JPS60171389A - Heat transfer device - Google Patents

Heat transfer device

Info

Publication number
JPS60171389A
JPS60171389A JP2647384A JP2647384A JPS60171389A JP S60171389 A JPS60171389 A JP S60171389A JP 2647384 A JP2647384 A JP 2647384A JP 2647384 A JP2647384 A JP 2647384A JP S60171389 A JPS60171389 A JP S60171389A
Authority
JP
Japan
Prior art keywords
accumulator
heat
heat receiving
opening
transfer device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2647384A
Other languages
Japanese (ja)
Other versions
JPS6338639B2 (en
Inventor
Tetsuro Ogushi
哲朗 大串
Masaaki Murakami
政明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2647384A priority Critical patent/JPS60171389A/en
Priority to US06/693,151 priority patent/US4576009A/en
Priority to DE19853503160 priority patent/DE3503160A1/en
Publication of JPS60171389A publication Critical patent/JPS60171389A/en
Publication of JPS6338639B2 publication Critical patent/JPS6338639B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium

Abstract

PURPOSE:To prevent the pulsation of heat transportation by a method wherein the inflow operation of operating fluid into one accumulator and the recirculating operation of the same into a heat receiving unit are effected alternately while the same operations of the same into the other accumulator in reverse sequence are effected alternately. CONSTITUTION:Steam 6B, generated in the heat receiving unit 1, flows to a heat radiating unit 2 through a pipeline 11A, is cooled and condensed, then, the condensed liquid 6A flows into the accumulator 22 through the pipelines 11B, 23D and the opening and closing valve 27 thereof, whereby the heat, absorbed in the heat receiving unit 1, is transported to the heat radiating unit 2. Voltage is impressed on a thermoelectric element 30 so as to heat the accumulator 21 and cool the accumulator 22, and the internal pressure of the accumulator 21 becomes higher than the same of the accumulator 22, therefore, a driving force to flow the liquid into the direction from the accumulator 21 to the accumulator 22 is generated and the liquid in the accumulator 21 is recirculated to the heat receiving unit 1 through the pipeline 23A and the opening and closing valve 24. The operating fluid 6 may be recirculated to the heat receiving unit 1 continuously by switching the opening and closing valves 24-27 and the current of the thermoelectric element 30.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は空気調和装置などに用いられる熱伝達装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a heat transfer device used in an air conditioner or the like.

〔従来技術〕[Prior art]

熱伝達装置は熱輸送媒体を管路内に封入し、この熱輸送
媒体の液と蒸気との相変化を利用したものが一般的で、
受熱部で吸収した熱を放熱部に輸送して発散させるよう
にしている。
Heat transfer devices generally enclose a heat transport medium in a pipe and utilize the phase change of this heat transport medium between liquid and steam.
The heat absorbed by the heat receiving part is transported to the heat radiating part and dissipated.

第1図は例えば実開昭57−66381号公報に示され
た従来の熱伝達装置であって、同図においてlは上方に
水平に配設された受熱部、2は下方に垂直に配設された
放熱部、3A、3Bは共に一方向へのみの流通を許容す
る第1および第2の逆止弁、4はアキュムレータである
。5Aは受熱部1と放熱部2との間の管路、5Bは放熱
部2と第1の逆止弁3Aとの間の管路、5Cは第1の逆
止弁3Aと第2の逆止弁3Bとの間の管路、5Dは第2
の逆止弁3Bと受熱部1との間の管路である。このよう
にして各管路はループ、いわゆる閉管路を形成し、管路
5Cにはアキュムレータ4を接続させて、このアキュム
レータ4を含む管路内に熱輸送媒体としてのフロン、メ
チルアルコールなどの作動流体6を適量封入している。
FIG. 1 shows a conventional heat transfer device shown in, for example, Japanese Utility Model Application Publication No. 57-66381, in which l indicates a heat receiving section disposed horizontally at the top, and 2 indicates a heat receiving section disposed vertically at the bottom. 3A and 3B are first and second check valves that allow flow in only one direction, and 4 is an accumulator. 5A is a pipe between the heat receiving part 1 and the heat radiating part 2, 5B is a pipe between the heat radiating part 2 and the first check valve 3A, and 5C is a pipe between the first check valve 3A and the second check valve 3A. The pipe line between stop valve 3B and 5D is the second
This is a pipe line between the check valve 3B and the heat receiving part 1. In this way, each pipe line forms a loop, a so-called closed pipe line, and an accumulator 4 is connected to the pipe line 5C. A suitable amount of fluid 6 is enclosed.

アキュムレータ4側で受熱部1の上方から接続される管
路5Dの途中には容室7が介在されている。この容室7
の内部には第2図1に示すように、支点Oを中心に揺動
回転自在に枢支されていて、内部に液が貯溜されていな
いときには、支点0の下方に重心点G1を有して開口部
が上方にあり、かつ所定量の液が貯溜されたときには、
支点0の上方に重心点G2が移動して自動的に転回され
る液溜8が設げられている。ここで液体状の作動流体6
を液6Aとし、気体状の作動流体6を蒸気6Bとすると
、始動時には管路内に液6Aが満たされた状態にある。
A chamber 7 is interposed in the middle of a conduit 5D connected from above the heat receiving part 1 on the accumulator 4 side. This chamber 7
As shown in FIG. 2, the inside of the container is pivotably supported around a fulcrum O so that it can freely swing and rotate, and when no liquid is stored inside, the center of gravity G1 is below the fulcrum 0. When the opening is at the top and a predetermined amount of liquid has been stored,
A liquid reservoir 8 whose center of gravity G2 moves and is automatically rotated is provided above the fulcrum 0. Here, liquid working fluid 6
Assuming that the liquid 6A is the liquid 6A and the gaseous working fluid 6 is the steam 6B, the pipe line is filled with the liquid 6A at startup.

