JPS6038526B2 - Main steam stop valve cooling system - Google Patents

Main steam stop valve cooling system

Info

Publication number
JPS6038526B2
JPS6038526B2 JP3358681A JP3358681A JPS6038526B2 JP S6038526 B2 JPS6038526 B2 JP S6038526B2 JP 3358681 A JP3358681 A JP 3358681A JP 3358681 A JP3358681 A JP 3358681A JP S6038526 B2 JPS6038526 B2 JP S6038526B2
Authority
JP
Japan
Prior art keywords
steam
valve
stop valve
main
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3358681A
Other languages
Japanese (ja)
Other versions
JPS57148007A (en
Inventor
昭 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3358681A priority Critical patent/JPS6038526B2/en
Publication of JPS57148007A publication Critical patent/JPS57148007A/en
Publication of JPS6038526B2 publication Critical patent/JPS6038526B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 本発明は、蒸気タービンにおける主蒸気止め弁の冷却装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device for a main steam stop valve in a steam turbine.

従来のランキンサィクルを構成する蒸気原動所は、第1
図に示されるように、給水ポンプーによって水をボィラ
2へ供給し、こ)で蒸気を生成し、この蒸気を主蒸気止
め弁3や蒸気加減弁4を通して発電機5と直結した蒸気
タービン6へ供給して仕事をし、この蒸気タービン6で
仕事を了えた蒸気を復水器7で復水し、これを再び上記
給水ポンプ1へ還流するようになっている。
The steam power station that makes up the conventional Rankine cycle is the first
As shown in the figure, water is supplied to the boiler 2 by a water supply pump, which generates steam, and this steam is sent to a steam turbine 6 directly connected to a generator 5 through a main steam stop valve 3 and a steam control valve 4. The steam that has completed its work in the steam turbine 6 is condensed in a condenser 7, and is then returned to the water supply pump 1.

又、上記蒸気原動所の熱効率は、第2図のグラフに示さ
れるように、縦軸に蒸気原動所の熱効率7を「機軸に入
口蒸気温屋貝,をそれぞれ示したものであり、入口蒸気
圧力Pを因子としている。この第2図のグラフからも明
らかなように、上記蒸気原動所の熱効率りは、入口蒸気
圧力Pと入口蒸気温度t,とが高いほど良好な値を示し
ている。なお、上記第2図中の点線で示される曲線aは
蒸気飽和曲線を示しており、復水器における器内圧力の
熱効率は、上記値が低いほど良好となる。又一方、第3
図に示されるように、入口蒸気圧力p及び入口蒸気温顔
丘,と排気室乾き度xとの関係は、この排気室乾き度x
がある程度以下になると、蒸気タービンの低圧部に水滴
による著しい浸蝕を生じるため、排気の乾き度xを高く
保持することが望まれている。
In addition, the thermal efficiency of the steam power station mentioned above is as shown in the graph of Figure 2, where the vertical axis shows the thermal efficiency 7 of the steam power plant, and the axis shows the inlet steam hothouse. The factor is pressure P.As is clear from the graph in Fig. 2, the thermal efficiency of the steam power station is better as the inlet steam pressure P and inlet steam temperature t are higher. Note that the curve a shown by the dotted line in FIG.
As shown in the figure, the relationship between the inlet steam pressure p, the inlet steam temperature, and the exhaust chamber dryness x is
When x falls below a certain level, significant erosion by water droplets occurs in the low pressure section of the steam turbine, so it is desirable to maintain the dryness x of the exhaust gas at a high level.

このように、蒸気原動所の熱効率を高めるためには、蒸
気タービン入口蒸気圧力p、入口蒸気t,を上げること
により、達成できるけれども、上記入口蒸気圧力pのみ
を高めることは相対的にタービン排気室の乾き度xを低
下させる結果となるので、同時に入口蒸気温度らを高め
る必要がある。
In this way, increasing the thermal efficiency of a steam power plant can be achieved by increasing the steam turbine inlet steam pressure p and inlet steam t, but increasing only the inlet steam pressure p will relatively increase the turbine exhaust Since this results in a decrease in the dryness x of the chamber, it is necessary to simultaneously increase the inlet steam temperature.

