JP3252577B2 - Heat transfer device - Google Patents

Heat transfer device

Info

Publication number
JP3252577B2
JP3252577B2 JP33034893A JP33034893A JP3252577B2 JP 3252577 B2 JP3252577 B2 JP 3252577B2 JP 33034893 A JP33034893 A JP 33034893A JP 33034893 A JP33034893 A JP 33034893A JP 3252577 B2 JP3252577 B2 JP 3252577B2
Authority
JP
Japan
Prior art keywords
liquid
refrigerant
gas
valve
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33034893A
Other languages
Japanese (ja)
Other versions
JPH07190394A (en
Inventor
勝蔵 粉川
統雄 垰
龍太 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP33034893A priority Critical patent/JP3252577B2/en
Publication of JPH07190394A publication Critical patent/JPH07190394A/en
Application granted granted Critical
Publication of JP3252577B2 publication Critical patent/JP3252577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷媒を加熱する時の圧
力上昇を利用して、熱を暖房などに利用する熱搬送装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer apparatus for utilizing heat for heating or the like by utilizing a pressure increase when a refrigerant is heated.

【0002】[0002]

【従来の技術】従来の熱搬送装置は、例えば特開平3−
51631号公報に示されるように、図3のような構成
になっている。
2. Description of the Related Art A conventional heat transfer device is disclosed in, for example,
As shown in Japanese Patent No. 51631, the configuration is as shown in FIG.

【0003】すなわち、気液セパレータ1は、冷媒加熱
器2の上方に配設されるとともに冷媒加熱器2の入口管
3と冷媒加熱器2の出口管4とで連結され環状の管路で
接続されている。また、受液器5は気液セパレータ1の
上方に配設され、第1逆止弁6を有する落込み管7で気
液セパレータ1へ接続され、さらに開閉弁8を有する均
圧管9により出口管4を介して気液セパレータ1に接続
されている。気液セパレータ1と利用側として室内側に
配置される放熱器10は、ガス冷媒往き管11で接続さ
れ、放熱器10と受液器5は、第2逆止弁12を有する
液冷媒戻り管13で接続されている。以上のように、気
液セパレータ1、放熱器10、第2逆止弁12、受液器
5、第1逆止弁6は順次配管接続された環状の循環路を
形成している。14は冷媒加熱器2の出口管4に設けた
温度検知器であり、15は温度検知器14の検知する温
度により、開閉弁8の開閉時間を制御する制御装置であ
る。16は冷媒加熱器2に設けたバーナであり、このバ
ーナ16により冷媒を加熱する。17は放熱器10に設
けた送風機である。
That is, the gas-liquid separator 1 is disposed above the refrigerant heater 2 and is connected by an inlet pipe 3 of the refrigerant heater 2 and an outlet pipe 4 of the refrigerant heater 2 and is connected by an annular pipe. Have been. The liquid receiver 5 is disposed above the gas-liquid separator 1, is connected to the gas-liquid separator 1 by a drop pipe 7 having a first check valve 6, and is further connected to an outlet by an equalizing pipe 9 having an on-off valve 8. It is connected to the gas-liquid separator 1 via a pipe 4. The gas-liquid separator 1 and a radiator 10 arranged on the indoor side as a utilization side are connected by a gas refrigerant outflow pipe 11, and the radiator 10 and the liquid receiver 5 are connected to a liquid refrigerant return pipe having a second check valve 12. 13 are connected. As described above, the gas-liquid separator 1, the radiator 10, the second check valve 12, the liquid receiver 5, and the first check valve 6 form an annular circulation path that is sequentially connected to the pipe. Reference numeral 14 denotes a temperature detector provided in the outlet pipe 4 of the refrigerant heater 2, and reference numeral 15 denotes a control device that controls the opening / closing time of the on-off valve 8 based on the temperature detected by the temperature detector 14. Reference numeral 16 denotes a burner provided in the refrigerant heater 2, and the refrigerant is heated by the burner 16. 17 is a blower provided in the radiator 10.

【0004】上記構成において、その動作を以下に説明
する。冷媒加熱器2において、バーナ16の燃焼熱で加
熱された冷媒は、ガスと液の2相状態で出口管4を通
り、気液セパレータ1へ流入し、液冷媒は入口管3から
再び冷媒加熱器2に流入する。一方、気液セパレータ1
へ流入した2相状態の冷媒のうちガス冷媒は、ガス冷媒
往き管11から放熱器10へ入り、送風機17で送られ
た室内空気と熱交換し、放熱凝縮し過冷却液化する。
The operation of the above configuration will be described below. In the refrigerant heater 2, the refrigerant heated by the combustion heat of the burner 16 passes through the outlet pipe 4 in the two-phase state of gas and liquid, flows into the gas-liquid separator 1, and the liquid refrigerant is reheated from the inlet pipe 3. Into the vessel 2. On the other hand, the gas-liquid separator 1
The gas refrigerant of the two-phase refrigerant flowing into the radiator 10 enters the radiator 10 through the gas refrigerant outflow pipe 11 and exchanges heat with the room air sent by the blower 17 to radiate and condense to be supercooled and liquefied.

【0005】ここで、開閉弁8が閉のときには、放熱器
10で凝縮液化した過冷却液冷媒は、液冷媒戻り管13
から第2逆止弁12を介して、ガス冷媒を凝縮させるこ
とにより受液器5内へ流入する。このとき受液器5内の
圧力は気液セパレータ1内の圧力より低くなっているた
め、第1逆止弁6は閉状態となっている。この状態で、
開閉弁8を開とすると、受液器5と気液セパレータ1と
は均圧管9により連通して均圧状態となり、受液器5内
の液冷媒は重力により第1逆止弁6を通り気液セパレー
タ1内へ流入する。
When the on-off valve 8 is closed, the supercooled liquid refrigerant condensed and liquefied by the radiator 10 is supplied to the liquid refrigerant return pipe 13.
Then, the gas refrigerant flows into the liquid receiver 5 through the second check valve 12 by condensing the gas refrigerant. At this time, since the pressure in the liquid receiver 5 is lower than the pressure in the gas-liquid separator 1, the first check valve 6 is in a closed state. In this state,
When the on-off valve 8 is opened, the liquid receiver 5 and the gas-liquid separator 1 communicate with each other by the pressure equalizing pipe 9 to be in a pressure equalized state, and the liquid refrigerant in the liquid receiver 5 passes through the first check valve 6 due to gravity. The gas flows into the gas-liquid separator 1.

