JPS6036303A - Production of mixed gas containing hydrogen in definite concentration - Google Patents

Production of mixed gas containing hydrogen in definite concentration

Info

Publication number
JPS6036303A
JPS6036303A JP58142821A JP14282183A JPS6036303A JP S6036303 A JPS6036303 A JP S6036303A JP 58142821 A JP58142821 A JP 58142821A JP 14282183 A JP14282183 A JP 14282183A JP S6036303 A JPS6036303 A JP S6036303A
Authority
JP
Japan
Prior art keywords
hydrogen
concentration
mixed gas
gas containing
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58142821A
Other languages
Japanese (ja)
Other versions
JPS634639B2 (en
Inventor
Yuko Fujita
藤田 雄耕
Ikuo Tanigawa
谷川 郁夫
Hisashi Kudo
工藤 寿士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP58142821A priority Critical patent/JPS6036303A/en
Publication of JPS6036303A publication Critical patent/JPS6036303A/en
Publication of JPS634639B2 publication Critical patent/JPS634639B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To produce a hydrogen-containing mixed gas having a hydrogen concentration of high industrial value, by removing hydrogen at the anode of an electrochemical hydrogen-separation apparatus using an ion exchange resin, and utilizing the residual gas left after the separation of hydrogen. CONSTITUTION:An ion exchange resin membrane 1 prepared by introducing sulfonic acid group to a perfluorocarbon resin base is integrated at one surface with the cathode 2 and at the other surface with the anode 3, and is furnished with the charge collectors 4, 5 for the anode and cathode, the terminal plates 6, 7 for the anode and cathode, and the cell frame 8. The primary mixed gas having relatively high H2 concentration and humidified to the saturated state is introduced into the cell through the gas inlet 9, and a DC current is passed through the terminal plates 6, 7. H is ionized at the electrode 3, and H2 is generated at the electrode 2. The generated H2 is discharged through the outlet 10. The secondary mixed gas having relatively low hydrogen concentration and left after the partial consumption of H2 at the electrode 3 is discharged through the outlet 11. Since the H2 concentration of the objective gas is a function of the H2 concentration of the primary mixed gas, the rate of feeding and the operating electrical current, the variables are controlled to attain a constant H2 concentration.

Description

【発明の詳細な説明】 本発明は、相対的に高濃度の水素を含む混合ガスから相
対的に低濃度でしかも所定濃度の水素を含む混合ガスを
?M造する方法に関するものであり、その目的とすると
ころは、電気化学的手法を用い、効率的でしかも簡便に
所定濃度の水素を含む混合ガスを製造し得る方法を提供
せんとするにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention is capable of converting a mixed gas containing a relatively high concentration of hydrogen to a mixed gas containing a relatively low concentration of hydrogen at a predetermined concentration. The present invention relates to a method for producing M, and its purpose is to provide a method for efficiently and easily producing a mixed gas containing hydrogen at a predetermined concentration using an electrochemical method.

近年「CI化学」と称される一酸化炭素等を原料とする
基礎化学品の製造法の研究が盛んになさ1、でいる。こ
の「C1化学」においては、−酸化炭素と水素との混合
比をいかにして所望の値にするかということが重要な課
題である。
In recent years, there has been active research into methods for producing basic chemicals using carbon monoxide and other raw materials, which is referred to as ``CI chemistry''1. In this "C1 chemistry", an important issue is how to adjust the mixing ratio of -carbon oxide and hydrogen to a desired value.

例えば、コークス炉ガスの一酸化炭素と水素との混合比
は■:10 であるのに対し、この混合比を1:31C
L1こ8NGさ称される合成天然ガスをいかにして製造
するかは工業的に極めて軍警である。
For example, the mixing ratio of carbon monoxide and hydrogen in coke oven gas is 1:10, but this mixing ratio is 1:31C.
From an industrial perspective, how to produce synthetic natural gas called L1-8NG is extremely complicated.