他方、蒸気原動所の再熱サイクルは、上記排気室乾き度
低下を解消するものであり、これは、蒸気タービンの膨
張の途中から蒸気を抽出し、これを上記ボィラに送って
再加熱するサイクルであるが、このような手段によると
、排気室の乾き度xが上昇するばかりでなく、熱効率も
上昇し、同一蒸気流量あたりの出力を増すことができる
。又一方、第4図に示されるグラフは、一段再熱サイク
ルの再熱蒸気温度らを入口蒸気温度t,まで再加熱した
蒸気原動所効率りと入口蒸気圧力pとの関係を示したも
のである。この第4図のグラフからも明らかなように、
蒸気原動所の効率りを高める手段は、理論上、明確にさ
れているにも拘らず、従来、技術において、蒸気タービ
ンの入口蒸気条件が亜臨界圧プラントでは、入口蒸気圧
力169k9/地夕、温度538午0、再蒸気温度53
8℃程度であり、超臨界圧プラントでは入口蒸気圧力2
46k9′の夕溢度538℃、再蒸気圧温度56がo程
度に制限されたのは、蒸気タービンを構成するロータ、
羽根、ノズル、タービンケーシング(本体)等の耐熱材
料に起因されている。
On the other hand, the reheat cycle of a steam power plant eliminates the above-mentioned decrease in exhaust chamber dryness, and this is a cycle in which steam is extracted from the middle of the expansion of the steam turbine and sent to the boiler for reheating. However, according to such means, not only the dryness x of the exhaust chamber increases, but also the thermal efficiency increases, and the output per the same steam flow rate can be increased. On the other hand, the graph shown in Fig. 4 shows the relationship between the steam power plant efficiency and the inlet steam pressure p when the reheated steam temperature of the single-stage reheat cycle is reheated to the inlet steam temperature t. be. As is clear from the graph in Figure 4,
Although the means to increase the efficiency of a steam power plant have been theoretically clarified, in the conventional technology, in a subcritical pressure plant, the inlet steam condition of the steam turbine is 169 k9/min, Temperature 538:00, resteam temperature 53
The temperature is about 8℃, and in a supercritical pressure plant, the inlet steam pressure is 2
The reason why the overflow temperature of 46k9′ was limited to 538°C and the re-steam pressure temperature 56 to about o was due to the rotor that constitutes the steam turbine.
This is caused by heat-resistant materials such as blades, nozzles, and turbine casings (main body).

特に、上記主蒸気止め弁のケーシング(本体)に使用さ
れる材料は、クロームモリブデン(Cr−M。)を添加
することによって高温強度を増し、さらに、このクロー
ムモリブデンの添加による材料表面の不安定現象を抑え
るために、バナジウム(V)を添加した合金鋼としての
1.2$r−1地‐0.25Vによる銭鋼材が広く使用
されている。しかしながら、上記主蒸気止め弁のケーシ
ング(本体)に使用される鋳鋼材は、約56600を使
用限界温度とされており、又バナジウムの添加は材料表
面の不安定を抑えるのに有効であっても、このバナジウ
ムを添加することによって、溶接時に亀裂し易くなる等
の欠点がある。
In particular, the material used for the casing (main body) of the main steam stop valve has increased high-temperature strength by adding chrome-molybdenum (Cr-M), and the material surface is unstable due to the addition of chrome-molybdenum. In order to suppress this phenomenon, a steel material of 1.2$r-1-0.25V, which is an alloy steel added with vanadium (V), is widely used. However, the limit temperature of the cast steel used for the casing (main body) of the main steam stop valve is approximately 56,600 ℃, and although the addition of vanadium is effective in suppressing the instability of the material surface, However, the addition of vanadium has drawbacks such as increased tendency to crack during welding.

このように、従来の主蒸気止め弁1や主蒸気加減弁0と
ての主要弁の本体は、耐熱性、耐圧性の金属材料を使用
しても、溶接時の作業性や接合性が悪い等の欠点がある
In this way, the main valve bodies of the conventional main steam stop valve 1 and main steam control valve 0 have poor workability and jointability during welding even if heat-resistant and pressure-resistant metal materials are used. There are drawbacks such as.