【0006】次に、開閉弁8を再び閉にすると、第1逆
止弁6は閉状態になり、受液器5内へ放熱器10の凝縮
過冷却した液冷媒が受液器5内の急減圧により吸引さ
れ、受液器5が液冷媒で満たされるサイクルを繰り返
す。このように、気液セパレータ1と冷媒加熱器2間は
蒸発した冷媒圧による自然循環サイクルであり、受液器
5から気液セパレータ1および冷媒加熱器2への液冷媒
の供給は開閉弁8の開閉周期による間欠動作サイクルで
ある。
Next, when the on-off valve 8 is closed again, the first check valve 6 is closed, and the condensed and supercooled liquid refrigerant of the radiator 10 flows into the receiver 5. The cycle in which the liquid is sucked by the rapid pressure reduction and the liquid receiver 5 is filled with the liquid refrigerant is repeated. As described above, a natural circulation cycle is performed between the gas-liquid separator 1 and the refrigerant heater 2 by the evaporated refrigerant pressure, and the supply of the liquid refrigerant from the receiver 5 to the gas-liquid separator 1 and the refrigerant heater 2 is performed by the on-off valve 8. Is an intermittent operation cycle based on the opening / closing cycle.

【0007】[0007]

【発明が解決しようとする課題】上記従来の構成におい
て、冷媒加熱による熱搬送を行なうため開閉弁8の開閉
動作周期の設定には、図4に示すように受液器5での減
圧開始遅れ時間Tlを考慮する必要があった。即ち、開
閉弁8が開状態から閉状態に切替った時間t1から時間
lだけ遅れて受液器5が放熱して受液器5内のガス温
度が低下して減圧が発生し、減圧時間Trで受液器5内
が液冷媒で満たされ減圧が完了する。この減圧開始遅れ
時間Tlは主に受液器5の容器の熱容量に起因するもの
である。また減圧時間Trは空となった受液器5内へ液
冷媒が流入し終るまでの時間であり、受液器5の内容積
および放熱器10から受液器5までの流路抵抗により定
まる。さらに開時間TONは満液となった受液器5から気
液セパレータ1へ液冷媒が落し込まれるのに要する時間
であり、受液器5の内容積および均圧管9と落込み管7
の流路抵抗により定まる。
In the above-mentioned conventional configuration, the opening / closing operation cycle of the on-off valve 8 for performing heat transfer by heating the refrigerant includes a delay in the start of pressure reduction in the receiver 5 as shown in FIG. Time Tl had to be taken into account. That is, vacuum-off valve 8 is the gas temperature in the delayed receiver 5 is within the receiver 5 to the heat dissipation time T l from the time t 1 has Tsu switched to the closed state from the open state is lowered occurs, During the decompression time Tr , the inside of the receiver 5 is filled with the liquid refrigerant, and the decompression is completed. The decompression start delay time T l is mainly due to the heat capacity of the container receiver 5. The decompression time Tr is a time until the liquid refrigerant has completely flowed into the empty receiver 5, and depends on the internal volume of the receiver 5 and the flow path resistance from the radiator 10 to the receiver 5. Is determined. Further, the open time T ON is the time required for the liquid refrigerant to drop from the liquid receiver 5 that is full to the gas-liquid separator 1, and the internal volume of the liquid receiver 5, the pressure equalizing pipe 9 and the drop pipe 7.
Is determined by the flow path resistance.

【0008】このように開閉弁8の開閉周期TSは開時
間TONと閉時間TOFFの和(TS=TO N+TOFF)であ
り、さらに閉時間TOFFは減圧開始遅れ時間Tlと減圧時
間Trの和(TOFF=Tl+Tr)である。この減圧開始遅
れ時間Tlが比較的大きいために閉時間TOFFの短縮に制
約が生じ、開閉周期TSが長目に設定せざるを得ない状
況となり、熱搬送量(暖房に利用の場合は暖房能力)の
大能力化に制約があった。
[0008] closing period T S of the thus-off valve 8 is the sum of the open time T ON and the closing time T OFF (T S = T O N + T OFF), further closing time T OFF is vacuum start delay time T It is the sum of l and the decompression time Tr (T OFF = T l + T r ). The decompression start delay time T l restriction in shortening the closing time T OFF due to the relatively large occurs, the opening and closing period T S becomes inevitably set status to length first, heat-carrying amount (in the case of use for heating Has limited heating capacity.

【0009】本発明は上記欠点を解決するもので、入口
管と開閉弁に連通した第2の冷媒加熱器を設け、開閉弁
から入る冷媒の温度をより高くする事により必要減圧時
間を短くすることにより開閉周期を短縮し、熱搬送量の
大能力化を目的とする。
The present invention solves the above-mentioned drawbacks, and provides a second refrigerant heater communicating with the inlet pipe and the on-off valve to shorten the required decompression time by increasing the temperature of the refrigerant entering from the on-off valve. Thus, the opening and closing cycle is shortened and the heat transfer amount is increased.