水素を含Fr混合ガスから水素を分離する方法としては
、従来、lド多孔質膜にょる摸分離法とモレキュラシー
ブ法とが主流となっているが、これらの方法はまだ技術
的にも成熟していないし、ランニングコストも必ずしも
安価ではないという間1flを抱えている。
Conventionally, the mainstream methods for separating hydrogen from a Fr-containing mixed gas have been the sample separation method using a porous membrane and the molecular sieve method, but these methods are still technologically mature. However, the running costs are not necessarily cheap either.

一方、Langer トElaldeman (5ci
ence 142 + 225(1968) )は水素
を含む混合ガス、例えば24%のメタ゛ノ、3%のエチ
レン、18%の一酸化炭素。
On the other hand, Langer and Elaldeman (5ci
ence 142 + 225 (1968)) is a mixed gas containing hydrogen, such as 24% methane, 3% ethylene, and 18% carbon monoxide.

55%の水素からなる都市ガスから電気化学的手法を用
いて水素を選択的に分離できることを報告している。
It has been reported that hydrogen can be selectively separated from city gas, which consists of 55% hydrogen, using an electrochemical method.

この電気化学的手法とは、隔夕として燃料電池に用いら
tlろいわゆる水素イアといわれるガス拡散電1質を[
0い、陰(゛・翼と17て水電解に用いられろ水素発生
層を用い、硫酸を電解液とする電気化学セルの陽極に水
素を含む混合ガスを供給しつつ、陰。
This electrochemical method uses a gas diffusion electrolyte, so-called hydrogen oxide, which is commonly used in fuel cells.
0, negative (゛・Using a hydrogen generating layer for water electrolysis, a hydrogen-containing gas mixture is supplied to the anode of an electrochemical cell using sulfuric acid as the electrolyte.

陽画極間に60mA/cd程度の電′流密度で直流電流
を流すと、4序で欠の(1)式のように水素だけが選択
的にイオン化され、 11.2 →2H” + 2e−(1)陰何側から欠の
(21式にしfこがって、かなり純度の高い水素が得ら
nろという原理を利用するものである。
When a direct current is passed between the positive electrodes at a current density of about 60 mA/cd, only hydrogen is selectively ionized as shown in equation (1), which is missing in the 4th order, and 11.2 → 2H" + 2e- (1) It utilizes the principle that hydrogen of considerably high purity cannot be obtained by applying equation 21 to the negative side.

211+2e −1(2(2+ この[イス化学的酸素分離法は、前述の蜂分離法やモレ
キュランーブ法に比較して水素の分離の選択性がよりす
ぐれて′6)ろという長所をもっている。
211+2e -1 (2(2+) This chemical oxygen separation method has the advantage that it has better selectivity for hydrogen separation than the aforementioned bee separation method or molecular tube method.

本発明は、この電気化学的水素分離法を用いて所定fA
度の水素を含む混合ガスを得ようとするものである。
The present invention uses this electrochemical hydrogen separation method to obtain a predetermined fA
The aim is to obtain a mixed gas containing 30% of hydrogen.

電気化学的水素分離法では、水素の分離速度は通N電流
に比例し、消費電力は作動t8Eに比例す改善する必要
がある。かかる観点から見ろと、面−述のLanger
等の実験結果にみられる電気化学的7に素分離装置の性
能(60mA/cmの@、m密度で、990mV の電
工〕では実用化は望めない。
In the electrochemical hydrogen separation method, the hydrogen separation rate is proportional to the N current flowing, and the power consumption needs to be improved in proportion to the operation t8E. From this point of view, Langer's
The performance of the electrochemical element separation device (60 mA/cm@, m density, 990 mV electrician) seen in the experimental results cannot be expected to be put to practical use.

