JPS5892745A - Hot water supply device - Google Patents

Hot water supply device

Info

Publication number
JPS5892745A
JPS5892745A JP56191457A JP19145781A JPS5892745A JP S5892745 A JPS5892745 A JP S5892745A JP 56191457 A JP56191457 A JP 56191457A JP 19145781 A JP19145781 A JP 19145781A JP S5892745 A JPS5892745 A JP S5892745A
Authority
JP
Japan
Prior art keywords
water
heat exchanger
water supply
refrigerant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56191457A
Other languages
Japanese (ja)
Inventor
Shigeru Iwanaga
茂 岩永
Koichiro Yamaguchi
山口 紘一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56191457A priority Critical patent/JPS5892745A/en
Publication of JPS5892745A publication Critical patent/JPS5892745A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps

Abstract

PURPOSE:To enable to supply the highly hot water by a system wherein the refrigerant makes the water supply amount of water heater in the overheated gaseous phase less than that of supply water heater in the vapor and liquid phases. CONSTITUTION:The first and second heat exchangers 22, 23 for heating water supply are provided in series together with a compressor 12, pressure-reducing device 13 and heat collecting heat exchanger 11 to constitute a refrigetating cycle. In such a constitution, the refrigerant in the tube 24 in the first heat exchanger 22 forms over-heated gaseous phase while that in the tube 25 in the second heat exchanger forms vapor and liquid phases. The water tubes 26, 27 of both heat exchangers 22, 23 are connected to the hot water reservoir 15 in series through a pump 9 making the intermediate temperature water circulating channel 35 diverge from the position between the water tube 26 and 27 to the intermediate temperature reservoir 15b in said hot water reservoir 15 while connecting the high temperature water circulating channel 34 to the high temperature water reservoir 15a. Both circulating channels 34, 35 are provided with water temperature detectors 38, 39 and flow rate controlling valves 36, 37 making the water supply amount in the water tube 26 less than that in the water tube 27.

Description

【発明の詳細な説明】 本発明は集熱回路を用いた冷媒の凝縮により給水を加熱
する給湯装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water heater that heats water supply by condensing a refrigerant using a heat collecting circuit.

第1図において、従来の給湯装置を示す。1は貯湯槽、
2は給水管、3は給水管2に設けた減圧逆止弁、4は給
湯管、5は給湯栓、6は貯湯槽1の外面に設けた断熱層
、7は強制対流型の給水加熱用熱交換器であり給水側通
路7aと集熱回路側通路7bが熱的に連結されている。
In FIG. 1, a conventional water heater is shown. 1 is a hot water tank,
2 is a water supply pipe, 3 is a pressure reducing check valve provided in the water supply pipe 2, 4 is a hot water supply pipe, 5 is a hot water tap, 6 is a heat insulating layer provided on the outer surface of the hot water storage tank 1, and 7 is a forced convection type water supply heating device. It is a heat exchanger, and the water supply side passage 7a and the heat collection circuit side passage 7b are thermally connected.

8は給水加熱用熱交換器7の外面に設けた断熱層、9は
給水循環用ポンプ、1oは貯湯槽1の下部、ポンプ9゜
給水側通路71L、貯湯槽1の上部を順次連結する水循
環路である。11は集熱用熱交換器、12は圧縮機、1
3は減圧装置であり、これら集熱用熱交換器11.圧縮
機12.集熱回路側通路7b。
8 is a heat insulating layer provided on the outer surface of the heat exchanger 7 for heating the water supply, 9 is a pump for circulating the water supply, 1o is the lower part of the hot water storage tank 1, pump 9 is a water circulation system that sequentially connects the water supply side passage 71L and the upper part of the hot water storage tank 1. It is a road. 11 is a heat exchanger for collecting heat, 12 is a compressor, 1
3 is a pressure reducing device, and these heat collecting heat exchangers 11. Compressor 12. Heat collection circuit side passage 7b.

減圧装置13が順次配管14により連結されて密閉回路
を形成し、この密閉回路内に冷媒(例えばR−22)が
適正量封入されている。
The pressure reducing devices 13 are sequentially connected by piping 14 to form a closed circuit, and a suitable amount of refrigerant (for example, R-22) is sealed in this closed circuit.