【0010】[0010]

【課題を解決するための手段】本発明は上記目的を達成
するために、冷媒加熱器と、この冷媒加熱器の上方に配
置され、入口管と出口管とで前記冷媒加熱器と連通する
気液セパレータ、この気液セパレータの上方に配置さ
れ、前記入口管と開閉弁に連通した第2の冷媒加熱器
と、前記開閉弁と第1逆止弁を介して前記気液セパレー
タに連通する受液器を有する熱搬送部と、前記気液セパ
レータ、放熱器、第2逆止弁および前記受液器を順次接
続した環状の循環路からなるものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a refrigerant heater and a gas heater disposed above the refrigerant heater and having an inlet pipe and an outlet pipe communicating with the refrigerant heater. A liquid separator, a second refrigerant heater disposed above the gas-liquid separator and communicating with the inlet pipe and the on-off valve, and a receiver communicating with the gas-liquid separator via the on-off valve and the first check valve; It comprises a heat transfer section having a liquid device, and an annular circulation path in which the gas-liquid separator, the radiator, the second check valve, and the liquid receiver are sequentially connected.

【0011】[0011]

【作用】本発明は上記構成によって、第2の冷媒加熱器
により高温に加熱された過熱ガス冷媒を開閉弁に導き、
開閉弁を開成すると、受液器と気液セパレータとは第2
の加熱器、開閉弁により連通して均圧状態となり、受液
器内の液冷媒は重力により第1逆止弁を通り気液セパレ
ータ内へ流入し、受液器には高温の過熱冷媒ガスが充満
する。次に、開閉弁を閉成すると、受液器はより高温で
あるため多量に放熱して受液器内のガス温度が早く低下
するため、速やかに過冷却液冷媒が受液器に流入するた
め、この過冷却冷媒により内部のガスは凝縮され受液器
内部の冷媒圧力が急激に低下し、放熱器から低温の液冷
媒を吸引することによるガス冷媒の凝縮が加速される。
According to the present invention, the superheated gas refrigerant heated to a high temperature by the second refrigerant heater is guided to the on-off valve by the above structure.
When the on-off valve is opened, the receiver and the gas-liquid separator
And the liquid refrigerant in the receiver flows into the gas-liquid separator through the first check valve by gravity, and the high-temperature superheated refrigerant gas flows into the receiver. Is full. Next, when the on-off valve is closed, the receiver is hotter, so that a large amount of heat is dissipated and the gas temperature in the receiver decreases rapidly, so that the supercooled liquid refrigerant flows into the receiver immediately. Therefore, the gas inside is condensed by the supercooled refrigerant, and the pressure of the refrigerant inside the receiver is rapidly reduced, and the condensation of the gas refrigerant by sucking the low-temperature liquid refrigerant from the radiator is accelerated.

【0012】このように減圧開始遅れ時間を無くすこと
により、開閉弁の閉時間を大幅に短縮して開閉周期を小
さくし、単位時間当りの受液器の吸引・落込み回数を増
大させて冷媒循環量を増大可能とし、冷媒加熱量の増大
させることにより熱搬送量(暖房に利用の場合は暖房能
力)の大能力化を得る。
As described above, by eliminating the decompression start delay time, the closing time of the on-off valve is greatly shortened, the opening / closing cycle is reduced, and the number of suction / drop of the liquid receiver per unit time is increased to increase the refrigerant. By increasing the amount of circulation and increasing the amount of heating of the refrigerant, it is possible to obtain a large heat transfer amount (heating capacity in the case of use for heating).

【0013】[0013]

【実施例】以下本発明の一実施例を図1で説明する。図
1において、図3と同一符号は同一部材を示し同一機能
を有しているので詳細な説明は省略し、異なる点を中心
に説明する。
FIG. 1 shows an embodiment of the present invention. 1, the same reference numerals as those in FIG. 3 denote the same members, and have the same functions. Therefore, detailed description will be omitted, and different points will be mainly described.

【0014】18は、バーナ16を有する冷媒加熱器2
と気液セパレータ1を入口管3、出口管4で環状管路に
接続し、気液セパレータ1の上方に設けた受液器5を、
第1逆止弁6を有する落込み管7と、入口管3から冷媒
加熱器2を通り第2の冷媒加熱器20から開閉弁8を介
して受液器5に連通した連通路21と、開閉弁8と第1
逆止弁6を介して気液セパレータ1に連通する受液器5
を有する熱搬送部とで前記環状管路に接続した熱搬送部
である。19は気液セパレータ1、放熱器10、第2逆
止弁12、受液器5を順次配管接続した環状の循環路で
ある。また、受液器5には前記第2逆止弁12を介して
循環路19を接続している。23はバーナ16の燃焼量
を可変する燃焼量可変装置、24は開閉弁8、温度検知
器14、燃焼量可変装置23に電気的に接続された制御
装置である。
18 is a refrigerant heater 2 having a burner 16
And the gas-liquid separator 1 are connected to the annular conduit by the inlet pipe 3 and the outlet pipe 4, and the receiver 5 provided above the gas-liquid separator 1 is
A dropping pipe 7 having a first check valve 6, a communication path 21 communicating from the inlet pipe 3 through the refrigerant heater 2 to the liquid receiver 5 through the on-off valve 8 from the second refrigerant heater 20, On-off valve 8 and 1st
Liquid receiver 5 communicating with gas-liquid separator 1 via check valve 6
And a heat transfer unit connected to the annular conduit. Reference numeral 19 denotes an annular circulation path in which the gas-liquid separator 1, the radiator 10, the second check valve 12, and the liquid receiver 5 are sequentially connected by piping. Further, a circulation path 19 is connected to the liquid receiver 5 via the second check valve 12. Reference numeral 23 denotes a combustion amount varying device that varies the combustion amount of the burner 16, and 24 denotes a control device electrically connected to the on-off valve 8, the temperature detector 14, and the combustion amount varying device 23.

【0015】上記構成において、開閉弁8の開閉動作と
バーナ16での燃焼、送風機17の運転により冷媒加熱
による熱搬送の暖房を行なう。
In the above configuration, the heating and heating of the refrigerant is carried out by the heating of the refrigerant by the opening / closing operation of the on-off valve 8, the combustion in the burner 16, and the operation of the blower 17.