他方、従来の主要弁としての主蒸気止め弁1及び主義気
加減弁川ま、第5図に示されるように、上記両者を溶接
によって一体的に構成したものである。
On the other hand, as shown in FIG. 5, the main steam stop valve 1 as a conventional main valve and the control valve 1 are integrally constructed by welding.

即ち、従来の主蒸気止め弁1と主蒸気加減弁0め弁1に
よる主要弁装置は、第5図に示されるように、ボィラ2
に接続される流入口11及び流出ロー2を備えた主蒸気
止め弁1の本体(ケーシング)13内に弁座14を設け
、この弁座14の外周綾部に円筒状のストレーナ15を
取付け、上記本体13の上部関口部13aに蓋体16を
緒付けボルト17で固着し、上記本体11の下部13b
にガイド部材18を上記弁座14へ近接し、しかも、抜
け落ちないようにして設け、さらに、上記ガイド部材1
8内に分割された複数のブッシュ19a,19b,19
cを鰍装し、この各プッシュ19a,19b,19c内
に弁榛20を鞠装し、この弁棒20の上端部に弁体21
を上言己弁座14に当俵するようにして設け、しかも、
上記弁体21の下端部に操作部材(図示されず)を連結
し、上記本体13の下部13bに上流側リークオフ管2
2及び下流側リークオフ管23を上記ガイド部材18の
各各プッシュ19a,19b,19cの間隙に運適する
ようにして設けられており、上記流出口11に蒸気加減
弁ロを溶援して設けたものである。
That is, as shown in FIG.
A valve seat 14 is provided in the main body (casing) 13 of the main steam stop valve 1, which is equipped with an inlet 11 and an outlet row 2 connected to The lid body 16 is fixed to the upper entrance part 13a of the main body 13 with a bolt 17, and the lower part 13b of the main body 11 is fixed.
The guide member 18 is provided close to the valve seat 14 and does not fall off, and furthermore, the guide member 1
A plurality of bushes 19a, 19b, 19 divided into 8
A valve rod 20 is installed in each of the pushers 19a, 19b, and 19c, and a valve body 21 is installed at the upper end of the valve rod 20.
is provided so as to be placed on the upper seat 14, and,
An operating member (not shown) is connected to the lower end of the valve body 21, and an upstream leak-off pipe 2 is connected to the lower end 13b of the main body 13.
2 and a downstream side leak-off pipe 23 are provided so as to be suitable for each push 19a, 19b, 19c of the guide member 18, and a steam control valve is provided at the outlet 11. It is something.

なお、上記蒸気加減弁0‘ま、上記吐出口24を備えた
主枠体25の供聯合口26を上記流出口12に溶接によ
って連結し、上記主枠体25の上部閉口部25aに蓋体
を兼ねたガイド部材27を重設し、このガイド部材27
内に分割された複数のブッシュ28a,28bを鉄装し
、この各プッシュ28a,28b内に弁榛29を摺動自
在に軸装し、この弁棒29の内端部に弁体30を上記主
枠体25の弁座31に当接し得るようにして設け、上論
弁棒29の上端部に駆動レバー32を支軸33で枢着し
、さらに、上記ガイド部材27に上流側リークオフ管3
4及び下流側リークオフ管35を上記各プッシュ28a
,28bの間隙に蓮適するようにして設けたものである
In addition, the steam control valve 0' is connected to the connecting port 26 of the main frame body 25 provided with the discharge port 24 to the outlet port 12 by welding, and a lid body is attached to the upper closing portion 25a of the main frame body 25. A guide member 27 that also serves as
A plurality of bushes 28a, 28b divided into inner parts are equipped with iron, a valve rod 29 is slidably mounted in each pusher 28a, 28b, and a valve body 30 is attached to the inner end of the valve rod 29. A drive lever 32 is pivotally connected to the upper end of the valve rod 29 by a support shaft 33, and an upstream leak-off pipe 3 is attached to the guide member 27.
4 and the downstream side leak-off pipe 35 by pushing each of the above-mentioned pushes 28a.
, 28b.