以上の構成の給湯装置において、給水加熱運転は圧縮機
12を運転し冷媒を図中破線矢印イの方向に循環させ、
圧縮機12から吐出された高圧高温の過熱ガス冷媒が給
水加熱用熱交換器7においてポンプ9の運転により図中
実線矢印口方向に循環する水に放熱して水を加熱し、放
熱により凝縮した冷媒は高圧液冷媒となる。この高圧液
冷媒は減圧装置13により減圧されて低圧低温の冷媒と
なり集熱用熱交換器11に入る。ここで外部から吸熱し
て順次蒸発し低圧のガス冷媒となり、この低圧ガス冷媒
を圧縮機12が吸入し高圧高温の過熱ガス冷媒を吐出す
ることにより給水加熱サイクルを形成する。
In the water heater having the above configuration, the water supply heating operation operates the compressor 12 and circulates the refrigerant in the direction of the broken line arrow A in the figure.
The high-pressure, high-temperature superheated gas refrigerant discharged from the compressor 12 radiates heat to the water circulating in the direction of the solid line arrow in the figure by operating the pump 9 in the feedwater heating heat exchanger 7, heating the water, and condensing it due to the heat radiation. The refrigerant is a high-pressure liquid refrigerant. This high-pressure liquid refrigerant is depressurized by the pressure reducing device 13 to become a low-pressure, low-temperature refrigerant and enters the heat collecting heat exchanger 11. Here, the refrigerant absorbs heat from the outside and sequentially evaporates to become a low-pressure gas refrigerant, and the compressor 12 sucks in this low-pressure gas refrigerant and discharges the high-pressure, high-temperature superheated gas refrigerant, thereby forming a feed water heating cycle.

第2図は縦軸を温度T1横軸を伝熱領域ムとし給水加熱
用熱交換器7内での冷媒温度Tn、n温水Twの変化を
実線で示している。tRiは冷媒入口温度、typeは
冷媒凝縮温度、tRoは冷媒出口温度、twiは水入口
温度、twoは水出口温度、Gは冷媒過熱ガス領域、P
は冷媒が凝縮して、ガスと液が共存する二相領域、Lは
過冷却液領域であり、冷媒は破線矢印ハ、水は実線矢印
二の方向に流れ、対向流となっている。
In FIG. 2, the vertical axis is the temperature T1, and the horizontal axis is the heat transfer region M, and solid lines indicate changes in the refrigerant temperature Tn and n hot water Tw in the feed water heating heat exchanger 7. tRi is refrigerant inlet temperature, type is refrigerant condensation temperature, tRo is refrigerant outlet temperature, twi is water inlet temperature, two is water outlet temperature, G is refrigerant superheated gas region, P
is a two-phase region where the refrigerant is condensed and gas and liquid coexist, and L is a supercooled liquid region, where the refrigerant flows in the direction of the broken line arrow C and the water flows in the direction of the solid line arrow 2, forming counterflows.

ここで、tRiは80〜1bo0C1tRCは60〜6
6°c、twoは46〜600C程度であるが、給湯装
置として要望されるのは給湯温度すなわち水出口温度t
woかさらに高いことである。この従来例での水出口温
度twoの上限は、冷媒凝縮開始域の水温twcか冷媒
凝縮温度tRCになる時であり図中破線Tw /で示し
た状態である。twc≠tRcとするには熱交換器伝熱
面積を非常に大きくすれば良いか、熱交換器を大型化す
ることによるコストアップの割には得られるtwoの温
度上昇はわずかであり、この案は現実的ではない。tw
oを上昇させる他の方法に冷媒凝縮温度tRcを高くす
ることも考えられるが、この場合は冷媒の圧力上昇を生
じ、冷媒回路部品の信頼性確保上、凝縮温度をあまり高
くできない問題がある。
Here, tRi is 80~1bo0C1tRC is 60~6
6°C, two is about 46 to 600C, but what is required for a water heater is the hot water supply temperature, that is, the water outlet temperature t.
Wow or even higher. In this conventional example, the upper limit of the water outlet temperature two is when the water temperature twc in the refrigerant condensation start region or the refrigerant condensation temperature tRC is reached, which is the state shown by the broken line Tw/ in the figure. In order to make twc≠tRc, the heat transfer area of the heat exchanger should be made very large, or the increase in temperature of two obtained by increasing the size of the heat exchanger is small compared to the cost increase, so this plan is not realistic. tw
Another way to increase o is to raise the refrigerant condensing temperature tRc, but in this case, the pressure of the refrigerant increases, and there is a problem that the condensing temperature cannot be raised too high in order to ensure the reliability of refrigerant circuit components.

本発明は、冷媒過熱ガス領域と熱的に対向する水側回路
の水量を総循環水量より小さくすることにより高温の給
湯を得ることを目的とする。
An object of the present invention is to obtain high-temperature hot water supply by making the amount of water in the water side circuit, which is thermally opposed to the refrigerant superheated gas region, smaller than the total amount of circulating water.

本発明は、上記目的を達成するために第1給水加熱熱交
換器と第2給水加熱熱交換器を直列に配設し、上記第1
給水加熱熱交換器と第2給水加熱熱交換器を接続する水
側連結路に出湯口を設け、この構成により第1給水加熱
熱交換器内の水量を第2給水加熱熱交換器内の水量より
減少せしめ、第1給水加熱熱交換器により高温の給湯を
得るものである。
In order to achieve the above object, the present invention arranges a first feedwater heating heat exchanger and a second feedwater heating heat exchanger in series, and the first
A hot water outlet is provided in the water side connecting path connecting the feed water heating heat exchanger and the second feed water heating heat exchanger, and with this configuration, the amount of water in the first feed water heating heat exchanger can be changed to the amount of water in the second feed water heating heat exchanger. The first water supply heating heat exchanger obtains high-temperature hot water.

以下、本発明の一実施例について図面とともに説明する
An embodiment of the present invention will be described below with reference to the drawings.

第1図において、16は貫通する穴16をもつ仕切壁1
7により内部を上下に分けた貯湯槽で、上部の高温水槽
16&と下部の中温水槽16bからなる。18は高温水
用給湯管、19は高温水用給湯栓、2oは中温水用給湯
管、21は中温水用給湯栓である。22は第1給水加熱
熱交換器、23は第2給水加熱熱交換器であり、それぞ
れ集熱回路側通路24.25および給水側通路26.2
7は熱的に結合されている。第1および第2給水加熱熱
交換器22.23の集熱回路側、給水側の通路は連結路
28および29により直列に接続されている。30は第
2給水加熱熱交換器23の給水入口、31は第1給水加
熱熱交換器22の水側出口となる第1出湯口、32は水
側の連結路29に設けた第2出湯口である。33は貯湯
槽15の下部と給水人口3oを連結する給水循環路、3
4は第1出湯口31と高温水槽16a1を連結する高温
水循環路、36は第2出湯口32と中温水槽16bを連
結する中温水循環路である。36および37は高温水循
環路34および中温水循環路36に設けた流量制御弁、
38および39は高温水循環路34および中温水循環路
35に設けた水温検出器であり、流量制御弁36.37
と水温検出器38゜39とはそれぞれ電気的に連結され
ている。4゜および41は高温水槽16aおよび中温水
槽15bの貯湯水温検出器であり、それぞれポンプ9.
圧縮機12と電気的に連結されている。
In FIG. 1, 16 is a partition wall 1 having a hole 16 passing through it.
It is a hot water storage tank whose interior is divided into upper and lower parts by 7, and consists of an upper high temperature water tank 16& and a lower medium temperature water tank 16b. 18 is a hot water supply pipe for high temperature water, 19 is a hot water supply tap for high temperature water, 2o is a hot water supply pipe for medium temperature water, and 21 is a hot water supply tap for medium temperature water. 22 is a first feed water heating heat exchanger, and 23 is a second feed water heating heat exchanger, which are connected to a heat collecting circuit side passage 24.25 and a water supply side passage 26.2, respectively.
7 is thermally coupled. The passages on the heat collecting circuit side and the water supply side of the first and second feed water heating heat exchangers 22 and 23 are connected in series by connecting passages 28 and 29. 30 is a water supply inlet of the second water supply heating heat exchanger 23, 31 is a first water outlet serving as a water side outlet of the first water supply heating heat exchanger 22, and 32 is a second water outlet provided in the water side connection path 29. It is. 33 is a water supply circulation path connecting the lower part of the hot water storage tank 15 and the water supply population 3o;
4 is a high temperature water circulation path connecting the first tap 31 and the high temperature water tank 16a1, and 36 is a medium temperature water circulation path connecting the second tap 32 and the medium temperature water tank 16b. 36 and 37 are flow control valves provided in the high temperature water circulation path 34 and the medium temperature water circulation path 36;
38 and 39 are water temperature detectors provided in the high temperature water circulation path 34 and medium temperature water circulation path 35, and flow rate control valves 36 and 37.
and water temperature detectors 38 and 39 are electrically connected, respectively. 4° and 41 are hot water temperature detectors for the high temperature water tank 16a and medium temperature water tank 15b, respectively, and the pump 9.
It is electrically connected to the compressor 12.

以上の構成において、貯湯水温検出器40.41の検出
値が所定値以下になると、ポンプ9.圧縮機12が運転
されて給水加熱運転が行なわれる゛。
In the above configuration, when the detected value of the stored hot water temperature detector 40.41 becomes equal to or less than a predetermined value, the pump 9. The compressor 12 is operated to perform a feed water heating operation.

冷媒側の給水加熱サイクルは従来例と同様なので説明を
省略し、水側について説明する。
Since the feed water heating cycle on the refrigerant side is the same as in the conventional example, the explanation will be omitted, and the water side will be explained.

第4図は第2図と同様縦軸を温度T1横軸を伝熱領域ム
とじて、冷媒温度TRとn温水Twの関係を示している
。図中ム′は第1給水加熱熱交換器ηでの伝熱領域、A
“は第2給水加熱熱交換器23での伝熱領域である。給
水人口3oを水温twiで入った水は第2給水加熱熱交
換器23で冷媒の二相領域Pおよび過冷却液領域りから
放出された熱(第4図では若干の過熱ガス領域Gも含ん
でいるが、わずかの熱量である)により加熱され、水温
tWMとなって一部は第2出湯口32から中温水槽15
bに循環し、流量の少なくなった残部は第1給水加熱熱
交換器22で冷媒の過熱ガス領域Gから放出された熱で
さらに加熱されて水温twnとなって第1出湯口31か
ら高温水槽161Lに循環し貯湯される。
Similar to FIG. 2, FIG. 4 shows the relationship between the refrigerant temperature TR and the hot water Tw, with the vertical axis representing the temperature T1 and the horizontal axis representing the heat transfer region M. In the figure, M' is the heat transfer area in the first feed water heating heat exchanger η, and A
" is the heat transfer area in the second feed water heating heat exchanger 23. Water entering the feed water population 3o at a water temperature twi passes through the second feed water heating heat exchanger 23 to a refrigerant two-phase area P and a supercooled liquid area. (In Figure 4, it includes some superheated gas region G, but the amount of heat is small) released from
b, and the remaining part whose flow rate has decreased is further heated by the heat released from the superheated gas region G of the refrigerant in the first water supply heating heat exchanger 22, and reaches the water temperature twn, and is sent from the first tap 31 to the high-temperature water tank. The hot water is circulated to 161L and stored.

ここで冷媒入口温度tniは80〜1000c1冷媒U
縮温度ticは60〜66°C程度と従来と同様である
が、出湯温度は流量制御弁36.37により水量制御さ
れるため、第2出。湯口32でtWMは46〜6oOC
1第1出湯口31でtwaはサラニ高温の70〜so’
cとなり、従来よりも16〜20’C程温度上昇が可能
となる。
Here, the refrigerant inlet temperature tni is 80 to 1000c1 refrigerant U
The condensation temperature tic is about 60 to 66°C, which is the same as the conventional one, but the hot water temperature is controlled by the flow rate control valve 36, 37, so it is the second outlet temperature. tWM is 46~6oOC at sprue 32
1 At the first tap 31, the temperature is 70~so'
c, which makes it possible to raise the temperature by about 16 to 20'C compared to the conventional method.

別表は、加熱量約4000嘱A冷媒および水の通路内径
φ8.6の平滑管とした時の冷媒および水側の熱伝達率
を示したもので、過熱ガス域と二相域では冷媒の熱伝達
率が大巾に異なり、かつ過熱ガス域では冷媒側と水側も
大巾に異なる。この事は熱交換器の設計に際して、過熱
ガス域と二相域は別に設計する方が好ましいことを示し
、過熱ガス域においては冷媒側の熱伝達率を向上させる
対策あるいは伝熱面積を増加させる専用の熱交本発明の
上記実施例では、給水加熱用熱交換器を第1および第2
給水加熱熱交換器の2っで形成しているため、過熱ガス
領域用の熱交換器の設計が容易となり、軽量コンパクト
な熱交換器を得ることができるものである。
The attached table shows the heat transfer coefficients on the refrigerant and water sides when a smooth pipe with a passage inner diameter of φ8.6 is used for a heating amount of approximately 4000 单A refrigerant and water. The transmissibility differs widely, and in the superheated gas region, the refrigerant side and the water side also differ widely. This shows that when designing a heat exchanger, it is better to design the superheated gas region and the two-phase region separately, and in the superheated gas region, measures should be taken to improve the heat transfer coefficient on the refrigerant side or increase the heat transfer area. Dedicated heat exchanger In the above embodiment of the present invention, the feed water heating heat exchanger is
Since it is formed by two feed water heating heat exchangers, it is easy to design the heat exchanger for the superheated gas region, and it is possible to obtain a lightweight and compact heat exchanger.

以上のように本発明の給湯装置によれ体、第1および第
2給水加熱熱交換器を直列に配設し、画然交換器を接続
する水側連絡路に出湯口を設Gすたことにより、次の効
果を得ることができる。
As described above, in the water heater of the present invention, the boiler, the first and the second water supply heating heat exchangers are arranged in series, and the hot water outlet is provided in the water side communication path connecting the water exchanger. The following effects can be obtained.

(1)第1給湯加熱熱交換器の給水量は第2給湯加熱熱
菱換器よりも少なく、しかも冷媒温度力く高いので第1
出湯口では従来のものより16〜200G程温度の高い
高温の給湯か得られる。
(1) The amount of water supplied by the first hot water heating heat exchanger is smaller than that of the second hot water heating heat exchanger, and the refrigerant temperature is much higher.
At the tap, hot water can be supplied at a high temperature of 16 to 200 G higher than conventional hot water.

(2)高温の給湯と同時に第2出湯口より中温の給湯が
得られるため、使い勝手が著しく向上する。
(2) Since medium-temperature hot water can be supplied from the second tap at the same time as high-temperature hot water is supplied, usability is significantly improved.

(3)第1および第2給水加熱熱交換器の2つで形成す
るため、冷媒の状態に応じた熱交換器の設計ができ、軽
量コンパクト化か計れる。
(3) Since it is formed by two heat exchangers, the first and second feed water heating heat exchangers, the heat exchanger can be designed according to the state of the refrigerant, and it can be made lighter and more compact.

【図面の簡単な説明】 第1図は従来の給湯装置の構成図、第2図(ま従来の給
水加熱熱交換器内での水および冷媒の温度特性図、第3
図は本発明の一実施例である給湯装置の構成図、第4図
は同装置の第1および第2給水加熱熱交換器内での水お
よび冷媒の温度特性図である。 9・・・・・・ポンプ、12・・・・・圧縮機、16・
・・・・・貯湯槽、16+L  ・・高温水槽、15b
・・・・中温水槽、22・・・・・・第1給水加熱熱交
換器、23・・・・・第2給水加熱熱交換器、31・・
・・・・第1出湯口、32・・・・・・第2出湯口。 代理人の氏名 弁理士 中 尾 敏 男 it力11名
第1図 第2図 第3図 第4図
[Brief explanation of the drawings] Figure 1 is a configuration diagram of a conventional water heater, Figure 2 is a diagram of the temperature characteristics of water and refrigerant in a conventional water supply heating heat exchanger, and Figure 3 is a diagram of the temperature characteristics of water and refrigerant in a conventional water supply heating heat exchanger.
FIG. 4 is a block diagram of a water heater according to an embodiment of the present invention, and FIG. 4 is a diagram showing the temperature characteristics of water and refrigerant in the first and second water supply heating heat exchangers of the same device. 9...Pump, 12...Compressor, 16...
...Hot water tank, 16+L ...High temperature water tank, 15b
... Medium temperature water tank, 22 ... First feed water heating heat exchanger, 23 ... Second feed water heating heat exchanger, 31 ...
...First tap, 32...Second tap. Name of agent: Patent attorney Toshio Nakao IT staff: 11 people Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)冷媒の凝縮過程の相変化により放出される熱で加
熱される給水側通路を有する第1給水加熱熱交換器と前
記第1給水加熱熱交換器の前記給水側通路に直列に接続
される一給水側通路を有する第2給水加熱熱交換器とを
備え、前記第1給水加熱熱交換器と第2給水加熱熱交換
のそれぞれの給水側通路を接続する連結路に出湯口を設
けるとともに前記第1給水加熱熱交換器内の給水量を前
記第2加熱熱交換器内の給水量より減少してなる給湯装
置。 僻)第1給水加熱熱交換器内での冷媒は過熱ガス相とし
、第2給水加熱熱交換内ではガスと液の二相としてなる
前記特許請求の範囲第1項記載の給湯装置。
(1) A first feedwater heating heat exchanger having a water supply side passage heated by heat released due to a phase change in the condensation process of the refrigerant is connected in series to the water supply side passage of the first feedwater heating heat exchanger. a second water supply heating heat exchanger having one water supply side passage, and a hot water outlet is provided in a connecting passage connecting each water supply side passage of the first water supply heating heat exchanger and the second water supply heating heat exchanger; A hot water supply device in which the amount of water supplied in the first water heating heat exchanger is smaller than the amount of water supplied in the second heating heat exchanger. 2. The water heater according to claim 1, wherein the refrigerant in the first water supply heating heat exchanger is in a superheated gas phase, and in the second water supply heating heat exchanger, it is in two phases of gas and liquid.
JP56191457A 1981-11-28 1981-11-28 Hot water supply device Pending JPS5892745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56191457A JPS5892745A (en) 1981-11-28 1981-11-28 Hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56191457A JPS5892745A (en) 1981-11-28 1981-11-28 Hot water supply device

Publications (1)

Publication Number Publication Date
JPS5892745A true JPS5892745A (en) 1983-06-02

Family

ID=16274948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56191457A Pending JPS5892745A (en) 1981-11-28 1981-11-28 Hot water supply device

Country Status (1)

Country Link
JP (1) JPS5892745A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151039U (en) * 1983-03-28 1984-10-09 株式会社クボタ water heater
JPS6037757U (en) * 1983-08-23 1985-03-15 株式会社クボタ water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151039U (en) * 1983-03-28 1984-10-09 株式会社クボタ water heater
JPS6037757U (en) * 1983-08-23 1985-03-15 株式会社クボタ water heater

Similar Documents

Publication Publication Date Title
JPS5892745A (en) Hot water supply device
JPS5892746A (en) Hot water supply device
JPS5869346A (en) Heat-pump hot water supply device
JP2002162123A (en) Heat pump
JPH01137159A (en) Heat-pump hot-water supply machine
JPH0145538B2 (en)
JPH061139B2 (en) Cold / hot water production facility
JP3252577B2 (en) Heat transfer device
JPS62284147A (en) Hot water supplier of heat pump type
JPS6135900Y2 (en)
JPH0250373B2 (en)
JPH01137157A (en) Heat-pump hot-water supply machine
JPS62418B2 (en)
JP2792289B2 (en) Heat transfer device
JP3858655B2 (en) Absorption refrigeration system
JPS6166087A (en) Heat transfer device
JPS6144128Y2 (en)
JPS6033462A (en) Absorption heat pump device
JPH02233859A (en) Exhaust heat recovery method for cogeneration system
JPS58203364A (en) Absorption heat pump
JP2003075010A (en) Exhaust gas-driven absorption water cooling and warming machine
JPS63294468A (en) Heat pump device
JPS6240620B2 (en)
JPH058351U (en) Hot water absorption absorption cold water heater
JPS62284145A (en) Hot water supplier of heat pump type