【0016】ここで、開閉弁8が閉状態の時には、放熱
器10で凝縮液化した過冷却液冷媒が、液冷媒戻り管1
3から第2逆止弁12を介して、受液器5のガス冷媒を
凝縮させることにより受液器5内へ流入する。この時、
受液器5内の圧力は気液セパレータ1内の圧力より低く
なっているため、第1逆止弁6は閉状態となっている。
そして、受液器5には循環路19より過冷却液冷媒が流
入し、この受液器5内が液冷媒で満液の状態で開閉弁8
を開とすると、受液器5と気液セパレータ1とは均圧管
9により連通しているため均圧状態となり、受液器5内
の液冷媒は重力により第1逆止弁6を通り気液セパレー
タ1内へ流入する。この時、受液器5の液冷媒と置換す
る気液セパレータ1のガス冷媒は、第2の加熱器20で
過熱された冷媒が連通路21から開閉弁8を通り受液器
5へと流れる。開閉弁8が閉成している時は、入口管3
から入った冷媒は加熱器1で加熱された後第2の冷媒加
熱器20に溜りここで過熱される。そのため、冷媒は液
から飽和状態、過熱状態(スーパヒート)となり飽和温
度以上の高温となる。開閉弁8を開成すると、第2の冷
媒加熱器20により高温に加熱された過熱ガス冷媒は、
連通路21を通り開閉弁8に導き受液器5に入る。受液
器5と気液セパレータ1とは第2の加熱器20、開閉弁
8により連通して均圧状態となり、受液器8内の液冷媒
は重力により第1逆止弁6を通り気液セパレータ1内へ
流入し換わって受液器8には高温の過熱冷媒ガスで充満
する。
When the on-off valve 8 is closed, the supercooled liquid refrigerant condensed and liquefied by the radiator 10 is supplied to the liquid refrigerant return pipe 1.
From 3, the gas refrigerant in the receiver 5 is condensed via the second check valve 12 and flows into the receiver 5. At this time,
Since the pressure in the liquid receiver 5 is lower than the pressure in the gas-liquid separator 1, the first check valve 6 is in a closed state.
Then, the supercooled liquid refrigerant flows into the receiver 5 from the circulation path 19, and when the inside of the receiver 5 is full of the liquid refrigerant, the on-off valve 8 is opened.
Is opened, the liquid receiver 5 and the gas-liquid separator 1 are in communication with each other by the pressure equalizing pipe 9, so that the liquid refrigerant in the liquid receiver 5 passes through the first check valve 6 due to gravity. It flows into the liquid separator 1. At this time, in the gas refrigerant of the gas-liquid separator 1 that replaces the liquid refrigerant of the liquid receiver 5, the refrigerant superheated by the second heater 20 flows from the communication path 21 to the liquid receiver 5 through the on-off valve 8. . When the on-off valve 8 is closed, the inlet pipe 3
The refrigerant that has entered from above enters the second refrigerant heater 20 after being heated by the heater 1 and is heated there. Therefore, the refrigerant changes from a liquid state to a saturated state and an overheated state (superheat), and has a high temperature equal to or higher than the saturation temperature. When the on-off valve 8 is opened, the superheated gas refrigerant heated to a high temperature by the second refrigerant heater 20 becomes
The liquid is guided to the on-off valve 8 through the communication passage 21 and enters the liquid receiver 5. The liquid receiver 5 and the gas-liquid separator 1 are communicated by the second heater 20 and the on-off valve 8 to be in a pressure equalized state, and the liquid refrigerant in the liquid receiver 8 passes through the first check valve 6 due to gravity. The liquid flows into the liquid separator 1 and fills the receiver 8 with the high-temperature superheated refrigerant gas.

【0017】次に、開閉弁8を閉成すると、受液器5は
より高温であるため多量に放熱して受液器5内のガス温
度が早く低下するため、速やかに過冷却液冷媒が受液器
5に流入するため、この過冷却冷媒により内部のガスは
凝縮され受液器5内部の冷媒圧力が急激に低下し、放熱
器10から低温の液冷媒を吸引することによるガス冷媒
の凝縮が加速される。
Next, when the on-off valve 8 is closed, the receiver 5 has a higher temperature, so that a large amount of heat is dissipated and the gas temperature in the receiver 5 drops quickly, so that the supercooled liquid refrigerant is quickly discharged. Since the supercooled refrigerant flows into the liquid receiver 5, the internal gas is condensed, and the refrigerant pressure inside the liquid receiver 5 is rapidly reduced. Condensation is accelerated.

【0018】このため、過冷却液冷媒によるガス冷媒の
凝縮により受液器5内の減圧が減圧開始遅れ時間なしに
発生し、開閉弁8の閉成と同時に液冷媒が受液器5内に
一気に吸引され、受液器5が液冷媒で満たされるサイク
ルを繰り返す。
Therefore, the gas refrigerant is condensed by the supercooled liquid refrigerant, so that the pressure in the receiver 5 is reduced without the delay time of the start of the pressure reduction. A cycle in which the liquid is sucked at once and the liquid receiver 5 is filled with the liquid refrigerant is repeated.

【0019】以上の熱搬送運転において、開閉弁8が閉
状態から開成作動させる場合について図2で説明する。
図2において、開閉弁8が開状態から閉状態に切換った
時間tOと同時に、受液器5で内部の高温ガス冷媒は冷
却されて凝縮することにより瞬時に受液器内の減圧が開
始でき、減圧開始遅れ時間Tl'は実用上無くする(T l'
=0)ことができる。従って、開閉弁8の閉時間TOFF'
は正味の減圧時間Trだけで良く(TOFF'=Tr)、開閉
周期TS'は大幅に短縮(TS'=Tr+TON)できる。ま
た、受液器8に入るガス冷媒は高温であるため、比容積
が大きく流入質量が小さくなる。従って、1サイクルで
減圧時受液器5に吸引する放熱器10からの液冷媒量が
増大する。
In the above heat transfer operation, the on-off valve 8 is closed.
A case where the opening operation is performed from the state will be described with reference to FIG.
In FIG. 2, the on-off valve 8 is switched from the open state to the closed state.
Time tOAt the same time, the hot gas refrigerant inside is cooled by the receiver 5.
The pressure in the receiver is instantly released
Can be started, the decompression start delay time Tl'Is practically lost (T l'
= 0). Therefore, the closing time T of the on-off valve 8OFF'
Is the net decompression time TrJust need (TOFF'= Tr), Open and close
Period TS'Is greatly shortened (TS'= Tr+ TON)it can. Ma
Since the gas refrigerant entering the receiver 8 has a high temperature, it has a specific volume.
Is large and the inflow mass is small. Therefore, in one cycle
The amount of liquid refrigerant from the radiator 10 sucked into the receiver 5 during depressurization is
Increase.