今、受熱部1に熱が供給されると、この受熱部1におけ
る液6Aが与えられた温度に対応する高圧の蒸気6Bを
発生し、受熱部1とアキュムレータ4との間に圧力差を
生じ、受熱部1の方が高圧となるため、管路5A、放熱
部2、管路5Bにある液6Aがアキュムレータ4内に流
れ込み、このアキュムレータ4の圧力を徐々に高めるこ
になる。
Now, when heat is supplied to the heat receiving section 1, the liquid 6A in the heat receiving section 1 generates high pressure steam 6B corresponding to the given temperature, creating a pressure difference between the heat receiving section 1 and the accumulator 4. Since the pressure in the heat receiving part 1 is higher than that in the heat receiving part 1, the liquid 6A in the pipe 5A, the heat radiating part 2, and the pipe 5B flows into the accumulator 4, and the pressure in the accumulator 4 is gradually increased.

そして、受熱部1で発生した蒸気6Bは、管路5Aを通
って放熱部2に達して冷却され、凝縮熱を放出して液化
するために、これが受熱部温度と放熱部温度とに規制さ
れることになり、結果的には、受熱部1、管路5Aおよ
び放熱部2の蒸気6Bの圧力は、この受熱部温度と放熱
部温度との中間程度の温度に相当した飽和蒸気圧となり
、したがって受熱部1で液6Aの蒸発が行われている間
、アキュムレータ4の圧力もほぼこの圧力に維持される
The steam 6B generated in the heat receiving part 1 passes through the pipe line 5A and reaches the heat radiating part 2, where it is cooled and liquefied by releasing the heat of condensation. As a result, the pressure of the steam 6B in the heat receiving part 1, the pipe line 5A, and the heat radiating part 2 becomes a saturated vapor pressure corresponding to a temperature approximately intermediate between the heat receiving part temperature and the heat radiating part temperature, Therefore, while the liquid 6A is being evaporated in the heat receiving section 1, the pressure in the accumulator 4 is also maintained at approximately this pressure.

この状態で受熱部1に発生した蒸気6Bが放熱部2に達
して再び液化される動作により、受熱部1での熱が放熱
部2に熱輸送されることになるが、この動作は受熱部1
に液6Aがなくなるまで続く。
In this state, the steam 6B generated in the heat receiving part 1 reaches the heat radiating part 2 and is liquefied again, so that the heat in the heat receiving part 1 is transferred to the heat radiating part 2. 1
This continues until liquid 6A runs out.

そしてこの受熱部1での液6Aがすべて蒸発すると、受
熱部1、管路5Aおよび放熱部2にある蒸気6Bの圧力
は、放熱部2の温度のみに規制されて低くなり、アキュ
ムレータ4と受熱部1との間に差圧を生じ、アキュムレ
ータ4の圧力が高いために、このアキュムレータ4に貯
溜されている液6Aは第2の逆止弁3Bを通って受熱部
1方向に還流することになる。このとき液6Aはただち
に受熱部1には到達せずに、管路5Dに介在された容室
7の液溜8に一端貯溜されることになる。すなわち、液
溜8は内部に所定量の液6Aを貯溜し、支点0より上方
の重心点G2に移動するようになると、転回して液6A
を受熱部1に一時に放流することになる。その結果、受
熱部1に対して多量の液6Aを供給し、受熱部1の全体
を効果的に作用させることができる。
When all of the liquid 6A in the heat receiving part 1 evaporates, the pressure of the steam 6B in the heat receiving part 1, the pipe 5A, and the heat radiating part 2 is regulated only by the temperature of the heat radiating part 2, and becomes low. Since a pressure difference is generated between the heat receiving part 1 and the pressure in the accumulator 4 is high, the liquid 6A stored in the accumulator 4 flows back toward the heat receiving part 1 through the second check valve 3B. Become. At this time, the liquid 6A does not immediately reach the heat receiving part 1, but is temporarily stored in the liquid reservoir 8 of the chamber 7 interposed in the pipe line 5D. That is, the liquid reservoir 8 stores a predetermined amount of the liquid 6A therein, and when it moves to the center of gravity G2 above the fulcrum 0, it rotates and the liquid 6A is stored inside the liquid reservoir 8.
is discharged to the heat receiving section 1 at once. As a result, a large amount of liquid 6A can be supplied to the heat receiving section 1, and the entire heat receiving section 1 can be effectively operated.

以上の動作が順次繰り返されて、上部の受熱部1からの
熱が、下部に位置する放熱部2に、何等の動力をも利用
することなく熱輸送することができる。
By sequentially repeating the above operations, the heat from the upper heat receiving section 1 can be transported to the lower heat radiating section 2 without using any power.

しかしながら従来のこの種熱伝達装置においては、この
受熱部lでの液6Aがすべて蒸発してアキュムレータ4
と受熱部1との間に差圧を生じたときに、アキュムレー
タ4に貯溜されている液6Aは一旦貯溜された後、受熱
部1に供給されるため、当然このとき放熱部2への蒸気
流は停止することになる。その結果、受熱部1から放熱
部2への熱輸送量が減少あるいは停止し、熱輸送に時間
的脈動が生じるという不具合があった。
However, in the conventional heat transfer device of this type, all of the liquid 6A in the heat receiving part 1 evaporates and the accumulator 4
When a pressure difference is generated between the heat receiving part 1 and the liquid 6A, the liquid 6A stored in the accumulator 4 is temporarily stored and then supplied to the heat receiving part 1. The flow will stop. As a result, the amount of heat transported from the heat receiving section 1 to the heat radiating section 2 decreases or stops, causing a problem that temporal pulsations occur in the heat transport.