従って、ポィラ2からの高圧蒸気は、主蒸気止め弁1の
流入口11から本体13内に流入し、この本体13のス
トレーナ15から弁体21で流量制御されて上記弁座1
4の弁孔14aを通って流出ロー2へ移送される。
Therefore, high-pressure steam from the boiler 2 flows into the main body 13 from the inlet 11 of the main steam stop valve 1, flows from the strainer 15 of the main body 13 through the valve body 21, and is flow-controlled to the valve seat 1.
It is transferred to the outflow row 2 through the valve hole 14a of No. 4.

さらに、蒸気加減弁ロの供給口26から主枠体25に流
入し、この主枠体25の弁体30で流量制御され、上記
弁座31の弁孔30から吐出口24へ流出するようにな
っている。又一方、上記蒸気止め弁1の各プッシュ19
a,19b,19cから流出した上側リークオフ管22
の蒸気は、蒸気タービン(図示されず)のグランド部を
シールする蒸気の供給源としてスチームヘッダへ流出し
、上記下側リークオフ管23の蒸気はグランドスチーム
コンデンサへ供給されるようになっている。
Further, the steam flows into the main frame body 25 from the supply port 26 of the steam control valve, the flow rate is controlled by the valve body 30 of the main frame body 25, and flows out from the valve hole 30 of the valve seat 31 to the discharge port 24. It has become. On the other hand, each push 19 of the steam stop valve 1
Upper leak-off pipe 22 flowing out from a, 19b, 19c
Steam flows out to a steam header as a source of steam for sealing the gland of a steam turbine (not shown), and steam in the lower leak-off pipe 23 is supplied to a gland steam condenser.

なお、蒸気加減弁0の各プッシュ28a,28bから流
出した上・下側リ−クオフ管34,35の低温蒸気は、
常時各接続ライン(図示されず)へ流出されている。
Note that the low-temperature steam in the upper and lower leak-off pipes 34 and 35 flowing out from each push 28a and 28b of the steam control valve 0 is
It is constantly being drained to each connection line (not shown).

しかしながら、上述した主蒸気止め弁は、約600午0
程度の高温度の条件の下で、弁の開閉時、上記弁榛20
によるIJ−クが発生しないように構成されているため
、上記各リークオフ管22,23は、上記弁体21の開
弁途中のみ(この弁体21は通常全開であり、起動時及
び終了時のときのみ、途中関度状態となる)に使用され
るものであるから、常に、上記本体13をこの材料の許
容できる限界温度までそのま)の状態で冷却することは
困難である。
However, the main steam stop valve mentioned above
When opening and closing the valve under conditions of high temperature, the valve holder 20
Since the leak-off pipes 22 and 23 are configured to prevent IJ leaks from occurring due to It is difficult to always cool the main body 13 to the allowable limit temperature of the material in that state.

本発明は、上述した点に鑑み、主蒸気止め弁1の本体を
構成する材料をそのま)にして、蒸気加減弁0の低温化
したりーク蒸気を上記本体の各冷却孔に分配へツダ−を
介して供給し、この本体を上託りーク蒸気で冷却し、熱
応力の発生を低減しこれにより、主蒸気止め弁の本体の
亀裂や損傷を防止し、併せて、弁装置全体の健全性の向
上を図ることを目的とする主蒸気止め弁1の冷却装置を
提供するものである。
In view of the above-mentioned points, the present invention makes it possible to maintain the material constituting the main body of the main steam stop valve 1 as is and distribute the low temperature leak steam of the steam control valve 0 to each cooling hole of the main body. - This main body is cooled with overflow steam to reduce the occurrence of thermal stress, thereby preventing cracks and damage to the main steam stop valve body, and also reducing the overall valve equipment. A cooling device for a main steam stop valve 1 is provided for the purpose of improving its health.

以下、本発明を図示の一実施例について説明する。Hereinafter, the present invention will be described with reference to an illustrated embodiment.

なお、本発明の構成部村と同じ部材には同じ符号を附し
て説明する。第5図乃至第7図において、符号1はボィ
ラ2に接続される主蒸気止め弁であって、この主蒸気止
め弁1の本体13には蒸気の流入ロー1及び流出口12
が設けられており、この本体13内には弁座14が設置
されている。
In addition, the same reference numerals are attached to the same members as those of the constituent parts of the present invention in the description. 5 to 7, reference numeral 1 denotes a main steam stop valve connected to the boiler 2, and a main body 13 of the main steam stop valve 1 includes a steam inlet row 1 and an outlet 12.
A valve seat 14 is installed inside the main body 13.