【0020】これにより、受液器5での液冷媒の吸引・
落込み回数の増加により冷媒循環能力が増大し、冷媒加
熱器2での燃焼量を増大させ熱搬送量(暖房に利用の場
合は暖房能力)の大能力化ができる。そして、駆動入力
は必要無く、熱搬送だけの入力としては開閉弁8の入力
のみであり経済性は失なわれない。
As a result, the liquid refrigerant is sucked in the liquid receiver 5.
As the number of drops increases, the refrigerant circulation capacity increases, the amount of combustion in the refrigerant heater 2 increases, and the heat transfer amount (heating capacity in the case of use for heating) can be increased. No drive input is required, and only heat transfer is input to the on-off valve 8, so that economy is not lost.

【0021】また、図5に本発明の他の実施例を示す。
出口管4と第2の冷媒加熱器20を連通し、この第2の
冷媒加熱器20を開閉弁8に連通路22で連通した構成
としてある。このため、加熱器1で加熱されガス分の多
い飽和冷媒が、出口管4から第2の冷媒加熱器20に溜
りここで過熱され、受液器5に過熱蒸気冷媒を連通路2
2、開閉弁8から導く。このため、受液器5はより高温
であるためより多量に放熱し、受液器5内部の冷媒圧力
がより急激に低下でき、熱搬送量の大能力化ができる。
そして、飽和冷媒は少しの加熱で過熱状態となるため起
動時、ルームサーモによるON−0FF時等の過渡期も
応答性が早く冷媒は十分に過熱状態(スーパヒート)と
早くなり、また応答性が早いため、より高温度に設定が
可能となり第2の加熱器は加熱量が少ないため連通管を
延ばしバーナに近接させる等簡単な構成が可能となる。
FIG. 5 shows another embodiment of the present invention.
The outlet pipe 4 communicates with the second refrigerant heater 20, and the second refrigerant heater 20 communicates with the on-off valve 8 via the communication passage 22. For this reason, the saturated refrigerant heated by the heater 1 and containing a large amount of gas is collected from the outlet pipe 4 into the second refrigerant heater 20 and is superheated there.
2. Guide from the on-off valve 8. For this reason, since the temperature of the liquid receiver 5 is higher, a larger amount of heat is radiated, the pressure of the refrigerant inside the liquid receiver 5 can be reduced more rapidly, and the heat transfer amount can be increased.
Then, since the saturated refrigerant is overheated by a little heating, the responsiveness is also quick in the transient period such as at the time of start-up, ON-0FF by the room thermostat, and the refrigerant becomes sufficiently overheated (superheat), and the responsiveness is also increased. Since the temperature is high, a higher temperature can be set, and the second heater has a small amount of heating, so that a simple configuration such as extending the communication pipe and approaching the burner becomes possible.

【0022】そして、図6に本発明の他の実施例を示
す。図6において、25は、冷媒加熱器2の上方に配設
された容器であり、この容器25を上部の受液部26と
下部の気液セパレート液溜部27に仕切り板28により
仕切っている。冷媒加熱器2と気液セパレート液溜部2
7は入口管3と出口管4で連通してある。18は、バー
ナ16を有する冷媒加熱器2と気液セパレート液溜部2
7を環状管路に接続し、受液部26と気液セパレート液
溜部27の間に開閉弁31を設けた管路と前記環状管路
に接続し、入口管3から冷媒加熱器2を通り第2の冷媒
加熱器20から第2の開閉弁29を介して受液部26に
連通した連通路21とを有した熱搬送部である。19は
気液セパレータ液溜部27、放熱器10、第2逆止弁1
2、受液部26を順次配管接続した環状の循環路であ
る。容器25は、鉄アルミ等金属を成型した後ブレージ
ング、溶接等で仕切り板28と一体に形成し、開閉弁3
1は仕切り板28と接合または一体構成とし、弁駆動部
33の弁軸32により開閉する。23はバーナ16の燃
焼量を可変する燃焼量可変装置、24は開閉弁31、第
2の開閉弁29、温度検知器14、燃焼量可変装置23
に電気的に接続された制御装置である。
FIG. 6 shows another embodiment of the present invention. In FIG. 6, reference numeral 25 denotes a container disposed above the refrigerant heater 2. The container 25 is partitioned into an upper liquid receiving portion 26 and a lower gas-liquid separate liquid reservoir 27 by a partition plate 28. . Refrigerant heater 2 and gas-liquid separate liquid reservoir 2
Numeral 7 communicates with an inlet pipe 3 and an outlet pipe 4. 18 is a refrigerant heater 2 having a burner 16 and a gas-liquid separate liquid reservoir 2
7 is connected to an annular pipe, a pipe provided with an on-off valve 31 between a liquid receiving portion 26 and a gas-liquid separate liquid reservoir 27 and the annular pipe are connected, and a refrigerant heater 2 is connected from an inlet pipe 3 to an annular pipe. The heat transfer section has a communication passage 21 that communicates with the liquid receiving section 26 from the second refrigerant heater 20 through the second on-off valve 29 as described above. Reference numeral 19 denotes a gas-liquid separator reservoir 27, a radiator 10, and a second check valve 1.
2. An annular circulation path in which the liquid receiving sections 26 are sequentially connected by piping. The container 25 is formed integrally with the partition plate 28 by brazing, welding, or the like after molding a metal such as iron and aluminum.
1 is joined or integrated with the partition plate 28, and is opened and closed by the valve shaft 32 of the valve drive unit 33. 23 is a combustion amount variable device for varying the combustion amount of the burner 16, 24 is an on-off valve 31, a second on-off valve 29, a temperature detector 14, and a combustion amount variable device 23.
Is a control device electrically connected to the control unit.

