JPS6038589A - Heat transfer device - Google Patents

Heat transfer device

Info

Publication number
JPS6038589A
JPS6038589A JP14759483A JP14759483A JPS6038589A JP S6038589 A JPS6038589 A JP S6038589A JP 14759483 A JP14759483 A JP 14759483A JP 14759483 A JP14759483 A JP 14759483A JP S6038589 A JPS6038589 A JP S6038589A
Authority
JP
Japan
Prior art keywords
heat
accumulator
heat receiving
receiving section
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14759483A
Other languages
Japanese (ja)
Other versions
JPH0428993B2 (en
Inventor
Tetsuro Ogushi
哲朗 大串
Masaaki Murakami
政明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14759483A priority Critical patent/JPS6038589A/en
Publication of JPS6038589A publication Critical patent/JPS6038589A/en
Publication of JPH0428993B2 publication Critical patent/JPH0428993B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D7/00Central heating systems employing heat-transfer fluids not covered by groups F24D1/00 - F24D5/00, e.g. oil, salt or gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Heating Systems (AREA)

Abstract

PURPOSE:To improve the heat transfer efficiency making the pulsation of the heat transferring small by a method wherein the heat transfer device is composed so as the working fluid refluxes to the heat receiving part alternately from two accumulators. CONSTITUTION:Lower part spaces of two accumulators 21, 22 are interconnected to the entrance part of a heat receiving part 1 through the intermediary of each conduit pipe 23, 24. Upper part spaces of two accumulators 21, 22 are also interconnected to the exit part of the heat receiving part 1 through the intermedary of each conduit pipe 29, 30. Furthermore, one upper space of the accumulator 21 is interconnected to the circuration entrance of the heat releasing part 2 through the intermediary of a conduit pipe 32 and the other upper space of the accumulator 22 is interconnected to the circulation exit of the heat releasing part 2 through the intermediary of conduit pipe 32. The heat transfer is carried out continuously from the heat receiving part to the heat releasing part by making the transfer of fluid between the first accumulator 21 and the second accumulator 22 by the shift of the first and second ON-OFF valves and the pulsation of the heat transfer is made small and the heat transfer efficiency can be improved.

Description

【発明の詳細な説明】 〈発明の技術分野〉 この発明は、熱伝達装置、特に管路内に封入した作動流
体の液と蒸気との相変化を利用して、受熱部で吸収した
熱を放熱部に熱輸送して発散させるようにした熱伝達装
置に関するものである。
[Detailed Description of the Invention] <Technical Field of the Invention> The present invention utilizes a heat transfer device, particularly a phase change between a working fluid sealed in a pipe and a vapor, to absorb heat absorbed in a heat receiving section. The present invention relates to a heat transfer device that transports heat to a heat radiating section and radiates it.

〈従来技術〉 第1図は従来のこの糧の熱伝達装置の構成の概要を示す
系統図である。図において、1は装置の比較的上部に配
置された受熱部、2はこの受熱部1の下方であって装置
の下部に配置された放熱部、3は受熱部1の上方に設け
られたアキュムレータ(蓄液器)、4はアキュムレータ
3と受熱部1との間に設けられた受液器、5は受液器4
とアキュムレータ3との間を連通させて内部の圧力をバ
ランスさせる連通管、6は連通管5の途中に設けられた
開閉弁で、受液器4と連通ずる液面上に浮上するように
設けられたフロート7および連通管5に接続開口した弁
座8を有する。9はアキュムレータ3から受液器4に向
かってのみ液が流れるように配置された逆止弁、10は
受液器4内に設けられたサイフオンで、所定量以上の液
が溜まった場合に上記液を器外に排出するようになって
いる。
<Prior Art> FIG. 1 is a system diagram showing an outline of the configuration of a conventional heat transfer device for this food. In the figure, 1 is a heat receiving part arranged relatively above the device, 2 is a heat radiating part below this heat receiving part 1 and arranged at the bottom of the device, and 3 is an accumulator provided above the heat receiving part 1. (Liquid accumulator), 4 is a liquid receiver provided between the accumulator 3 and the heat receiving part 1, 5 is a liquid receiver 4
A communication pipe 6 is provided in the middle of the communication pipe 5 to communicate with the accumulator 3 to balance the internal pressure. The valve seat 8 has a float 7 and a valve seat 8 connected to the communication pipe 5. 9 is a check valve arranged so that the liquid flows only from the accumulator 3 toward the liquid receiver 4; 10 is a siphon installed in the liquid receiver 4; The liquid is drained outside the container.