〔発明の概要〕[Summary of the invention]

本発明はこのような事情に鑑がみなされたもので、受熱
部」二流側で放熱部下流側の管路に複数並列配管された
アキュムレータを介装し、アキュムレータを加熱冷却す
る加熱冷却手段を設け、少なくとも1つのアキュムレー
タに対し作動流体をアキュムレータに流入させる動作と
、前記受熱部へ還流させる動作とを交互に行わせると共
に、他のアキュムレータに対し、前記動作と逆の順序で
同様動作を交互に行わせしめる制御手段を設けるという
きわめて簡単な構成により、熱輸送の脈動を防止できる
熱伝達装置を提供するものである。以下、その構成等を
図に示す実施例により詳細に説明する。
The present invention was developed in view of the above circumstances, and includes a plurality of accumulators piped in parallel in a pipeline on the second-stream side of the heat-receiving section and downstream of the heat-radiating section, and a heating and cooling means for heating and cooling the accumulators. and causing at least one accumulator to alternately perform an operation of causing the working fluid to flow into the accumulator and an operation of causing the working fluid to flow back to the heat receiving section, and alternately perform the same operation in the reverse order of the aforementioned operation for the other accumulators. The present invention provides a heat transfer device that can prevent pulsation of heat transport with an extremely simple configuration that includes a control means for controlling the heat transfer. Hereinafter, its configuration and the like will be explained in detail with reference to embodiments shown in the drawings.

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明に係る熱伝達装置を示す系統図で、同図
において1は受熱部、2ば放熱部、6は熱輸送媒体とし
てのフロンやメチルアルコールなど凝縮性の作動流体で
ある。この作動流体6は前記受熱部1と放熱部2とを介
装したループ状の管路ll内に適量封入されている。1
2は放熱を効果的に行うために放熱部2に設けられた送
風ファンである。
FIG. 3 is a system diagram showing a heat transfer device according to the present invention, in which 1 is a heat receiving section, 2 is a heat radiating section, and 6 is a condensable working fluid such as fluorocarbon or methyl alcohol as a heat transport medium. A suitable amount of the working fluid 6 is sealed in a loop-shaped pipe line 11 which has the heat receiving section 1 and the heat radiating section 2 interposed therebetween. 1
Reference numeral 2 denotes a blower fan provided in the heat radiating section 2 to effectively radiate heat.

21および22は受熱部1の上流側と放熱部2の下流側
とを接続する管路11に介装された複数個のアキュムレ
ータ、本実施例においては211i1の第1および第2
のアキュムレータで、211M並列に配管されている。
Reference numerals 21 and 22 denote a plurality of accumulators interposed in the pipe line 11 connecting the upstream side of the heat receiving section 1 and the downstream side of the heat dissipating section 2; in this embodiment, the first and second accumulators 211i1;
This is an accumulator with 211M pipes connected in parallel.

すなわち、IIAば受熱部1の下流側と放熱部2の上流
側とを接続する管路、11Bは受熱部1の上流側と放熱
部2の下流側とを接続する管路で、管路11Bは受熱部
1側は第1および第2のアキュムレータ21.22と受
熱部1とを連通接続する管路23Aと管路23Bとに分
岐され、放熱部2側は第1および第2のアキュムレータ
21.22と放熱部2とを連1ffl接続する管路23
Cと管路23Dとに分岐されている。24〜27は分岐
されたそれぞれの管路23A〜23Dを選択的に開閉す
る開閉手段としての開閉弁で、24および25は管路2
3Aおよび23Bに介装された開閉手段としての第1お
よび第2の開閉弁、26および27は管路23Cおよび
管路23Dに介装された開閉手段としての第3および第
4の開閉弁である。
That is, IIA is a pipe connecting the downstream side of the heat receiving part 1 and the upstream side of the heat radiating part 2, and 11B is a pipe connecting the upstream side of the heat receiving part 1 and the downstream side of the heat radiating part 2. The heat receiving part 1 side is branched into a pipe line 23A and a pipe line 23B which communicate and connect the first and second accumulators 21, 22 and the heat receiving part 1, and the heat dissipating part 2 side is branched into a pipe line 23A and a pipe line 23B which communicate and connect the first and second accumulators 21, 22 and the heat receiving part 1. .22 and the heat radiation part 2 are connected in series 1ffl.
C and a conduit 23D. Reference numerals 24 to 27 indicate on-off valves as opening/closing means for selectively opening and closing the respective branched pipe lines 23A to 23D;
3A and 23B are interposed in the first and second on-off valves as on-off means, and 26 and 27 are the third and fourth on-off valves as on-off means and on the pipe line 23C and the pipe line 23D. be.

そしてこれら第1〜第4の開閉弁24〜27はアキュム
レータ21.22の動作を制御する制御手段を構成する
ために、次のようにその開閉動作が互いに連動されてい
る。すなわち、第1.第4の開閉弁24.2jが両者共
に開で、第2.第3の開閉弁25.26が両者共に閉の
第1の状態と、第1.第4の開閉弁24.27が両者共
に閉で、第2.第3の開閉弁25.26が両者共に開の
第2の状態とを交互に適当な時間間隔で繰り返すように
連動されている。
These first to fourth on-off valves 24 to 27 constitute a control means for controlling the operation of the accumulators 21 and 22, so that their opening and closing operations are interlocked with each other as follows. That is, 1st. Both the fourth on-off valves 24.2j are open, and the second. A first state in which the third on-off valves 25 and 26 are both closed; Both the fourth on-off valves 24 and 27 are closed, and the second on-off valves 24 and 27 are both closed. The third on-off valves 25 and 26 are interlocked so that both open and open second states are alternately repeated at appropriate time intervals.

30は前記第1および第2のアキュムレータ21.22
を加熱冷却する加熱冷却手段としてのベルチェ効果を利
用した熱電素子で、この熱電素子30はアキュムレータ
間に介装され、一方の面31を第1のアキュムレータ2
1に接触させ、他方の面32を第2のアキュムレータ2
2と接触させるように設けられている。この熱電素子3
0ば通電する電流の正負を切り換えることにより、前記
両面31.32において発熱および吸熱を交互に行うこ
とができる。ここで正負の切り換えは、第1〜第4の開
閉弁24〜27が第1の状態にあるとき、熱電素子30
の面31が発熱、面32が吸熱状態となり、第2の状態
にあるとき、熱電素子30の面31が吸熱、面32が発
熱状態となるように連動されている。
30 is the first and second accumulator 21.22
This thermoelectric element 30 is interposed between accumulators, and one surface 31 is connected to the first accumulator 2.
1 and the other surface 32 is in contact with the second accumulator 2
It is provided so as to be in contact with 2. This thermoelectric element 3
By switching between positive and negative currents, heat generation and heat absorption can be performed alternately on both surfaces 31 and 32. Here, the positive/negative switching is performed when the first to fourth on-off valves 24 to 27 are in the first state.
The surface 31 of the thermoelectric element 30 is in a heat-absorbing state, and the surface 32 is in a heat-absorbing state, and when in the second state, the surface 31 of the thermoelectric element 30 is in a heat-absorbing state, and the surface 32 is in a heat-generating state.

このように構成された熱伝達装置においては、第3図に
示す前記第1の状態に設定されると、受熱部lで発生し
た蒸気6Bは管路11Aを通って放熱部2へと流通し、
冷却されて凝縮する。凝縮された液6Aは管路11B、
管路23Dを経て第4の開閉弁27を通過し、第2のア
キュムレータ22へ流れ込む作用により、受熱部1で吸
収した熱が放熱部2へと輸送される。この間、第2の開
閉弁25は閉になっているため、受熱部lから第2のア
キュムレータ22へ管路23Bを通って直接蒸気が流れ
込むようなことはない。また第1の開閉弁24は開、第
3の開閉弁26は閉となっている。
In the heat transfer device configured in this way, when the first state shown in FIG. ,
It cools and condenses. The condensed liquid 6A is passed through the pipe 11B,
The heat absorbed by the heat receiving part 1 is transported to the heat radiating part 2 by the action of passing through the fourth on-off valve 27 via the conduit 23D and flowing into the second accumulator 22. During this time, since the second on-off valve 25 is closed, steam does not directly flow from the heat receiving part 1 to the second accumulator 22 through the pipe line 23B. Further, the first on-off valve 24 is open, and the third on-off valve 26 is closed.

このとき前記熱電素子30には第1のアキュムレータ2
1を加熱し、第2のアキュムレータ22を冷却するよう
に電圧が印加されており、第1のアキュムレータ21の
内部圧力が第2のアキュムレータ22の内部圧力よりも
高くなるため、第1のアキュムレータ21から第2のア
キュムレータ22へ向かう方向に液体を流通させる駆動
力が発生ずる。その結果、第1のアキュムレータ21内
にある液体は管路23A、第1の開閉弁24を通って受
熱部1へ還流することになる。換言すれば受熱部1に作
動流体6が供給されることになる。
At this time, the thermoelectric element 30 includes the first accumulator 2.
A voltage is applied to heat the first accumulator 22 and cool the second accumulator 22, and the internal pressure of the first accumulator 21 becomes higher than the internal pressure of the second accumulator 22. A driving force is generated that causes the liquid to flow in the direction from the second accumulator 22 to the second accumulator 22 . As a result, the liquid in the first accumulator 21 flows back to the heat receiving section 1 through the pipe line 23A and the first on-off valve 24. In other words, the working fluid 6 is supplied to the heat receiving section 1.

一方、一定周期経過後あるいはアキュムレータ21.2
2内の液面の検知などにより、第1〜第4の開閉弁24
〜27および熱電素子30の切り換えが行われると、発
熱素子30は面31が吸熱、面32が発熱状態となる。
On the other hand, after a certain period or the accumulator 21.2
The first to fourth on-off valves 24 are
27 and the thermoelectric element 30 is switched, the surface 31 of the heating element 30 becomes heat absorbing and the surface 32 becomes heat generating.

また第1および第4の開閉弁24.27両者共に閉で、
第2および第3の開閉弁25.26が両者共に開の第2
の状態に切り換えると、受熱部1で蒸発した蒸気6Bは
放熱部2で液化した後、第1のアキュムレータ21へ流
れ込み、第2のアキュムレータ22から受熱部1へと液
が還流するという点が異なるだけの第1の状態と全く同
様な作用で熱輸送が行われる。
In addition, both the first and fourth on-off valves 24 and 27 are closed,
The second and third on-off valves 25 and 26 are both open.
The difference is that when switching to the state, the vapor 6B evaporated in the heat receiving section 1 is liquefied in the heat dissipating section 2 and then flows into the first accumulator 21, and the liquid flows back from the second accumulator 22 to the heat receiving section 1. Heat transport is carried out in exactly the same manner as in the first state.

このように第1〜第4の開閉弁24〜27の開閉の切り
換え、および熱電素子30の電流の切り換えにより、受
熱部1に作動流体6が還流している時点でアキュムレー
タ21.22を切り換え、略連続的に作動流体6を受熱
部1へと還流させることができる。
In this way, by switching the opening and closing of the first to fourth on-off valves 24 to 27 and switching the current of the thermoelectric element 30, the accumulators 21 and 22 are switched at the time when the working fluid 6 is flowing back into the heat receiving part 1, The working fluid 6 can be returned to the heat receiving section 1 substantially continuously.

したがって、作動流体6を受熱部1内ですべて蒸発させ
るようなことがなく、受熱部1内の蒸気6Bを放熱部2
へ連続的に流通させることができるから、熱輸送の脈動
を小さくして熱輸送量の変化を小さくし、熱輸送効率を
増大させることができる。しかも、液体の還流に重力を
利用していないのでアキュムレータ21..22が受熱
部1より下方に位置する場合など、配設位置に無関係に
熱輸送が行えるのは勿論、受熱部1や放熱部2内の圧力
損失が大きな場合や、延いては宇宙などの無重力下であ
っても、熱を輸送することができる。
Therefore, the working fluid 6 is not completely evaporated in the heat receiving part 1, and the steam 6B in the heat receiving part 1 is transferred to the heat radiating part.
Since the heat can be continuously circulated through the heat transport, the pulsation of heat transport can be reduced, the change in the amount of heat transport can be reduced, and the heat transport efficiency can be increased. Moreover, since gravity is not used for liquid reflux, the accumulator 21. .. 22 is located below the heat receiving part 1, heat can of course be transported regardless of the installation position, but also in cases where the pressure loss in the heat receiving part 1 and the heat dissipating part 2 is large, or even in zero gravity such as in space. Heat can be transported even at the bottom.