これに対して、近年、パーフロロカーボンの如キ含フッ
素高分子をペースにし、これにスルフォン酸基やカルボ
ン酸基のようなカチオン交換基を導入しfコ7メ素イオ
ン移動型のイオン交換樹脂膜を電解質とする非常にすぐ
れfコ分極特性を示す燃料電池および水電解槽が開発さ
れ1こ、このタイプの燃料電池の水素題と水電解槽の水
素発生極を組み合わすと、実用性のある電気化学的水素
分離装置が期待できろ。
On the other hand, in recent years, ion exchange resins using fluorine-containing polymers such as perfluorocarbons and introducing cation exchange groups such as sulfonic acid groups and carboxylic acid groups into them have been developed to create ion exchange resins that transfer f7-me ions. A fuel cell and a water electrolyzer that use a membrane as an electrolyte and exhibit excellent f-copolarization characteristics have been developed.1 Combining the hydrogen problem of this type of fuel cell with the hydrogen generating electrode of a water electrolyzer, it is possible to improve practicality. Expect some electrochemical hydrogen separation equipment.

本発明はかかる点をひとつの着眼点としてなされ1こも
のである。
The present invention has been made with this point in mind as one of the points of view.

一方、前述の1・anger等は陰極側から発生してく
る高純度の水素を目的対象物にし、水素が陰極側で分離
除去され1こ残余のガスには何らの顧慮も払つていない
。換言するとLanger等は電気化学的水素分離装置
を水素濃縮装置nもしくは水素発生装置としてしかみて
いない。
On the other hand, the above-mentioned 1.anger et al. uses high purity hydrogen generated from the cathode side as the target object, and does not pay any consideration to the remaining gas after the hydrogen is separated and removed at the cathode side. In other words, Langer et al. view electrochemical hydrogen separation devices only as hydrogen concentrators or hydrogen generators.

これに対し、本発明においては陽極側から発生してくる
水素はどちらかといえばむしる副産物であり、本発明の
主1こる目的は隔部側での反応に着目(7、工業的に価
値の高い水素濃度の水素含有混合ガスを得ようとするも
のであり、この点に本発明の太き4C特徴があろう す((わち、本発明はイオン交換樹脂膜を電解質とし、
陰・陽極をこの膜に一体に接合せしめてなる電気化学セ
ルの陽極側に、相対的に高#度の水素を含む見合ガスを
供給し、この?If気化学セルに直流電流を流すことに
よって、混合ガス中の一部 □の水素を陰極側に移行せ
しめ残余の相対的に低濃度の水素を含む混合ガスを1喝
極側から得ようとするものである、 陽極側から導出される目的ガスとしての相対的に低濃度
の水素を含む混合ガスの水素濃度は、陰極側に供給され
る一部ガスとしての相対的に高濃変の水素を含む見合ガ
スの水素濃度と供給速度および作動電流の函数である。
On the other hand, in the present invention, the hydrogen generated from the anode side is rather a by-product, and the main purpose of the present invention is to focus on the reaction on the partition side (7. The aim is to obtain a hydrogen-containing mixed gas with a high hydrogen concentration, and this is where the bold 4C feature of the present invention lies.
A matching gas containing relatively high hydrogen is supplied to the anode side of an electrochemical cell in which the cathode and anode are integrally bonded to this membrane. If by passing a direct current through the vapor chemical cell, some of the hydrogen in the mixed gas is transferred to the cathode side, and the remaining mixed gas containing relatively low concentration hydrogen is obtained from the 1st electrode side. The hydrogen concentration of the mixed gas containing relatively low-concentration hydrogen as the target gas derived from the anode side is higher than that of relatively high-concentration hydrogen as the partial gas supplied to the cathode side. It is a function of the hydrogen concentration of the containing gas, the supply rate and the operating current.

し1こがって、極板側から導出される目ICガスの水素
濃度を所望値になるようにするTこめには、上述の如き
作動パラメータを適確に制御する必要があろう 目的ガスの水素濃度を管理する方法としては、目的ガス
の水素濃度を水素濃度計で検知し、この水素濃度が所望
値になるように通電すべき電流値もしくは印加すべき’
tlEffi値を制御するという方法が簡便である。例
えば目的導出ガス中の水素濃度が所望値よりも高すぎろ
場合には、通電電流値を低減するか、印加電子を下げれ
ばよいし、反対に低すぎろ場合には通’+[流値を増大
するか、印加電圧を上げればよい。かかる水素濃度の制
御方法も本発明の重要な特長のひとつであるう本発明の
電気化学的水素分離装置の心臓部はイオン交換樹脂膜に
陰極と陽極とを一体に接合しfこ接合体にある。イオン
交換樹脂膜としては・含)−7素高分子、望ましくはパ
ーフロロカーボンに、カチオソ基、望ましくはスルフォ
ン酸基もしくはカルボッ酸基、あるいは両者を導入し1
こものが用いらnろ。陰極は白金を無電解メ゛ツキ法で
イオン交換樹脂膜に接合せしめろか、白金ブラ・ツクと
ポリ4フーI化エチレンとの混合物をホットプレス法で
イオン交換樹脂膜に接合することによって形成するのが
よい。陽極は触媒金属とポリ4フ・1化エチレンとの混
合物からなりホットプレス法でイオン交換樹脂膜に接合
するのがよい。融媒金属としては白金異金属が用いられ
るが一酸化炭素による被毒を受けにくい材料を用いろこ
とが肝要である。
However, in order to make the hydrogen concentration of the IC gas derived from the electrode plate side reach the desired value, it is necessary to accurately control the operating parameters as described above. To manage the hydrogen concentration of the target gas, detect the hydrogen concentration of the target gas with a hydrogen concentration meter, and determine the current value to be applied or the current value to be applied so that the hydrogen concentration reaches the desired value.
A simple method is to control the tlEffi value. For example, if the hydrogen concentration in the target deriving gas is too high than the desired value, you can reduce the current value or the applied electrons; on the other hand, if it is too low, the current value or increase the applied voltage. Such a method of controlling the hydrogen concentration is also one of the important features of the present invention.The heart of the electrochemical hydrogen separation device of the present invention is that the cathode and the anode are integrally bonded to the ion exchange resin membrane to form a composite body. be. The ion-exchange resin membrane is made by introducing a cationic group, preferably a sulfonic acid group or a carboxylic acid group, or both into a -7 elemental polymer, preferably a perfluorocarbon.
I can't use this thing. The cathode is formed by bonding platinum to an ion exchange resin membrane using an electroless plating method, or by bonding a mixture of platinum plate and polytetrafluoroethylene to an ion exchange resin membrane using a hot pressing method. It is better. The anode is preferably made of a mixture of catalytic metal and polytetrafluoroethylene, and is bonded to the ion exchange resin membrane by hot pressing. Platinum is used as the melting medium. It is important to use a material that is not easily poisoned by carbon monoxide.

ま1こ触媒金属とポリ4フ゛ノ化エチレンとの混合層の
上に、さらにカーボン粉末とポリ4フ・ソ化エチレンと
の混合物層を形成することも何効な場合がある、 電極をイオン交換樹脂膜に接合する際、ホ・ノドブレス
法を採用する場合には、パーフロロカーボンをベースに
し、カチオン交換基を導入してなるイオン交換樹脂粉末
あるいはスチレン−ジビニルベンゼン共重合体にスルフ
ォン酸基を導入してなるイオン交換樹脂粉末をtW層の
中に混入せしめることも有効な方法である。かかる方法
を採用すると、電極と電解質であるイオン交換樹脂との
接触面積がより大きくなるので、一般に極板の各分極・
特性が改善される。
It may also be effective to form a layer of a mixture of carbon powder and polytetrafluoroethylene on top of the mixed layer of catalyst metal and polytetrafluoroethylene. When bonding to a resin membrane using the photo-nodobreath method, sulfonic acid groups are introduced into ion exchange resin powder or styrene-divinylbenzene copolymer, which is based on perfluorocarbon and has cation exchange groups introduced. It is also an effective method to mix an ion exchange resin powder formed by the above into the tW layer. When such a method is adopted, the contact area between the electrode and the ion exchange resin that is the electrolyte becomes larger, so generally each polarization and polarization of the electrode plate is
Characteristics are improved.