【0023】上記構成において、開閉弁31と第2の開
閉弁29を開とすると、受液部26と気液セパレート液
溜部27とは連通して均圧状態となり、受液部26内の
液冷媒は重力により開閉弁31を通り気液セパレート液
溜部27内へ流入する。この時、同時に受液部26の液
冷媒と置換するガス冷媒は、気液セパレータ液溜部27
から開閉弁31を通り受液部26へと流れと第2の加熱
器20から連通路21、第2の開閉弁29から過熱冷媒
ガスが流入する。次に、受液部26内の液冷媒が全て流
れた時、開閉弁31と第2の開閉弁29を再び閉にする
と、受液部26は第2の開閉弁29より流入した過熱冷
媒ガスにより高温となっているため多量に放熱して受液
部26内のガス温度が早く低下する。そのため、受液部
26が瞬時に減圧され低圧となり、受液部26内に放熱
器10の凝縮過冷却した液冷媒が吸引され、受液部26
が液冷媒で満たされるサイクルを繰り返す。ここで、従
来例にある均圧管9に加えて、開閉弁31から液冷媒の
落下と同時にガス冷媒が置換する様に開閉弁31の口径
を大きくすることにより最短の長さのガス通路となり、
落込み管7は仕切り板28に直接開閉弁8を取付けたこ
とにより最短となる。そのため、この開閉弁8を流れる
ガス冷媒と液冷媒の流路抵抗は小さくなり、開閉弁31
が開成と同時に満液となった受液部26の液冷媒はガス
冷媒と置換し気液セパレート液溜部27へ大量に落し込
まれる。従って、流路抵抗を小さくすることができ、開
閉弁31の開時間TONを大幅に短縮できる。
In the above configuration, when the on-off valve 31 and the second on-off valve 29 are opened, the liquid receiving portion 26 and the gas-liquid separate liquid reservoir 27 communicate with each other to be in a uniform pressure state. The liquid refrigerant flows into the gas-liquid separate liquid reservoir 27 through the on-off valve 31 due to gravity. At this time, the gas refrigerant simultaneously replacing the liquid refrigerant in the liquid receiving section 26 is supplied to the gas-liquid separator liquid storage section 27.
Then, the fluid flows from the second heater 20 through the on-off valve 31 to the liquid receiving portion 26, the communication path 21 from the second heater 20, and the superheated refrigerant gas from the second on-off valve 29. Next, when the liquid refrigerant in the liquid receiving portion 26 has completely flowed, the on-off valve 31 and the second on-off valve 29 are closed again, and the liquid-receiving portion 26 receives the superheated refrigerant gas flowing from the second on-off valve 29. Therefore, a large amount of heat is dissipated due to the high temperature, and the gas temperature in the liquid receiving portion 26 is rapidly reduced. Therefore, the liquid receiving section 26 is instantaneously depressurized to a low pressure, and the condensed and supercooled liquid refrigerant of the radiator 10 is sucked into the liquid receiving section 26.
Is repeated with the liquid refrigerant. Here, in addition to the equalizing pipe 9 in the conventional example, by increasing the diameter of the on-off valve 31 so that the gas refrigerant is replaced at the same time as the liquid refrigerant falls from the on-off valve 31, a gas passage having the shortest length is obtained.
The downpipe 7 is shortest because the on-off valve 8 is directly attached to the partition plate 28. Therefore, the flow path resistance of the gas refrigerant and the liquid refrigerant flowing through the on-off valve 8 becomes small, and the on-off valve 31
The liquid refrigerant in the liquid receiving portion 26, which becomes full at the same time as the opening, is replaced with the gas refrigerant and is dropped into the gas-liquid separate liquid reservoir 27 in a large amount. Therefore, the flow path resistance can be reduced, and the opening time T ON of the on-off valve 31 can be greatly reduced.

【0024】また、開閉弁31が開状態の時には、第2
の開閉弁29を開成して受液部26に過熱蒸気冷媒を連
通路22から導くため、受液部26は、より高温である
ためより多量に放熱し、開閉弁31と第2の開閉弁26
の閉成時、受液部26内部の冷媒圧力がより急激に低下
でき、直ちに第2逆止弁12から過冷却液冷媒が受液部
26に流入し、この過冷却冷媒により内部の高温ガス冷
媒は冷却されて凝縮しさらに受液部26内部の冷媒圧力
が急激に低下し、放熱器10から低温の液冷媒を吸引す
る。そのため、過冷却液冷媒によるガス冷媒の凝縮によ
り受液部26内の減圧が減圧開始遅れ時間なしに発生
し、開閉弁31の閉成と同時に液冷媒が受液部26内に
一気に吸引され、受液ぶ26が液冷媒で満たされるサイ
クルを繰り返す。このため、減圧遅れが無く開閉弁31
の閉時間TOFFを大幅に短縮できる。
When the on-off valve 31 is open, the second
The opening / closing valve 29 is opened to guide the superheated vapor refrigerant to the liquid receiving portion 26 from the communication passage 22, so that the liquid receiving portion 26 radiates a larger amount of heat because of its higher temperature, and the opening / closing valve 31 and the second switching valve 26
When the valve is closed, the refrigerant pressure in the liquid receiving portion 26 can be reduced more rapidly, and the supercooled liquid refrigerant immediately flows into the liquid receiving portion 26 from the second check valve 12, and the supercooled refrigerant causes the internal high-temperature gas The refrigerant is cooled and condensed, and the pressure of the refrigerant in the liquid receiving portion 26 is rapidly reduced, so that a low-temperature liquid refrigerant is sucked from the radiator 10. Therefore, decompression in the liquid receiving section 26 occurs without decompression start delay time due to condensation of the gas refrigerant by the supercooled liquid refrigerant, and the liquid refrigerant is sucked into the liquid receiving section 26 at the same time as the on-off valve 31 is closed, The cycle in which the receiver 26 is filled with the liquid refrigerant is repeated. Therefore, there is no delay in decompression and the on-off valve 31
Closing time T OFF of can greatly reduce the.