又、この弁座14の外周緑部には円筒状をなすストレー
ナ15が取付けられており、上記本体13の上部関口部
13aには蓋体16が各綾付ボルト17によって固着さ
れている。さらに、この各綾付ボルト17には、第7図
に示されるように、中心孔17aが穿設されており、こ
の中心孔17aは蒸気加減弁0の各リークオフ管34,
35からの低温化した蒸気を供給し得るようになってい
る。さらに又、上記本体13には、多数の冷却孔36が
一定の間隔を存して穿設されており、これらの各冷却孔
36は、第6図に示されるように、上記本体13の流入
口11及び流出口12の外周に附設された各回収へッダ
ー37に蓮適するようになっている。一方、上記各締付
ボルト17の各中心孔17aにはリング状の分配へッダ
ー38が各運管39を介して接続されており、この分配
へツダー38は前記蒸気加減弁0の上測りークオフ管3
4に連結されいる。
A cylindrical strainer 15 is attached to the green outer circumference of the valve seat 14, and a lid 16 is fixed to the upper entrance portion 13a of the main body 13 with each bolt 17. Further, as shown in FIG. 7, each twill bolt 17 is provided with a center hole 17a, which is connected to each leak-off pipe 34 of the steam control valve 0,
35 can be supplied with cooled steam. Furthermore, a large number of cooling holes 36 are formed at regular intervals in the main body 13, and each of these cooling holes 36 is connected to the flow of the main body 13, as shown in FIG. It is adapted to fit into each recovery header 37 attached to the outer periphery of the inlet 11 and outlet 12. On the other hand, a ring-shaped distribution header 38 is connected to each center hole 17a of each of the tightening bolts 17 via each pipe 39, and the header 38 to this distribution header 38 is connected to the above-mentioned steam control valve 0. tube 3
4.

又、上記本体13の下部には多数の冷却孔40が一定の
間隔を置いて穿設されており、この各冷却孔40の一端
はリング状をなく分配へッダー41に各達管42を介し
て接続されている。さらに、この分配へッダー41は蒸
気加減弁Dの下側リークオフ管35に連結されており、
低温化した蒸気は、この下側リークオフ管35から上記
分配へッダー41へ供給されるようになっている。さら
に、上記冷却孔40の池端は上記各回収へッダー37に
蓮適するように設けられている。なお、この各回収へツ
ダ−37は各集合管43によって連結されている。従っ
て、ボィラ2からの高温高圧蒸気は、主蒸気止め弁1の
流入ロー1から本体13内に流入し、この本体13のス
トレーナ15から弁体21によって流量制御されて上記
弁座14の弁孔14aを通って流出口12へ移送される
Further, a large number of cooling holes 40 are bored at regular intervals in the lower part of the main body 13, and one end of each cooling hole 40 is not ring-shaped and is connected to the distribution header 41 through each conduit 42. connected. Furthermore, this distribution header 41 is connected to the lower leak-off pipe 35 of the steam control valve D,
The cooled steam is supplied from this lower leak-off pipe 35 to the distribution header 41. Further, the ends of the cooling holes 40 are provided so as to fit in with each of the recovery headers 37. Incidentally, the barrels 37 are connected to each collecting pipe 43 by respective collecting pipes 43. Therefore, high-temperature, high-pressure steam from the boiler 2 flows into the main body 13 from the inflow row 1 of the main steam stop valve 1, flows through the strainer 15 of the main body 13 and is controlled in flow rate by the valve body 21, and is controlled by the valve hole of the valve seat 14. 14a to the outlet 12.

さらに、上記蒸気は蒸気加減弁0の供給口から主枠体2
5内に流入し、この主枠体25の弁体30で流量制御し
、上記弁座31の弁孔30から吐出口24へ流出される
。他方、蒸気加減弁0の各プッシュ28a,28bから
流出した上・下側リークオフ管34,35の低温化した
蒸気は各分配へッダー38,41から各達管39,42
を通して各冷却孔36,40内に流入する。
Further, the steam is supplied to the main frame body 2 from the supply port of the steam control valve 0.
5, the flow rate is controlled by the valve body 30 of the main frame body 25, and flows out from the valve hole 30 of the valve seat 31 to the discharge port 24. On the other hand, the low-temperature steam in the upper and lower leak-off pipes 34, 35 flowing out from each push 28a, 28b of steam control valve 0 flows from each distribution header 38, 41 to each conduit pipe 39, 42.
and into each cooling hole 36,40.