11は受液器4と受熱部1の低部間を連結する液管、1
2は受液器4の上部と受熱部1の上部とを連結する蒸気
管、13Aは受液器4の上部と放熱部2の一端とを連結
する管路、13Bは放熱部2の他部とアキュムレータ3
とを連結する管路、13Cはアキュムレータ3の底部と
逆止弁9とを連結する管路、13Dは逆止弁9と受液器
4の上部とを連結する管路であり、このようにして各管
路13A〜13Dはループ(閉管路)を形成し、アキュ
ムレータ3を含む管路内に熱輸送媒体としてのフ四ン、
メチルアルコール等の凝縮性液体である作動流体14が
適量だけ封入されるとともに、始動時には、アキュムレ
ータ3の上部以外の管路内に液体状の作動流体14が満
たされた状態になる。なお、以下この液体状の作動流体
14を液14Aと呼び、これに対し、気体状の作動流体
14を蒸気14Bと呼ぶことにする。15は送風ファン
である。
11 is a liquid pipe connecting the liquid receiver 4 and the lower part of the heat receiving part 1;
2 is a steam pipe connecting the upper part of the liquid receiver 4 and the upper part of the heat receiving part 1, 13A is a pipe line connecting the upper part of the liquid receiver 4 and one end of the heat radiating part 2, and 13B is the other part of the heat radiating part 2. and accumulator 3
13C is a pipe that connects the bottom of the accumulator 3 and the check valve 9, and 13D is a pipe that connects the check valve 9 and the upper part of the liquid receiver 4. Each of the pipes 13A to 13D forms a loop (closed pipe), and in the pipe including the accumulator 3 there is a pipe as a heat transport medium,
An appropriate amount of working fluid 14, which is a condensable liquid such as methyl alcohol, is sealed, and at the time of starting, the pipes other than the upper part of the accumulator 3 are filled with the liquid working fluid 14. Hereinafter, the liquid working fluid 14 will be referred to as a liquid 14A, whereas the gaseous working fluid 14 will be referred to as a vapor 14B. 15 is a blower fan.

以上のように構成された従来装置の動作は次のとおりで
ある。
The operation of the conventional device configured as described above is as follows.

まず、受熱部1に熱が供給されると、との受熱部1にお
ける液14Aが与えられた温度に対応する高圧の蒸気1
411発生し、受熱部1とアキュムレータ3との間に圧
力差?生じ、受熱部1の方が高圧となるため、管路13
A1放熱部2、管路13Bにある液14Aがアキュムレ
ータ3内に流し込ミ、このアキュムレータ3の圧力を除
々に高めることとなる。
First, when heat is supplied to the heat receiving section 1, the liquid 14A in the heat receiving section 1 is heated to high pressure steam 1 corresponding to the given temperature.
411 occurs and there is a pressure difference between heat receiving part 1 and accumulator 3? occurs, and the pressure in the heat receiving part 1 is higher than that in the pipe line 13.
The liquid 14A in the A1 heat dissipation section 2 and the pipe line 13B flows into the accumulator 3, gradually increasing the pressure in the accumulator 3.

次いで、受熱部1で発生した蒸気14Bは、蒸気管12
を通って受液器4に流れ、受液器4から管路13A’i
通って放熱部2に達して冷却され、凝縮熱を放出して液
化するために、これが受熱部温度と放熱部温度とに規制
されることになシ、結果的には、受熱部1、管路13A
および放熱部2の蒸気14Bの圧力は、この受熱部温度
と放熱部温度との中間程度の温度に和尚した飽和蒸気圧
となシ、したがって受熱部1で液14Aの蒸発が行われ
ている間、アキュムレータ3の圧力もほぼこの圧力に維
持される。
Next, the steam 14B generated in the heat receiving section 1 is transferred to the steam pipe 12.
through the liquid receiver 4, and from the liquid receiver 4 to the pipe 13A'i
The temperature of the heat-receiving part 1 and the pipes are regulated by the temperature of the heat-receiving part and the temperature of the heat-radiating part. Road 13A
The pressure of the steam 14B in the heat radiating section 2 is a saturated vapor pressure that is approximately halfway between the temperature of the heat receiving section and the temperature of the heat radiating section. Therefore, while the liquid 14A is evaporating in the heat receiving section 1, , the pressure of the accumulator 3 is also maintained at approximately this pressure.

この状態で受熱部1に発生した蒸気14Bが放熱部2に
達して再び液化される動作によシ、受熱部1での熱が放
熱部21C熱輸送されることになる。
In this state, the steam 14B generated in the heat receiving part 1 reaches the heat radiating part 2 and is liquefied again, so that the heat in the heat receiving part 1 is transferred to the heat radiating part 21C.