【0025】従って、受液部26での液冷媒の吸引・落
込み回数の増加により冷媒循環能力が増大し、冷媒加熱
器2での燃焼量増大させ熱搬送量(暖房に利用の場合は
暖房能力)の大能力化ができる。
Therefore, the refrigerant circulation capacity is increased by increasing the number of times the liquid refrigerant is sucked and dropped in the liquid receiving section 26, the combustion amount in the refrigerant heater 2 is increased, and the heat transfer amount (when used for heating, Ability) can be increased.

【0026】[0026]

【発明の効果】以上の実施例のように本発明の熱搬送装
置によれば、冷媒加熱器と、この冷媒加熱器の上方に配
設され、入口管と出口管とで前記冷媒加熱器と連通する
気液セパレータ、この気液セパレータの上方に配設さ
れ、前記入口管と開閉弁に連通した第2の冷媒加熱器
と、前記開閉弁と第1逆止弁を介して前記気液セパレー
タに連通する受液器を有する熱搬送部と、前記気液セパ
レータ、放熱器、第2逆止弁および前記受液器を順次接
続した環状の循環路を構成としているので以下の効果が
ある。
As described above, according to the heat transfer apparatus of the present invention, the refrigerant heater is disposed above the refrigerant heater, and is connected to the refrigerant heater by an inlet pipe and an outlet pipe. A gas-liquid separator communicating with the gas-liquid separator, the second refrigerant heater being disposed above the gas-liquid separator, and communicating with the inlet pipe and the on-off valve, and the gas-liquid separator via the on-off valve and the first check valve; And a ring-shaped circulation path in which the gas-liquid separator, the radiator, the second check valve, and the liquid receiver are sequentially connected, and the following effects are obtained.

【0027】(1)第2の冷媒加熱器により過熱したガ
ス冷媒を受液器に導き、受液器をより高温として多量に
放熱して受液器内のガス温度が早く低下する。そのた
め、受液器内部の冷媒圧力が急激に低下し、開閉周期を
大幅に短縮による冷媒循環量の増加により熱搬送量の大
能力化ができる。
(1) The gas refrigerant superheated by the second refrigerant heater is guided to the receiver, and the receiver is heated to a higher temperature to release a large amount of heat, whereby the gas temperature in the receiver decreases quickly. As a result, the refrigerant pressure inside the liquid receiver is rapidly reduced, and the heat transfer amount can be increased due to an increase in the refrigerant circulation amount due to a significant reduction in the opening / closing cycle.

【0028】(2)また、熱搬送だけの入力としては開
閉弁の入力のみであり経済性は失なわれない。
(2) Further, the input of only the heat transfer is only the input of the on-off valve, and the economy is not lost.

【0029】(3)出口管と第2の冷媒加熱器を連通し
て開閉弁に連通路で連通することにより、受液器はより
高温であるため、より多量に放熱し、受液器内部の冷媒
圧力がより急激に低下でき、熱搬送量の大能力化ができ
る。そして、飽和冷媒は少しの加熱で過熱状態となるた
め、過渡期も応答性が早く、またより高温度に設定が可
能であり、第2の加熱器は加熱量が少ないため簡単な構
成が可能となる。
(3) By communicating the outlet pipe with the second refrigerant heater and communicating with the on-off valve through the communication passage, the temperature of the liquid receiver is higher, so that a larger amount of heat is radiated and the inside of the liquid receiver is radiated. The refrigerant pressure can be reduced more rapidly, and the heat transfer amount can be increased. Since the saturated refrigerant becomes overheated by a small heating, it has a quick response even in the transitional period, and can be set to a higher temperature. The second heater has a small heating amount, so a simple configuration is possible. Becomes

【0030】(4)上部の受液部と下部の気液セパレー
タ液溜部に仕切る仕切り板を設けた容器と、第2の加熱
器を第2の開閉弁を介して受液部に連通して設けること
により、流路抵抗を小さくすることができ、開閉弁の開
時間TONを大幅に短縮でき、受液部の放熱量を増大して
減圧遅れを無くすることが可能となり開閉弁の閉時間T
OFFを大幅に短縮できる。このため、受液部での液冷媒
の吸引・落込み回数の増加により冷媒循環能力が増大
し、冷媒加熱器での燃焼量増大させ熱搬送量(暖房に利
用の場合は暖房能力)のさらなる大能力化ができる。
(4) A container provided with a partition plate for partitioning an upper liquid receiving portion and a lower gas-liquid separator liquid reservoir portion, and a second heater connected to the liquid receiving portion via a second on-off valve. With this arrangement, the flow path resistance can be reduced, the opening time T ON of the on-off valve can be greatly reduced, the amount of heat dissipated in the liquid receiving portion can be increased, and the pressure reduction delay can be eliminated. Closing time T
OFF can be greatly reduced. For this reason, the refrigerant circulation capacity increases due to the increase in the number of times the liquid refrigerant is sucked and dropped in the liquid receiving section, and the amount of combustion in the refrigerant heater increases, thereby further increasing the heat transfer amount (heating capacity in the case of use for heating). Greater ability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の熱搬送装置のシステム構成
FIG. 1 is a system configuration diagram of a heat transfer device according to an embodiment of the present invention.

【図2】同受液器の減圧特性図FIG. 2 is a decompression characteristic diagram of the liquid receiver.

【図3】従来の熱搬送装置のシステム構成図FIG. 3 is a system configuration diagram of a conventional heat transfer device.