すなわち、第1〜第4の開閉弁24〜27によって少な
くとも1つのアキュムレータに対し、前記放熱部2で凝
縮された作動流体6をアキュムレータに流入させる動作
とアキュムレータ内にある作動流体6を前記受熱部1へ
還流させる動作とを交互に行わせると共に、他のアキュ
ムレータに対し、前記動作と逆の順序で同様動作を交互
に行わせる制御手段が構成されている。さらにこの手段
That is, the first to fourth on-off valves 24 to 27 cause the working fluid 6 condensed in the heat radiating section 2 to flow into the accumulator, and the working fluid 6 in the accumulator is transferred to the heat receiving section. Control means is configured to alternately perform the operation of recirculating the water to the accumulator 1, and to alternately cause the other accumulators to perform the same operation in the reverse order of the aforementioned operation. Further this means.

による作動流体6の受熱部1への還流およびアキュムレ
ータへの流入は熱電素子30でアキュムレータに加熱冷
却することにより、一層効果的に行われている。
The return of the working fluid 6 to the heat receiving section 1 and the inflow into the accumulator are performed more effectively by heating and cooling the accumulator with the thermoelectric element 30.

第4図は本発明に係る他の実施例を示す系統図で、少な
くとも1つのアキュムレータに対し、前記放熱部2で凝
縮された作動流体6をアキュムレータに流入させ〜る動
作とアキュムレータ内にある作動流体6を前記受熱部1
へ還流させる動作とを交互に行わせると共に、他のアキ
ュムレータに対し、前記動作と逆の順序で同様動作を交
互に行わせる制御手段として、第3図に示した第1.第
2の開閉弁24.25の代わりに、第1.第2のアキュ
ムレータ21.22から受熱部1へ向かってのみ液が流
れるような第1および第2の逆止弁51.52を管路2
3A、23Bに介装し、第3および第4の開閉弁26.
27の代わりに放熱部2から第1.第2のアキュムレー
タ21.22へ1iilかってのみ液が流れるような第
3および第4の逆止弁61,62が介装されている。こ
の実施例においては前記熱電素子30による加熱冷却を
切り換えることにより、第1.第2のアキュムレータ2
1.22内の圧力に差圧が生じ、前記第1の状態と第2
の状態との切り換えが行われる。
FIG. 4 is a system diagram showing another embodiment according to the present invention, in which the operation of causing the working fluid 6 condensed in the heat radiation section 2 to flow into the accumulator and the operation within the accumulator are performed for at least one accumulator. The fluid 6 is transferred to the heat receiving section 1
1. shown in FIG. Instead of the second on-off valve 24.25, the first on-off valve 24.25. The first and second check valves 51,52 are installed in the conduit 2 so that the liquid flows only from the second accumulator 21,22 toward the heat receiving part 1.
3A and 23B, and third and fourth on-off valves 26.
27 instead of the first. Third and fourth check valves 61, 62 are interposed such that liquid only flows once into the second accumulator 21, 22. In this embodiment, by switching the heating and cooling by the thermoelectric element 30, the first. Second accumulator 2
1.2 A pressure difference occurs between the first state and the second state.
Switching between the state and the state is performed.

この切り換えにおいて、第1のアキュムレータ21内の
圧力と第2のアキュムレータ22内の圧力の高低差の逆
転を円滑することが要求される場合は、第5図に示すよ
うに、第1のアキュムレータ21と第2のアキュムレー
タ22とを連通接続し、内部圧力を均一にする均−管7
1を設けることにより、一層円滑に行うことができる。
In this switching, if it is required to smoothly reverse the height difference between the pressure in the first accumulator 21 and the pressure in the second accumulator 22, as shown in FIG. and the second accumulator 22 to make the internal pressure uniform.
1, the process can be carried out even more smoothly.

すなわち、72ば前記均一管71の途中に介装された開
閉手段としての第5の開閉弁で、この第5の開閉弁72
は第1〜第4の開閉弁24〜27七同期して、第1の状
態と第2の状態との切り換えと同時に開状態となり、所
定時間経過後再び閉状態となるように動作が設定されて
いる。この動作について説明すると、例えば第1〜第4
の開閉弁24〜27の切り換え時には、開閉弁72が開
状態に制御されることにより、第1のアキュムレータ2
1内の圧力と第2のアキュムレータ22内の圧力とは、
瞬時に等しくなり、その後開閉弁72が閉状態となるこ
とにより、熱電素子30の加熱冷却作用で、アキュムレ
ータ2L22内の圧力差が逆の方向に増大することにな
る。その結果、第1〜第4の開閉弁24〜27の切り換
え時において、第1.第2のアキュムレータ21.22
内の圧力差の逆転が短時間で行われることになる。
That is, 72 is a fifth on-off valve as an on-off means interposed in the middle of the uniform pipe 71, and this fifth on-off valve 72
The operation of the first to fourth on-off valves 24 to 27 is set so that the first to fourth on-off valves 24 to 27 are synchronously opened and opened at the same time as switching between the first state and the second state, and then closed again after a predetermined period of time has elapsed. ing. To explain this operation, for example, the first to fourth
When the on-off valves 24 to 27 are switched, the on-off valve 72 is controlled to be open, so that the first accumulator 2
1 and the pressure in the second accumulator 22 are:
They become equal instantaneously, and then the on-off valve 72 is closed, so that the heating and cooling action of the thermoelectric element 30 causes the pressure difference within the accumulator 2L22 to increase in the opposite direction. As a result, when the first to fourth on-off valves 24 to 27 are switched, the first to fourth on-off valves 24 to 27 are switched. Second accumulator 21.22
The reversal of the pressure difference within will take place in a short period of time.

第6図および第7図はそれぞれ他の実施例を示す系統図
で、これらの図に示す例においては、第1、第2のアキ
ュムレータ21.22にチッ素やヘリウムなど非凝縮性
ガスが封入されたガスリザーバが接続されている。第6
図に示す例においては、第1.第2のガスリザーバ81
.82が第1゜第2のアキュムレータ21.22に接続
されている。このため、第1.第2のアキュムレータ2
1゜22内の圧力を第1.第一2のガスリザーバ81゜
82の圧力で規制することができ、圧力の変化幅を小さ
くすることができる。その結果、受熱部1内の圧力が受
熱部lでの熱入力による変化の影響を受けにくくなり、
受熱部1の温度が熱入力の変化によってあまり変化しな
いという温度制御作用が得られることになる。
6 and 7 are system diagrams showing other embodiments, respectively. In the examples shown in these figures, the first and second accumulators 21 and 22 are filled with a non-condensable gas such as nitrogen or helium. gas reservoir is connected. 6th
In the example shown in the figure, the first. Second gas reservoir 81
.. 82 is connected to the first and second accumulators 21,22. For this reason, 1. Second accumulator 2
The pressure within 1°22 is set to 1. It can be regulated by the pressure of the first and second gas reservoirs 81 and 82, and the range of pressure change can be made small. As a result, the pressure inside the heat receiving part 1 becomes less susceptible to changes due to heat input in the heat receiving part l,
A temperature control effect can be obtained in which the temperature of the heat receiving section 1 does not change much due to changes in heat input.

第7図に示す例においては、1個のガスリザーバ91が
第1.第2のアキュムレータ21.22に共通して使用
されており、ガスリザーバ91と第1.第2のアキュム
レータ21.22とを接続するそれぞれの管路の途中に
は、開閉手段としての第6.第7の開閉弁92.93が
介装されている。これら第6.第7の開閉弁92.93
は動作が前記第3.第4の開閉弁26.27の開閉と同
様に行われるように連動されている。すなわち、第1の
状態においては、熱電素子30は面31が発熱し面32
が吸熱するように制御され、第1゜第4.第7の開閉弁
24,27.93がすべて開状態となり、第2.第3.
第6の開閉弁25.26.92は閉状態となる。このと
き、第1のアキュムレータ21内の圧力は、第6の開閉
弁92が閉であるためガスリザーバ91により規制され
ることがなく、第2のアキュムレータ22は、第7の開
閉弁92が開であるためガスリザーバ91により規制さ
れることになる。したがって、熱電素子30により第1
のアキュムレータ21内の圧力は円滑に上昇すると同時
に、第2のアキュムレータ22内の圧力の変化を小さく
することができる。
In the example shown in FIG. 7, one gas reservoir 91 is located at the first. The second accumulator 21.22 is used in common with the gas reservoir 91 and the first. In the middle of each of the pipes connecting the second accumulators 21 and 22, there is a sixth pipe serving as an opening/closing means. A seventh on-off valve 92,93 is interposed. These 6th. Seventh on-off valve 92.93
The operation is the same as the third one above. The opening and closing of the fourth on-off valves 26 and 27 are interlocked. That is, in the first state, the surface 31 of the thermoelectric element 30 generates heat and the surface 32 generates heat.
are controlled so that the 1st and 4th absorb heat. The seventh on-off valves 24, 27.93 are all open, and the second... Third.
The sixth on-off valve 25.26.92 is in the closed state. At this time, the pressure inside the first accumulator 21 is not regulated by the gas reservoir 91 because the sixth on-off valve 92 is closed, and the pressure inside the second accumulator 22 is not regulated by the gas reservoir 91 because the sixth on-off valve 92 is closed. Therefore, it is regulated by the gas reservoir 91. Therefore, the thermoelectric element 30
The pressure in the second accumulator 21 can rise smoothly, and at the same time, the change in the pressure in the second accumulator 22 can be reduced.

その結果、第6図に示した実施例と同様に受熱部lの温
度が熱入力の変化によってあまり変化しないという温度
制御作用が得られることになる。そして、この実施例に
おいては、ガスリザーバが1個でよいという利点の他、
非凝縮性ガスによる規制を切り換えることができるため
、切り換えの動作がより円滑に行うことができる。ここ
で、第6゜第7の開閉弁92.93を第6図に示す第1
.第2のアキュムレータ21.22と第1.第2のガス
リザーバ81.82との間に介装しても同様な効果かえ
られるのは勿論である。
As a result, similar to the embodiment shown in FIG. 6, a temperature control effect can be obtained in which the temperature of the heat receiving portion l does not change much due to changes in heat input. In this embodiment, in addition to the advantage that only one gas reservoir is required,
Since regulation by non-condensable gas can be switched, the switching operation can be performed more smoothly. Here, the 6th and 7th on-off valves 92 and 93 are connected to the first valve shown in FIG.
.. The second accumulator 21.22 and the first. Of course, the same effect can be obtained by interposing it between the second gas reservoir 81 and 82.

なお、上記実施例において、第1〜第4の開閉弁24〜
27の開閉制御は、タイムスイッチ等により一定周期で
行わせるか、あるいは受熱部1や第1.第2のアキュム
レータ21.22内の液面変化を検知して行うことがで
きる。このうち、受熱部1内の液面を検知して開閉弁の
切り換えを行うものでは、受熱部1から液がなくなるこ
とが防止できるので、受熱部1の過熱を防止でき、装置
の信頼性を向上させ、熱輸送効率を増大させることがで
きる。また、2個のアキュムレータを使用した例につい
て説明しているが、本発明はこれに限定されるものでは
な(、複数個のアキュムレータを使用することができる
のは勿論である。
In addition, in the above embodiment, the first to fourth on-off valves 24 to
The opening/closing control of the heat receiving section 1 or the first . This can be done by detecting a change in the liquid level in the second accumulator 21,22. Among these, the one that detects the liquid level in the heat receiving part 1 and switches the on-off valve can prevent the liquid from running out from the heat receiving part 1, thereby preventing the heat receiving part 1 from overheating and improving the reliability of the device. can be improved and heat transport efficiency can be increased. Further, although an example in which two accumulators are used is described, the present invention is not limited to this (although it is of course possible to use a plurality of accumulators).

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、受熱部と放熱部と
を接続する管路に複数個のアキュムレータを介装し、こ
れらアキュムレータを加熱冷却する加熱冷却手段を設け
たから、加熱されているアキュムレータと冷却されてい
るアキュムレータとの間に圧力差を発生させ、この圧力
差を利用し作動流体を受熱部に還流させることができ、
作動流体がアキュムレータに流入する動作および作動流
体が受熱部へ還流する動作をアキュムレータに対し制御
する制御手段を設けたから、作動流体を受熱部に還流さ
せるアキュムレータと放熱部から流入させるアキュムレ
ータとを切り換え、連続して作動流体を受熱部に還流さ
せることができる。
As explained above, according to the present invention, a plurality of accumulators are interposed in the conduit connecting the heat receiving section and the heat dissipating section, and a heating and cooling means for heating and cooling these accumulators is provided. A pressure difference is generated between the accumulator and the cooled accumulator, and this pressure difference can be used to return the working fluid to the heat receiving part,
Since the control means for controlling the accumulator for the operation of the working fluid flowing into the accumulator and the operation of the working fluid returning to the heat receiving section is provided, the accumulator that causes the working fluid to return to the heat receiving section and the accumulator that causes the working fluid to flow from the heat radiating section are switched, The working fluid can be continuously returned to the heat receiving section.

したがって、従来のように受熱部の作動流体がすべて蒸
発するようなことがなく、受熱部内の蒸気を連続的に放
熱部へ流通させることができるから、熱輸送量の変化を
小さくし、熱輸送の脈おを防止できるという効果がある
Therefore, unlike in the past, the working fluid in the heat receiving section does not completely evaporate, and the steam in the heat receiving section can be continuously circulated to the heat radiating section, reducing changes in the amount of heat transport. It has the effect of preventing heartburn.

【図面の簡単な説明】 第1図および第2図は従来の熱伝達装置を示す系統図お
よび要部の拡大図、第3図は本発明にかかる熱伝達装置
を示す系統図、第4図〜第7図は他の実施例を示す系統
図である。 ■−・・・受熱部、2・・・・放熱部、11A。 11B・・・・管路、21.22・・・・第1゜第2の
アキュムレータ、23A〜23D・・・・管路、24〜
27・・・・第1〜第4の開閉弁、30・・・・熱電素
子、51.、52・・・・第1゜第2の逆止弁、61.
62・・・・第3.第4の逆止弁、81.8’2・・・
・第1.第2のガスリザーバ、91・・・・ガスリザー
バ、92.93・・・・第6.第7の開閉弁。 代理人 大岩増雄 2!:¥1図 象3図 銑5図 第6図 鶴7図 1
[Brief Description of the Drawings] Figs. 1 and 2 are a system diagram and an enlarged view of the main parts of a conventional heat transfer device, Fig. 3 is a system diagram showing a heat transfer device according to the present invention, and Fig. 4 7 is a system diagram showing another embodiment. ■-- Heat receiving section, 2... Heat dissipating section, 11A. 11B...Pipe line, 21.22...First degree second accumulator, 23A-23D...Pipe line, 24-
27... First to fourth on-off valves, 30... Thermoelectric element, 51. , 52...first degree second check valve, 61.
62...3rd. Fourth check valve, 81.8'2...
・First. Second gas reservoir, 91...Gas reservoir, 92.93...6th. Seventh on-off valve. Agent Masuo Oiwa 2! :¥1Illustration3IllustrationPig5Illustration6IllustrationTsuru7Illustration1

Claims (1)

【特許請求の範囲】 (11受熱部と放熱部とを介装したループ状の管路を備
え、この管路内に熱輸送媒体としての凝縮性作動流体を
封入してなる熱伝達装置において、前記受熱部上流側で
放熱部下流側の管路に複数並列配管されたアキュムレー
タを介装し、アキュムレータを加熱冷却する加熱冷却手
段を設け、少なくとも1つのアキュムレータに対し前記
放熱部で凝縮された作動流体をアキュムレータに流入さ
せる動作と、アキュムレータ内にある流体を前記受熱部
へ還流させる動作とを交互に行わゼると共に、他のアキ
ュムレータに対し、前記動作と逆の順序で同様動作を交
互に行わせしめる制御手段を設けたことを特徴とする熱
伝達装置。 (2)制御手段はアキュムレータと前記受熱部とを、ア
キュムレータと放熱部とを、それぞれ連通する管路をそ
れぞれ選択的に開閉する開閉手段から構成されているこ
とを特徴とする特許請求の範囲第1項記載の熱伝達装置
。 (3)開閉手段は、各管路に介装された開閉弁から構成
され、同一のアキュムレータ側の2つの開閉弁の開閉は
、交互に行われかつ少なくとも他の1つのアキュムレー
タ側の2つの開閉弁の開閉状態とは逆の開閉状態となる
ように設定されていることを特徴とする特許請求の範囲
第2項記載の熱伝達装置。 (4)開閉手段は各管路に介装されたアキュムレータか
ら受熱部および放熱部からアキュムレータへ向かっての
み流体が流れる逆止弁から構成されていることを特徴と
する特許請求の範囲第2項記載の熱伝達装置。 (5)加熱冷却手段は、ペルチェ効果を利用した熱電素
子から構成されていることを特徴とする特許請求の範囲
第1項記載の熱伝達装置。 (6)少なくとも2つのアキュムレータの間は、開閉手
段により開閉される均圧管を介して連通接続されている
ことを特徴とする特許請求の範囲第1項ないし第5項の
いずれかに記載の熱伝達装置。 (7)アキュムレータには非凝縮性ガスが封入されたガ
スリザーバが接続されていることを特徴とする特許請求
の範囲第1項ないし第6項のいずれかに記載の熱伝達装
置。 (8)アキュムレータとガスリザーバとを接続する管路
に開閉手段としての開閉弁が設けられていることを特徴
とする特許請求の範囲第7項記載の熱伝達装置。
[Scope of Claims] (11) A heat transfer device comprising a loop-shaped pipe line with a heat receiving part and a heat radiating part interposed therebetween, and a condensable working fluid as a heat transport medium is sealed in the pipe line, A plurality of accumulators piped in parallel are interposed in a pipe line upstream of the heat receiving section and downstream of the heat radiating section, and a heating and cooling means for heating and cooling the accumulators is provided, and at least one accumulator is operated to condense in the heat radiating section. The operation of causing fluid to flow into the accumulator and the operation of causing the fluid in the accumulator to flow back to the heat receiving section are performed alternately, and the same operation is alternately performed on other accumulators in the reverse order of the above operations. (2) The control means includes opening/closing means for selectively opening and closing pipes that communicate the accumulator and the heat receiving section, and the accumulator and the heat radiating section, respectively. The heat transfer device according to claim 1, characterized in that: (3) the opening/closing means is constituted by an opening/closing valve interposed in each pipe, and two valves on the same accumulator side Claims characterized in that the opening and closing of the two on-off valves are set to be alternately performed and to be in an open/close state opposite to the open/close state of the two on-off valves on the side of at least one other accumulator. The heat transfer device according to item 2. (4) The opening/closing means is comprised of a check valve through which fluid flows only from the accumulator interposed in each pipe line to the heat receiving section and the heat dissipating section toward the accumulator. The heat transfer device according to claim 2. (5) The heat transfer device according to claim 1, characterized in that the heating and cooling means is constituted by a thermoelectric element that utilizes the Peltier effect. Transmission device. (6) Any one of claims 1 to 5, characterized in that at least two accumulators are connected via a pressure equalizing pipe that is opened and closed by an opening and closing means. (7) The heat transfer device according to any one of claims 1 to 6, wherein a gas reservoir filled with a non-condensable gas is connected to the accumulator. (8) The heat transfer device according to claim 7, characterized in that an on-off valve serving as an on-off means is provided in the pipeline connecting the accumulator and the gas reservoir.
JP2647384A 1984-01-31 1984-02-15 Heat transfer device Granted JPS60171389A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2647384A JPS60171389A (en) 1984-02-15 1984-02-15 Heat transfer device
US06/693,151 US4576009A (en) 1984-01-31 1985-01-22 Heat transmission device
DE19853503160 DE3503160A1 (en) 1984-01-31 1985-01-31 HEAT TRANSFER DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2647384A JPS60171389A (en) 1984-02-15 1984-02-15 Heat transfer device

Publications (2)

Publication Number Publication Date
JPS60171389A true JPS60171389A (en) 1985-09-04
JPS6338639B2 JPS6338639B2 (en) 1988-08-01

Family

ID=12194476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2647384A Granted JPS60171389A (en) 1984-01-31 1984-02-15 Heat transfer device

Country Status (1)

Country Link
JP (1) JPS60171389A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015789A1 (en) * 1995-10-24 1997-05-01 Daikin Industries, Ltd. Air conditioner
WO1997015799A1 (en) * 1995-10-24 1997-05-01 Daikin Industries, Ltd. Heat transport system
KR19990085871A (en) * 1998-05-22 1999-12-15 이태랑 Electronic device with heat transfer pump and cooling device using same
JP2016507043A (en) * 2013-02-14 2016-03-07 ユーロ ヒート パイプス Heat transport device using two-phase fluid

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015789A1 (en) * 1995-10-24 1997-05-01 Daikin Industries, Ltd. Air conditioner
WO1997015799A1 (en) * 1995-10-24 1997-05-01 Daikin Industries, Ltd. Heat transport system
JPH09178217A (en) * 1995-10-24 1997-07-11 Daikin Ind Ltd Heat transfer apparatus
AU717467B2 (en) * 1995-10-24 2000-03-30 Daikin Industries, Ltd. Heat transport system
US6062035A (en) * 1995-10-24 2000-05-16 Daikin Industries, Ltd. Air conditioner
US6065302A (en) * 1995-10-24 2000-05-23 Daikin Industries, Ltd. Heat transport system
US6185953B1 (en) 1995-10-24 2001-02-13 Daikin Industries, Ltd. Heat transport system
KR19990085871A (en) * 1998-05-22 1999-12-15 이태랑 Electronic device with heat transfer pump and cooling device using same
JP2016507043A (en) * 2013-02-14 2016-03-07 ユーロ ヒート パイプス Heat transport device using two-phase fluid
US10234213B2 (en) 2013-02-14 2019-03-19 Euro Heat Pipes Device for heat transport with two-phase fluid

Also Published As

Publication number Publication date
JPS6338639B2 (en) 1988-08-01

Similar Documents

Publication Publication Date Title
JPS60171389A (en) Heat transfer device
EP0354749B1 (en) Air-cooled absorption Air-conditioner
JPS6329196B2 (en)
JPH0428993B2 (en)
JPS6226491A (en) Heat transfer device
JP2642048B2 (en) Heat storage type air conditioner using midnight power
JPH02187594A (en) Heat pipe type heat exchanger
CN110940214A (en) Loop heat pipe capable of refrigerating and heating
JP2003279171A (en) Heat transportation system
JPH0413636B2 (en)
JPS6238148Y2 (en)
JP2853943B2 (en) Control method of working fluid circulation flow rate of loop heat pipe
JPS6242296Y2 (en)
KR960002126B1 (en) Refrigerator
JPH031752Y2 (en)
JPS6285451A (en) Heat transfer apparatus
JPH0615939B2 (en) Absorption heat pump device
JPS61190271A (en) Air-cooled absorption type heat pump
JPS6026286A (en) Thermal conductive device
JPS6358062A (en) Cooling device by circulation of refrigerant
JPS63169453A (en) Method of operating chemical heat pump
JPS6039655Y2 (en) heat transfer device
JP2004245435A (en) Absorption chiller
JPS6155563A (en) Heat transfer device
JPS5833467B2 (en) Kiyushyuureituki