この場合、受液器4が受熱部1よシも上方にあり、液管
11と蒸気管12で連結されているので、液体は受液器
4から液管11を経て受熱部1に流れ、受熱部1で熱を
受けて蒸発し、蒸発した蒸気14Bは蒸気管12を通っ
て受液器4内に還流し、受液器4から管路13Aを経由
して放熱部2へ流れることになる。
In this case, since the liquid receiver 4 is located above the heat receiving part 1 and is connected to the liquid pipe 11 and the steam pipe 12, the liquid flows from the liquid receiver 4 to the heat receiving part 1 via the liquid pipe 11. The vapor 14B receives heat and evaporates in the heat receiving part 1, returns to the liquid receiver 4 through the steam pipe 12, and flows from the liquid receiver 4 to the heat radiating part 2 via the pipe 13A. Become.

したがって受液器4に液14Aがある限シ、受熱部1は
液14Aで満たされておシ、受熱部1から放熱部2へ熱
輸送が行われるにしたがって、受液器4内の液面は低下
してくることになる。この場合、受液器4内の液面が開
閉弁6の弁座8よシも高い位置におる間は、液14Aの
浮力の作用によシ、フロート7が弁座8を押しつけられ
、開閉弁6を閉じることになる。その結果、受液器4内
の蒸気14Bはすべて、放熱部2へ流れ、熱輸送が行わ
れる。
Therefore, as long as there is liquid 14A in the liquid receiver 4, the heat receiving part 1 is filled with the liquid 14A, and as heat is transferred from the heat receiving part 1 to the heat radiating part 2, the liquid level in the liquid receiver 4 will start to decline. In this case, while the liquid level in the liquid receiver 4 is higher than the valve seat 8 of the on-off valve 6, the float 7 is pressed against the valve seat 8 due to the buoyant force of the liquid 14A, opening and closing the valve. Valve 6 will be closed. As a result, all the steam 14B in the liquid receiver 4 flows to the heat radiating section 2, and heat transport is performed.

受液器4内の液が熱輸送の結果消費されて、次第に液面
が低下し、弁座8の位置以下に低下すると、フロートT
も液面の低下とともに低下し、弁座8から離れ、開閉弁
5は開放状態となる。そのため受液器4内の蒸気14B
はアキュムレータ3に流入し、受液器4とアキュムレー
タ3の蒸気相は均圧されることになる。この場合、アキ
ュムレータ3が受液器4よシ上方に置かれているため、
重力の作用によシ、アキュムレータ3から逆上弁9を通
って受液器4に液i4Aが還流してくるが、受液器4内
に設けられたサイフオン100作用により、受液器4の
液面は上昇することがなく、シたがって、ある一定量の
液14Aが流入することが可能となる。液14Aがアキ
ュムレータ3から受液器4に流入している間は、受液器
4からの熱が連通管5を通じての蒸気流によシ、アキュ
ムレータ3に流れ、アキュムレータ3の圧力が多少上昇
することになるが、サイフオン10を使用することによ
って、多量の液を一度に流入させることが可能となるた
め、開閉弁6が閉じている時間を長くすることができ、
開閉弁6を開いている時間に生じた圧力の上昇の影響を
小さくすることができるばかりでなく、開閉弁6の開閉
の頻度も少なくなるため、開閉弁6の耐久性も増加する
ことになる。
When the liquid in the liquid receiver 4 is consumed as a result of heat transport and the liquid level gradually falls below the position of the valve seat 8, the float T
The liquid level also decreases as the liquid level decreases, separating from the valve seat 8, and the on-off valve 5 becomes open. Therefore, the steam 14B in the liquid receiver 4
flows into the accumulator 3, and the vapor phases of the liquid receiver 4 and the accumulator 3 are equalized in pressure. In this case, since the accumulator 3 is placed above the liquid receiver 4,
Due to the action of gravity, liquid i4A flows back from the accumulator 3 to the liquid receiver 4 through the reverse valve 9, but due to the action of the siphon 100 provided in the liquid receiver 4, The liquid level does not rise, thus allowing a certain amount of liquid 14A to flow in. While the liquid 14A is flowing from the accumulator 3 to the liquid receiver 4, the heat from the liquid receiver 4 flows into the accumulator 3 due to the steam flow through the communication pipe 5, and the pressure in the accumulator 3 increases somewhat. However, by using the siphon 10, it becomes possible to allow a large amount of liquid to flow in at once, so the time that the on-off valve 6 is closed can be extended.
Not only can the influence of the increase in pressure that occurs during the time when the on-off valve 6 is open be reduced, but also the frequency of opening and closing of the on-off valve 6 is reduced, which increases the durability of the on-off valve 6. .

所定量の液14Aが受液器4内に流入し、サイフオン1
0から液14Aが排出されると、再び液面が上昇し、開
閉弁6が閉じ、最初の状態に戻シ、受熱部1から放熱部
2への熱輸送が行われることになる。
A predetermined amount of liquid 14A flows into the liquid receiver 4, and the siphon 1
When the liquid 14A is discharged from 0, the liquid level rises again, the on-off valve 6 closes, the initial state is returned, and heat is transferred from the heat receiving part 1 to the heat radiating part 2.

以上の動作の繰返しによシ、受熱部1から放熱部2へ熱
輸送が行われる。
By repeating the above operations, heat is transported from the heat receiving section 1 to the heat radiating section 2.

従来の熱伝達装置は以上のように構成されているので、
開閉弁6が開放状態のとき、受液器4内の蒸気14Bは
連通管5を通ってアキュムレータ3に流れ込み、その結
果、放熱部2への蒸気流が減少することになる。即ち、
開閉弁6が開の間、受熱部1から放熱部2への熱輸送量
が減少或いは停止し、熱輸送に時間的脈動が生じるとい
う欠点を有していた。
Since the conventional heat transfer device is configured as described above,
When the on-off valve 6 is in the open state, the steam 14B in the liquid receiver 4 flows into the accumulator 3 through the communication pipe 5, and as a result, the steam flow to the heat radiation section 2 is reduced. That is,
While the on-off valve 6 is open, the amount of heat transported from the heat receiving section 1 to the heat radiating section 2 decreases or stops, resulting in a drawback that temporal pulsations occur in the heat transport.

また、受熱部1で発生した蒸気の大部分が連通管5を流
れるので、連通管5での圧力損失が大きく、受液器4と
アキュムレータ3の均圧が行なわれにくいという欠点も
あった。
Furthermore, since most of the steam generated in the heat receiving section 1 flows through the communication pipe 5, there is a large pressure loss in the communication pipe 5, and there is also a drawback that it is difficult to equalize the pressures of the liquid receiver 4 and the accumulator 3.

〈発明の概要〉 そこで、本発明は以上のような従来の実情に鑑み、アキ
ュムレータを2つ使用することによシ、熱輸送の脈動が
なく、信頼性の大きい熱輸送装置を提供することを目的
としている。
<Summary of the Invention> In view of the above-mentioned conventional circumstances, the present invention aims to provide a highly reliable heat transport device that eliminates heat transport pulsations by using two accumulators. The purpose is

即ち、本発明は、管路内部に封入した熱輸送媒体として
の凝縮性作動流体の循環によって受熱部から放熱部へ熱
輸送を行なう熱伝達装置において、前記受熱部よシ上方
位賃に2つのアキュムレータを配設し、該2つのアキュ
ムレータ夫々の下部空間と前記受熱部の入口部とを、2
つのアキュムレータ夫々の上部空間と受熱部の出口部と
を、夫々管路を介して連通ずると共に一方のアキュムレ
ータ上部空間と前記放熱部の一側流通口とを、他方のア
キュムレータ上部空間と該放熱部の他側流通口とを、夫
々管路を介して連通ずる一方、前記放熱部で凝縮された
作動流体を一方のアキュムレータに流入させると共に他
方のアキュムレータ内にある流体を受熱部に還流させる
動作をアキュムレータ毎交互に行わせしめる手段を設け
た熱伝達装置である。
That is, the present invention provides a heat transfer device that transports heat from a heat receiving section to a heat radiating section by circulating a condensable working fluid as a heat transporting medium sealed inside a pipe. An accumulator is provided, and the lower space of each of the two accumulators and the inlet of the heat receiving section are connected to each other.
The upper space of each of the two accumulators and the outlet of the heat receiving section are communicated via the respective pipes, and the upper space of one accumulator is communicated with the one-side circulation port of the heat radiating section, and the upper space of the other accumulator is communicated with the heat radiating section. The flow port on the other side is communicated with the other side through the respective pipes, while the working fluid condensed in the heat radiating part flows into one accumulator, and the fluid in the other accumulator flows back to the heat receiving part. This heat transfer device is provided with means for alternately performing heat transfer for each accumulator.

〈発明の実施例〉 以下、本発明の実施例を第2図及び第3図に基づいて説
明する。
<Embodiments of the Invention> Examples of the present invention will be described below with reference to FIGS. 2 and 3.

尚、第2図において、第1図と同一要素のものには同一
符号を付して説明全簡単にする。
In FIG. 2, the same elements as those in FIG. 1 are given the same reference numerals to simplify the explanation.