こ)で、低温化した蒸気は昇温している上記本体13と
熱交換して、この本体13を冷却する。仕事を了えた蒸
気は各分配へッダ−37に回収された後、各集合管43
を通して流出されるようになっている。なお、上記蒸気
止め弁1の上・下側リークオフ管22,23の蒸気は、
通常運転時、リークしないから使用されない。以上述べ
たように本発明によれば、流入口11及び流出ロー2を
備えた主蒸気止め弁1の本体13に一定の間隔を存して
多数の冷却孔36,40を穿設し、この各冷却孔36,
40の一端を分配へツダー38,41に接続し、この分
配へッダー38,41に蒸気加減弁ロのりークオフ管3
4,35を接続し、上記各冷却孔36,40の他様を回
収へッダー37に接続してあるので、上記本体13の内
外面の温度差による熱応力を低減して材ひ料による疲労
を小さくするようにすると共に、従来使用される材料を
使用しても、従来のものより、高温度の蒸気を供孫旨す
ることができるばかりでなく、装置全体の健全性の向上
を図ることができる。
In this step, the low-temperature steam exchanges heat with the main body 13 whose temperature is rising, thereby cooling the main body 13. After completing the work, the steam is collected in each distribution header 37 and then transferred to each collecting pipe 43.
It is designed to be leaked through. The steam in the upper and lower leak-off pipes 22 and 23 of the steam stop valve 1 is
It is not used during normal operation because it does not leak. As described above, according to the present invention, a large number of cooling holes 36, 40 are bored at regular intervals in the main body 13 of the main steam stop valve 1 equipped with the inlet 11 and the outlet row 2. Each cooling hole 36,
40 is connected to the distribution header 38, 41, and the leak-off pipe 3 of the steam control valve is connected to the distribution header 38, 41.
4 and 35 are connected to each other, and the other side of each of the cooling holes 36 and 40 is connected to the recovery header 37, thereby reducing thermal stress due to temperature difference between the inner and outer surfaces of the main body 13 and reducing fatigue caused by material beams. In addition, even if conventional materials are used, it is not only possible to supply steam at a higher temperature than conventional ones, but also to improve the integrity of the entire equipment. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はランキングサイクルを構成する蒸気原動所の系
統図、第2図乃至第4図は蒸気原動所における入口蒸気
温度と熱効率及び入口蒸気圧力との関係を示す各グラフ
、第5図は従来の主蒸気止め弁と蒸気加減弁とによる主
要弁の断面図、第6図は本発明による主蒸気止め弁の冷
却装置の斜面図、第7図は本発明の締付ボルトの拡大断
面図である。 11・・・流入口、12流出口、13・・・本体、34
・・・上側リークオフ管、35・・・下側リークオフ管
、36・・・冷却孔、37・・・回収へツダー、38・
・・分配へッダー、40・・・冷却孔、41・・・分配
へッダ−。 多一翼家2図 券3図 ′爺4図 ※ク図 漆ク図 多6図
Figure 1 is a system diagram of the steam power station that constitutes the ranking cycle, Figures 2 to 4 are graphs showing the relationship between inlet steam temperature, thermal efficiency, and inlet steam pressure in the steam power station, and Figure 5 is the conventional 6 is a sectional view of the main valve including the main steam stop valve and the steam control valve, FIG. 6 is a perspective view of the cooling device for the main steam stop valve according to the present invention, and FIG. 7 is an enlarged sectional view of the tightening bolt of the present invention. be. 11... Inlet, 12 Outlet, 13... Main body, 34
...Upper leak-off pipe, 35...Lower leak-off pipe, 36...Cooling hole, 37...To be recovered, 38.
...Distribution header, 40...Cooling hole, 41...Distribution header. Multi-wing family 2 drawings 3 drawings 'Old 4 drawings * lacquer drawing 6 drawings