【図4】従来の熱搬送装置での受液器の減圧特性図FIG. 4 is a decompression characteristic diagram of a liquid receiver in a conventional heat transfer device.

【図5】本発明の他の実施例の熱搬送装置のシステム構
成図
FIG. 5 is a system configuration diagram of a heat transfer device according to another embodiment of the present invention.

【図6】本発明の他の実施例の熱搬送装置のシステム構
成図
FIG. 6 is a system configuration diagram of a heat transfer device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 気液セパレータ 2 冷媒加熱器 5 受液器 6 第1逆止弁 8 開閉弁 10 放熱器 12 第2逆止弁 18 熱搬送部 19 循環路 20 第2の加熱器 21 連通路 24 制御装置 25 容器 26 受液器 27 気液セパレータ液溜部 28 仕切り板 29 第2の開閉弁 31 開閉弁 REFERENCE SIGNS LIST 1 gas-liquid separator 2 refrigerant heater 5 liquid receiver 6 first check valve 8 on-off valve 10 radiator 12 second check valve 18 heat transfer section 19 circulation path 20 second heater 21 communication path 24 control device 25 Container 26 Liquid receiver 27 Gas-liquid separator liquid reservoir 28 Partition plate 29 Second on-off valve 31 On-off valve

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−157263(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24D 7/00 ────────────────────────────────────────────────── (5) References JP-A-5-157263 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F24D 7/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】冷媒加熱器と、この冷媒加熱器の上方に配
置され、入口管と出口管とで前記冷媒加熱器と連通する
気液セパレータ、この気液セパレータの上方に配置さ
れ、前記入口管と開閉弁に連通した第2の冷媒加熱器
と、前記開閉弁と第1逆止弁を介して前記気液セパレー
タに連通する受液器を有する熱搬送部と、前記気液セパ
レータ、放熱器、第2逆止弁および前記受液器を順次接
続した環状の循環路からなる熱搬送装置。
A refrigerant heater, a gas-liquid separator disposed above the refrigerant heater, and an inlet pipe and an outlet pipe communicating with the refrigerant heater, and a gas-liquid separator disposed above the gas-liquid separator; A second refrigerant heater communicating with the pipe and the on-off valve; a heat transfer unit having a liquid receiver communicating with the gas-liquid separator via the on-off valve and the first check valve; A heat transfer device comprising an annular circulation path in which a vessel, a second check valve, and the liquid receiver are sequentially connected.
【請求項2】出口管と開閉弁に連通した第2の冷媒加熱
器を設けた請求項1記載の熱搬送装置。
2. The heat transfer device according to claim 1, further comprising a second refrigerant heater communicating with the outlet pipe and the on-off valve.
【請求項3】冷媒加熱器の上方に配置された上部の受液
部と下部の気液セパレータ液溜部に仕切る仕切り板を設
けた容器と、前記冷媒加熱器と前記気液セパレータ液溜
部を連通する入口管と出口管と、前記仕切り板に設けた
開閉弁と、前記入口管から第2の冷媒加熱器、第2の開
閉弁を介して前記受液部に連通する熱搬送部と、前記気
液セパレータ液溜部、放熱器および前記受液部を順次接
続した環状の循環路とからなる熱搬送装置。
3. A container provided with a partition plate for partitioning an upper liquid receiving portion and a lower gas-liquid separator liquid storage portion disposed above a refrigerant heater, the refrigerant heater and the gas-liquid separator liquid storage portion. An inlet pipe and an outlet pipe that communicate with each other, an on-off valve provided on the partition plate, a second refrigerant heater from the inlet pipe, and a heat transfer unit that communicates with the liquid receiving unit via a second on-off valve. A heat transfer device comprising: a liquid reservoir for the gas-liquid separator; a radiator; and an annular circulation path in which the liquid receiver is sequentially connected.
JP33034893A 1993-12-27 1993-12-27 Heat transfer device Expired - Fee Related JP3252577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33034893A JP3252577B2 (en) 1993-12-27 1993-12-27 Heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33034893A JP3252577B2 (en) 1993-12-27 1993-12-27 Heat transfer device

Publications (2)

Publication Number Publication Date
JPH07190394A JPH07190394A (en) 1995-07-28
JP3252577B2 true JP3252577B2 (en) 2002-02-04

Family

ID=18231618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33034893A Expired - Fee Related JP3252577B2 (en) 1993-12-27 1993-12-27 Heat transfer device

Country Status (1)

Country Link
JP (1) JP3252577B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7685311B2 (en) * 1999-05-03 2010-03-23 Digital Envoy, Inc. Geo-intelligent traffic reporter

Also Published As

Publication number Publication date
JPH07190394A (en) 1995-07-28

Similar Documents

Publication Publication Date Title
EP0470241A1 (en) Hot gas defrost refrigeration system
JPH06117728A (en) Vapor-liquid separation type heat exchanger
JP3252577B2 (en) Heat transfer device
EP0354749A2 (en) Air-cooled absorption Air-conditioner
US3550394A (en) Condensate heating of intermediate strength solution in two-stage absorption machine
JP3254838B2 (en) Heat transfer device
JP3252529B2 (en) Heat transfer device
JP3252530B2 (en) Heat transfer device
JPS58208559A (en) Air cooling type absorption refrigerator
US2525431A (en) Absorption refrigeration system and process
JPH0712360A (en) Heat conveyor
JP2689663B2 (en) Heating system
JPH06117652A (en) Heat transfer device
JPS5892745A (en) Hot water supply device
JP2924381B2 (en) Heat transfer device
JP2792289B2 (en) Heat transfer device
JP3399025B2 (en) Heat transfer device
JPH07174354A (en) Heat conveying device
JPH07174352A (en) Heat conveying device
JP2882138B2 (en) Heat transfer device
JP3559919B2 (en) Absorption type cold and hot heat generator
JPH05149561A (en) Heat transfer device
JPS59107161A (en) Absorption type refrigerator
JPH0697100B2 (en) Heating system
JPH06117651A (en) Heat transfer device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees