.
Claims (1)
状態を維持し乍ら高周波電界を印加し放電させてプラズ
マ状態を形成し、発生した該ガスのラジカルを被処理基
板と反応させるプラズマ装置において被処理基板を保持
したサセプタと中央部にガス流通口を備え外径が反応室
の内径と等しい隔壁とを交互に挿入して配置することに
より該被処理基板上にプラズマ反応を生じさせることを
特徴とする半導体基板の処理方法。A plasma device that introduces a reaction gas into a reaction chamber in which a substrate to be processed is placed, maintains a reduced pressure state, applies a high-frequency electric field to generate a discharge, forms a plasma state, and causes radicals of the generated gas to react with the substrate to be processed. A plasma reaction is caused on the substrate by alternately inserting and arranging a susceptor holding the substrate to be processed and a partition having a gas flow port in the center and having an outer diameter equal to the inner diameter of the reaction chamber. A method for processing a semiconductor substrate, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14776483A JPS6039831A (en) | 1983-08-12 | 1983-08-12 | Treatment of semiconductor substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14776483A JPS6039831A (en) | 1983-08-12 | 1983-08-12 | Treatment of semiconductor substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6039831A true JPS6039831A (en) | 1985-03-01 |
Family
ID=15437639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14776483A Pending JPS6039831A (en) | 1983-08-12 | 1983-08-12 | Treatment of semiconductor substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6039831A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0477616U (en) * | 1990-11-19 | 1992-07-07 | ||
KR100814263B1 (en) | 2005-12-13 | 2008-03-18 | 주식회사 유진테크 | Supporting apparatus for shadow frame |
US11149982B2 (en) | 2018-04-18 | 2021-10-19 | Lg Electronics Inc. | Air conditioner |
-
1983
- 1983-08-12 JP JP14776483A patent/JPS6039831A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0477616U (en) * | 1990-11-19 | 1992-07-07 | ||
KR100814263B1 (en) | 2005-12-13 | 2008-03-18 | 주식회사 유진테크 | Supporting apparatus for shadow frame |
US11149982B2 (en) | 2018-04-18 | 2021-10-19 | Lg Electronics Inc. | Air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7180999B2 (en) | Semiconductor processing chamber for multiple precursor streams | |
KR100554643B1 (en) | Processing apparatus and cleaning method | |
KR20180130596A (en) | Plasma processing process for improving in-situ chamber cleaning efficiency in a plasma processing chamber | |
US6963043B2 (en) | Asymmetrical focus ring | |
US10923328B2 (en) | Plasma processing method and plasma processing apparatus | |
US20150064922A1 (en) | Method of selectively removing a region formed of silicon oxide and plasma processing apparatus | |
JPH02234419A (en) | Plasma electrode | |
KR20180018824A (en) | Adjustable remote dissociation | |
US20200118813A1 (en) | Ozone for Selective Hydrophilic Surface Treatment | |
JPS6039831A (en) | Treatment of semiconductor substrate | |
JPH0570957A (en) | Plasma vapor phase growth device | |
JP2669168B2 (en) | Microwave plasma processing equipment | |
JPH11317396A (en) | Etching system | |
TW201829835A (en) | Method for processing object to be processed | |
JPH08195382A (en) | Semiconductor manufacturing device | |
JP3077516B2 (en) | Plasma processing equipment | |
JPS6210308B2 (en) | ||
KR0156244B1 (en) | Plasma treatment method | |
JPS61174634A (en) | Method of dry etching | |
JPH10242116A (en) | Parallel flat plate type rie apparatus | |
JPH07335633A (en) | Plasma treating device | |
JPH113799A (en) | Plasma treatment device | |
JP2906505B2 (en) | Microwave plasma processing equipment | |
JP3052266B2 (en) | Plasma processing method | |
JP2002252213A (en) | Plasma etching method |