Claims (1)

【特許請求の範囲】 1 流入口及び流出口を備えた主蒸気止め弁の本体に一
定の間隔を存して多数の冷却孔を穿設し、この各冷却孔
の一端を分配ヘツダーに接続し、この分配ヘツダーに蒸
気加減弁のリークオフ管を接続し、上記各冷却孔の他端
を回収ヘツダーに接続したことを特徴とする主蒸気止め
弁の冷却装置。 2 各冷却孔の一部を各締付ボルトの中心孔と連通する
ようにしたことを特徴とする特許請求の範囲第1項記載
の主蒸気止め弁の冷却装置。
[Claims] 1. A main steam stop valve having an inlet and an outlet, with a number of cooling holes formed at regular intervals, and one end of each cooling hole connected to a distribution header. A cooling device for a main steam stop valve, characterized in that a leak-off pipe of a steam control valve is connected to the distribution header, and the other end of each of the cooling holes is connected to a recovery header. 2. The main steam stop valve cooling device according to claim 1, wherein a portion of each cooling hole is communicated with a center hole of each tightening bolt.
JP3358681A 1981-03-09 1981-03-09 Main steam stop valve cooling system Expired JPS6038526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3358681A JPS6038526B2 (en) 1981-03-09 1981-03-09 Main steam stop valve cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3358681A JPS6038526B2 (en) 1981-03-09 1981-03-09 Main steam stop valve cooling system

Publications (2)

Publication Number Publication Date
JPS57148007A JPS57148007A (en) 1982-09-13
JPS6038526B2 true JPS6038526B2 (en) 1985-09-02

Family

ID=12390614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3358681A Expired JPS6038526B2 (en) 1981-03-09 1981-03-09 Main steam stop valve cooling system

Country Status (1)

Country Link
JP (1) JPS6038526B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103046972B (en) * 2012-12-13 2014-12-10 哈尔滨工业大学 Nonlinear automatic undisturbed single valve/sequence valve switching method for steam turbine

Also Published As

Publication number Publication date
JPS57148007A (en) 1982-09-13

Similar Documents

Publication Publication Date Title
JP2954797B2 (en) Forced cooling system for steam turbine
RU2351766C2 (en) Steam turbine and method of its operation
US6263662B1 (en) Combined cycle power generation plant and cooling steam supply method thereof
CA1220038A (en) Main steam inlet structure for steam turbine
CN108999653B (en) Shaft seal device for adjustable extraction steam turbine and working method of shaft seal device
US8038801B2 (en) Method and apparatus for the cleaning of components of a power plant by the injection of a medium and measuring device for measuring the degree of purity of the medium
JP4619958B2 (en) Steam turbine control valve and steam turbine power plant
EP2698507B1 (en) System and method for temperature control of reheated steam
US20070220860A1 (en) Apparatus and method for controlling leakage in steam turbines
JP4208661B2 (en) Steam turbine power plant having a steam valve device and a steam flow control system including the steam valve device
JPH10501315A (en) Method of operating a steam turbine power plant and steam turbine power plant for implementing the method
Bhatt et al. Performance enhancement in coal fired thermal power plants. Part II: steam turbines
JPS6038526B2 (en) Main steam stop valve cooling system
US11802689B2 (en) Commissioning power plants
Campbell et al. The Eddystone superpressure unit
JPS588997A (en) Waste heat collecting heat exchanger
JP4107114B2 (en) Chemical cleaning method for main steam pipe or reheat steam pipe
JP2003503635A (en) Structural component and method for guiding media under high temperature and high pressure
JPH10331607A (en) Exhaust heat recovery boiler blowing device and a boiler blowing-out method
JPH0238167Y2 (en)
JPS58220907A (en) Cooling of steam turbine and apparatus therefor
Valamin et al. Cogeneration turbine unit with a new T-295/335-23.5 steam turbine
Pankov et al. Methods to combat the causes of damage to the steam-forming pipes of the low-pressure circuit in CCPP heat recovery steam generators
SU1165805A1 (en) Method of counter-current cooling of flow part of turbine cylinder without steam
Zaryankin et al. Nuclear power plants with super-powerful high-temperature steam turbine