第2図において、21.22は受熱部1の上方に配設さ
れた第1及び第2のアキュムレータである。この2つの
アキュムレータ21.22の下部空間は夫々管路23.
21介して受熱部10入口部即ち液管11に連通接続さ
れる。又、2つのアキュムレータ21.22の上部空間
は夫々管路29.30を介して受熱部1の出口部即ち蒸
気管12に連通接続される。更に1一方のアキュムレー
タ21の上部空間は管路31を介して放熱部2の一側流
通口に、他方のアキュムレータ22の上部空間は管路3
2を介して放熱部2の他側流通口に、夫々連通接続され
る。27及び28は管路29及び30に夫々介装された
開閉手段としての第1及び第2の開閉弁、25及び26
は管路23及び24に夫々介装されてアキュムレータ2
1,22から受熱部2へ向ってのみ流体が流れる第1及
び第2の逆止弁である。
In FIG. 2, reference numerals 21 and 22 indicate first and second accumulators disposed above the heat receiving section 1. The lower spaces of these two accumulators 21 and 22 are connected to conduits 23 and 23, respectively.
21, it is connected to the inlet of the heat receiving section 10, that is, the liquid pipe 11. Further, the upper spaces of the two accumulators 21 and 22 are connected to the outlet of the heat receiving section 1, that is, the steam pipe 12, through pipes 29 and 30, respectively. Further, the upper space of one of the accumulators 21 is connected to the one side circulation port of the heat radiation part 2 via the pipe line 31, and the upper space of the other accumulator 22 is connected to the pipe line 3.
2 to the other side circulation port of the heat radiating section 2. Reference numerals 27 and 28 indicate first and second on-off valves, 25 and 26, which are interposed in the pipes 29 and 30, respectively, as on-off means.
are interposed in the conduits 23 and 24, respectively, and the accumulator 2
These are first and second check valves through which fluid flows only from the first and second check valves 1 and 22 toward the heat receiving section 2.

かかる構成の熱伝達装置においては、第1図に示したよ
うな受液器4、開閉弁6及びサイフオン10がない。
In the heat transfer device having such a configuration, there is no liquid receiver 4, on-off valve 6, and siphon 10 as shown in FIG.

尚、齢記第1の開閉弁27と第2の開閉弁28の開閉は
交互に行なわれ、両者が同時に開成いは閉となることが
ないようになっている。
Note that the first on-off valve 27 and the second on-off valve 28 are opened and closed alternately, so that they are never opened or closed at the same time.

次にかかる熱伝達装置の作用について説明する。Next, the operation of this heat transfer device will be explained.

図は第1の開閉弁2Tが開、第2の開閉弁28が閉の状
態での蒸気流を点線矢印で、液流を実線矢印で示してい
る。この場合、受熱部1と第1のアキュムレータ21は
開状態にある第1の開閉弁27によって連通状態にある
ため、第1のアキュムレータ21内の液体は重力の作用
で、第1の逆止弁25を通って受熱部1に流入し、熱を
受けて蒸発する。蒸発した蒸気は蒸気管12、第1の開
閉弁27及び配管2Bを通って、第1のアキュムレータ
21に流入し、気液分離した後配管31を通って放熱部
2に流れ、ここで冷却されて凝縮液化されると共に熱を
放出する。液化された液体は、蒸気流に押し出されて配
管32’!i−通って第2のアキュムレータ22へ流入
し、溜ル込む。この時、第2の開閉弁28は間圧なって
おシ、受熱部1かう直接第2のアキュムレータ22へ蒸
気が流入することがなく、受熱部1での蒸発熱量は全て
放熱部2へ流れることになる。
In the figure, the vapor flow is shown by a dotted line arrow, and the liquid flow is shown by a solid line arrow when the first on-off valve 2T is open and the second on-off valve 28 is closed. In this case, since the heat receiving part 1 and the first accumulator 21 are in communication with each other through the first on-off valve 27 which is in the open state, the liquid in the first accumulator 21 is caused by the action of gravity to flow through the first check valve. It flows into the heat receiving part 1 through 25, receives heat and evaporates. The evaporated steam passes through the steam pipe 12, the first on-off valve 27, and the pipe 2B, flows into the first accumulator 21, and after being separated into gas and liquid, flows through the pipe 31 to the heat radiation section 2, where it is cooled. It is condensed into liquid and releases heat. The liquefied liquid is forced out into the vapor stream and flows through the pipe 32'! i- and flows into the second accumulator 22 where it is stored. At this time, the second on-off valve 28 has an internal pressure, so steam does not flow directly into the second accumulator 22 from the heat receiving part 1, and all of the evaporative heat in the heat receiving part 1 flows to the heat radiating part 2. It turns out.

次に、第1のアキュムレータ21内の流量がある程度減
少した時点で開閉弁27.28の開閉を切り換え、第1
の開閉弁27を閉、第2の開閉弁28を開にすると、全
く逆の蒸気流、液流が生じ、第2のアキュムレータ22
からの液は受熱部1で蒸発した後、管路32を通って放
熱部2へ流れ、熱を放出し、液化する。液化した液体は
配管31を逆流して第1のアキュムレータ21へ溜シ込
むことになる。次に、両開閉弁27.28の開閉を切シ
換えると再び元の状態に戻る。
Next, when the flow rate in the first accumulator 21 has decreased to a certain extent, the opening and closing valves 27 and 28 are switched to open and close, and the first accumulator 21 is opened and closed.
When the second on-off valve 27 is closed and the second on-off valve 28 is opened, completely opposite steam and liquid flows occur, and the second accumulator 22
After the liquid evaporates in the heat receiving part 1, it flows through the pipe 32 to the heat radiating part 2, releases heat, and becomes liquefied. The liquefied liquid flows backward through the pipe 31 and is accumulated in the first accumulator 21. Next, when the opening and closing of both on-off valves 27 and 28 is switched, the original state is returned again.

以上のように第1及び第2の開閉弁27.28ノ切υ換
えで、第1及び第2のアキュムレータ21゜22間の液
移動を行なわせることによシ、受熱部1から放熱部2へ
の熱輸送を連続的に行なわせ、熱輸送の脈動を小さくし
、熱輸送効率を増大させることができる。
As described above, by switching the first and second on-off valves 27 and 28 to move the liquid between the first and second accumulators 21 and 22, the liquid is transferred from the heat receiving part 1 to the heat radiating part 2. It is possible to perform heat transport continuously, reduce pulsation of heat transport, and increase heat transport efficiency.

従って、第1及び第2の逆止弁23.24と開閉手段と
しての第1及び第2の開閉弁27.28によって、放熱
部で凝縮された作動流体を一方のアキュムレータに流入
させると共に他方のアキュムレータ内にある流体を受熱
部に還流させる動作をアキュムレータ毎交互に行わせし
める本発明の対象とする手段が構成される。
Therefore, the first and second check valves 23.24 and the first and second on-off valves 27.28 as on-off means allow the working fluid condensed in the heat radiation section to flow into one accumulator and the other. Means, which is an object of the present invention, is configured to alternately perform the operation of circulating the fluid in the accumulator to the heat receiving part for each accumulator.

尚、以上説明した実施例においては、管路29゜30の
開閉手段として、開閉弁27.28’t−適用したが、
両管路29.30の合流部に介装した3方弁によって構
成しても良い。又、第1及び第2の逆止弁25.26の
かわシに、第1及び第2の開閉弁27.28と夫々同期
して開閉される開閉弁を管路23.24に介装しても良
いことは勿論である。
In the embodiment described above, the on-off valves 27 and 28't were used as the means for opening and closing the pipes 29 and 30.
It may also be configured by a three-way valve interposed at the confluence of the two conduits 29 and 30. In addition, on-off valves that are opened and closed in synchronization with the first and second on-off valves 27.28 are interposed in the conduit 23.24, respectively, in place of the first and second check valves 25.26. Of course, it is good to do so.

更に、第1及び第2の開閉弁27.28の開閉或いは上
述の3方弁の切シ換えは、タイムスイッチ等によシ一定
周期で行わせるよう処するか、アキュムレータ21.2
2内の液面を検知して行うようにすると良い。
Further, the opening and closing of the first and second on-off valves 27.28 or switching of the above-mentioned three-way valve may be performed at regular intervals by a time switch or the like, or by the accumulator 21.2.
It is recommended that this be done by detecting the liquid level in 2.

この液面検知の手段としては第3図に示すようなフロー
ト弁41を用いるのが良い。
As a means for detecting the liquid level, a float valve 41 as shown in FIG. 3 is preferably used.

即ち、このフロート弁41は第2図中第1のアキュムレ
ータ21と第1の開閉弁2Tとを組み合わせたもので、
内側が2重管構造となっておシ、配管31から流入した
液は、一度外側容器42に溜シ、所定置溝ると、サイフ
オン43の働きで外側容器42内の液体が内側容器44
内に流入し、フロート45を押し上げる構成となってい
る。そして、フロート45が浮くと、弁46が開になシ
、配管27からの蒸気は、容器44.42内を通って配
管31から流出すると同時に内側容器44内の液は、配
管23を通って流出する。この結果、第2図で示したア
キュムレータと開閉弁の作用をもつことになる。
That is, this float valve 41 is a combination of the first accumulator 21 and the first on-off valve 2T in FIG.
The inner side has a double pipe structure, and the liquid flowing from the pipe 31 is once stored in the outer container 42 and placed in a predetermined groove.
The structure is such that the water flows into the interior and pushes up the float 45. When the float 45 floats, the valve 46 is not opened, and the steam from the pipe 27 passes through the containers 44 and 42 and flows out from the pipe 31. At the same time, the liquid in the inner container 44 flows through the pipe 23. leak. As a result, it has the function of an accumulator and an on-off valve as shown in FIG.

フロート弁41を使用した場合、アキュムレータ21.
22内の液が完全になくなる前に弁46が閉になるので
、受熱部1内が液不足となることがなく、受熱部1の過
熱が防止でき、装置の信頼性、熱輸送効率が増大する効
果が得られることになる。
When using the float valve 41, the accumulator 21.
Since the valve 46 closes before the liquid in the heat receiving part 22 is completely exhausted, there is no shortage of liquid in the heat receiving part 1, and overheating of the heat receiving part 1 can be prevented, increasing the reliability of the device and the heat transport efficiency. This will result in the effect of

〈発明の効果〉 以上説明したように本発明によれば、アキュムレータを
2つ設け、該アキュムレータから交互に受熱部へ作動流
体が還流するよう構成したことによシ、熱輸送の脈動を
小さなものとでき、熱輸送の効率を向上して、信頼性の
高い装置が得られるものである。
<Effects of the Invention> As explained above, according to the present invention, by providing two accumulators and configuring the working fluid to alternately flow back to the heat receiving section from the accumulators, the pulsation of heat transport can be reduced. This makes it possible to improve the efficiency of heat transport and obtain a highly reliable device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱伝達装置の一例を示す概略図、第2図
は本発明に係る熱伝達装置の一実施例を示す概略図、第
3図はフロート弁の一例を示す縦断面図である。 1・・・受熱部 2・・・放熱部 21.22・・・ア
キュムレータ 23.24.29.30・・・管路25
.26・・・逆止弁 27.2B・・・開閉弁代理人 
大岩増雄(ほか2名) 第1図
Fig. 1 is a schematic diagram showing an example of a conventional heat transfer device, Fig. 2 is a schematic diagram showing an embodiment of the heat transfer device according to the present invention, and Fig. 3 is a longitudinal sectional view showing an example of a float valve. be. 1...Heat receiving part 2...Heat radiating part 21.22...Accumulator 23.24.29.30...Pipe line 25
.. 26...Check valve 27.2B...Opening/closing valve agent
Masuo Oiwa (and 2 others) Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)管路内部に封入した熱輸送媒体としての凝縮性作
動流体の循環によって受熱部から放熱部へ熱輸送を行な
う熱伝達装置において、前記受熱部よシ上方位置に2つ
のアキュムレータを配設し、該2つのアキュムレータ夫
々の下部空間と前記受熱部の入口部とを、2つのアキュ
ムレータ夫々の上部空間と受熱部の出口部とを、夫々管
路を介して連通ずると共に一方のアキュムレータ上部空
間と前記放熱部の一側流通口とを、他方のアキュムレー
タ上部空間と該放熱部の他側流通口とを、夫々管路を介
して連通ずる一方、前記放熱部で凝縮された作動流体を
一方のアキュムレータに流入させると共に他方のアキュ
ムレータ内にある流体を受熱部に還流させる動作をアキ
ュムレータ毎交互に行わせしめる手段を設けたことを特
徴とする熱伝達装置。
(1) In a heat transfer device that transports heat from a heat receiving section to a heat radiating section by circulating a condensable working fluid as a heat transporting medium sealed inside a pipe, two accumulators are arranged above the heat receiving section. The lower space of each of the two accumulators is communicated with the inlet of the heat receiving section, and the upper space of each of the two accumulators is communicated with the outlet of the heat receiving section through a pipe, and the upper space of one of the accumulators is communicated with the inlet of the heat receiving section. The upper space of the other accumulator and the other side circulation port of the heat radiating section are communicated through pipes, respectively, and the working fluid condensed in the heat radiating section is communicated with one side of the heat radiating section. 1. A heat transfer device comprising means for alternately causing fluid in one accumulator to flow into the other accumulator and causing fluid in the other accumulator to flow back to the heat receiving section.
(2)前記手段は、アキュムレータ内下部空間と受熱部
とを、アキュムレータ内下部空間と受熱部とを、夫々連
通する管路を夫々選択的に開閉する開閉手段からなる特
許請求の範囲第1項記載の熱伝達装置。
(2) The means comprises an opening/closing means for selectively opening and closing pipes that communicate the lower space inside the accumulator and the heat receiving section, and the lower space inside the accumulator and the heat receiving section, respectively. The heat transfer device described.
(3)開閉手段は、各管路に介装された開閉弁からナシ
同一のアキュムレータ側の2つの開閉弁の開閉は同じ状
態に行われ、かつ一方のアキュムレータ側の2つQ開閉
弁の開閉と他方のアキュムレータ側の開閉弁の開閉とは
逆の状態となるように構成されてなる特許請求の範囲第
2項記載の熱伝達装置。
(3) The opening/closing means is not limited to the opening/closing valves installed in each pipeline, but the two opening/closing valves on the same accumulator side are opened and closed in the same state, and the two Q opening/closing valves on one accumulator side are opened/closed. 3. The heat transfer device according to claim 2, wherein the opening and closing state of the on-off valve on the other accumulator side is opposite to that of the on-off valve on the other accumulator side.
(4)開閉手段は、アキュムレータと受熱部間の管路の
合流部に介装された3方弁からなる特許請求の範囲第2
項記載の熱伝達装置。 l!5)前記手段は、アキュムレータ内下部空間と受熱
部とを連通ずる管路に夫々介装されて、該アキュムレー
タから受熱部へ向ってのみ流体が流れる逆止弁と、アキ
ュムレータ内下部空間と受熱部とを連通ずる管路を夫々
選択的に開閉する開閉手段と、からなる特許請求の範囲
第1項記載の熱伝達装置。
(4) The opening/closing means is a three-way valve interposed at the confluence of the pipes between the accumulator and the heat receiving section.
Heat transfer device as described in section. l! 5) The means includes a check valve that is interposed in each of the pipes that communicate the lower space inside the accumulator and the heat receiving section, and allows fluid to flow only from the accumulator toward the heat receiving section; 2. The heat transfer device according to claim 1, further comprising: opening/closing means for selectively opening and closing the pipe lines communicating with each other.
JP14759483A 1983-08-12 1983-08-12 Heat transfer device Granted JPS6038589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14759483A JPS6038589A (en) 1983-08-12 1983-08-12 Heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14759483A JPS6038589A (en) 1983-08-12 1983-08-12 Heat transfer device

Publications (2)

Publication Number Publication Date
JPS6038589A true JPS6038589A (en) 1985-02-28
JPH0428993B2 JPH0428993B2 (en) 1992-05-15

Family

ID=15433878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14759483A Granted JPS6038589A (en) 1983-08-12 1983-08-12 Heat transfer device

Country Status (1)

Country Link
JP (1) JPS6038589A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256120A (en) * 1985-05-07 1986-11-13 Matsushita Electric Ind Co Ltd Heating apparatus
JPS62284158A (en) * 1986-06-03 1987-12-10 松下電器産業株式会社 Air conditioner
JPS62284161A (en) * 1986-06-03 1987-12-10 松下電器産業株式会社 Refrigerant heating air conditioner
JPS6370057A (en) * 1986-09-09 1988-03-30 松下電器産業株式会社 Air conditioner
JPS6399467A (en) * 1986-10-16 1988-04-30 松下電器産業株式会社 Air conditioner
JPS63108172A (en) * 1986-10-27 1988-05-13 松下電器産業株式会社 Air conditioner
JPS63108171A (en) * 1986-10-27 1988-05-13 松下電器産業株式会社 Air conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256120A (en) * 1985-05-07 1986-11-13 Matsushita Electric Ind Co Ltd Heating apparatus
JPS62284158A (en) * 1986-06-03 1987-12-10 松下電器産業株式会社 Air conditioner
JPS62284161A (en) * 1986-06-03 1987-12-10 松下電器産業株式会社 Refrigerant heating air conditioner
JPS6370057A (en) * 1986-09-09 1988-03-30 松下電器産業株式会社 Air conditioner
JPS6399467A (en) * 1986-10-16 1988-04-30 松下電器産業株式会社 Air conditioner
JPS63108172A (en) * 1986-10-27 1988-05-13 松下電器産業株式会社 Air conditioner
JPS63108171A (en) * 1986-10-27 1988-05-13 松下電器産業株式会社 Air conditioner
JPH086976B2 (en) * 1986-10-27 1996-01-29 松下電器産業株式会社 Heating and cooling machine

Also Published As

Publication number Publication date
JPH0428993B2 (en) 1992-05-15

Similar Documents

Publication Publication Date Title
JPS6038589A (en) Heat transfer device
JPS6030991A (en) Heat transfer device
JP3126086B2 (en) Compression metal hydride heat pump
JPS60114697A (en) Heat transfer device
JPH09178376A (en) Loop type heat transporting system
JPS625572Y2 (en)
JPS6039654Y2 (en) heat transfer device
JPS6256783A (en) Heat transfer device
JPH04139363A (en) Hydrogen occlusion heat pump
JPS60171389A (en) Heat transfer device
JP3254838B2 (en) Heat transfer device
JPS6026286A (en) Thermal conductive device
JPS6314223Y2 (en)
JPS6238148Y2 (en)
JP3252577B2 (en) Heat transfer device
JPS6314224Y2 (en)
JPS6034941Y2 (en) heat transfer device
JPS63180022A (en) Heat transport machine
JPS6011091A (en) Heat transfer device
JPH0510596B2 (en)
JPH0712360A (en) Heat conveyor
JPH0415419A (en) Heat conveyor
JPS6039656Y2 (en) heat transfer device
JPS6039655Y2 (en) heat transfer device
JPS602581B2 (en) absorption refrigerator