かかる接合体を用い1コミ気化学的水素分離装置を作動
させ1こ場合、前述の(1)式によって陽極で生成する
水素イオン(H+)は、イオン交換樹脂膜の中を陽極側
から陰極側に移動するが、その際、水素イオンが数モル
の水分子を随伴するfコめに、陽極とイオン交換樹脂と
の界面で水が不足し、電気化学的水素分離装置の分極特
性が劣化する。この現象を防止する1コ峠には、隅部に
供給ざるべき1相対的に水素濃度の高い水素を含む混合
ガスを充分加湿することが葡効である。かかる加湿とい
う操作も本発明の重要な特長のひとつであるう 一方、本発明で用いられろイオン交換樹脂膜は含水して
はじめて電解質として機能するわけだがその1こめの7
にはできるだけ純水であることが肝要であり、もし、陽
極側から供給されるガス中に金属イオンが含まれている
と、イオン交換樹脂内の水素イオンと金属イオ゛/との
置換が起り、前述の(1+式および(2)式による反応
は急速に遅くなる。し1こがって供給されるガス中に金
属が混入されている場合には、極力除去する必要がある
When a vapor chemical hydrogen separation device is operated using such a bonded body, the hydrogen ions (H+) generated at the anode according to the above equation (1) pass through the ion exchange resin membrane from the anode side to the cathode side. However, at this time, the hydrogen ions are accompanied by several moles of water molecules, resulting in a shortage of water at the interface between the anode and the ion exchange resin, deteriorating the polarization characteristics of the electrochemical hydrogen separation device. . An effective way to prevent this phenomenon is to sufficiently humidify the mixed gas containing hydrogen with a relatively high hydrogen concentration that should not be supplied to the corners. Such humidification operation is one of the important features of the present invention, and on the other hand, the ion exchange resin membrane used in the present invention functions as an electrolyte only after it becomes hydrated.
It is important that the water is as pure as possible; if metal ions are included in the gas supplied from the anode side, hydrogen ions in the ion exchange resin may be replaced with metal ions. The reactions according to the above-mentioned equations (1+ and (2)) rapidly slow down.However, if metal is mixed in the gas supplied, it is necessary to remove it as much as possible.

電気化学的水素分離装置は、通例、複数個の電気化学セ
ルによって構成されるが、供給ガスは複数個の電気化学
セルに並列に供給してもよいし、直列に、換言すると多
段式にして順次水素濃度を低減するという方式を採用し
てもよいが、どちらかといえば各電気化学セルを均等に
作動させ得るという理由から、前者の方式の方がよい。
An electrochemical hydrogen separation device is usually constructed from a plurality of electrochemical cells, but the feed gas may be fed to the plurality of electrochemical cells in parallel or in series, in other words in a multi-stage manner. Although a method of sequentially reducing the hydrogen concentration may be adopted, the former method is preferable because it allows each electrochemical cell to operate equally.

以下、本発明の一実施例について詳述する。An embodiment of the present invention will be described in detail below.

第1図は、本発明の一実施例にかかる111%化学的水
素分離装置の一部を構成する単位電気化学セルの断面構
造略図を、第2図はコークス炉ガスから合成天然ガスを
製造する1こめのシステム系統図を示す。
Fig. 1 is a schematic cross-sectional structure diagram of a unit electrochemical cell that constitutes a part of a 111% chemical hydrogen separation device according to an embodiment of the present invention, and Fig. 2 is a schematic cross-sectional diagram of a unit electrochemical cell that constitutes a part of a 111% chemical hydrogen separation device according to an embodiment of the present invention. A complete system diagram is shown below.

第1図において、(1)はパーフロロカーボンをベース
ニし、スルフォン酸基を導入してなるイオン交換樹脂膜
であり、(2)は白金からなろ陰極、 (8)は白金ブ
ラック粉末とスチレン−ジビニルベンゼン共重合体にス
ルフォン酸基を導入してなるイオン交換樹脂粉末とポリ
4フツ化エチレンとの混合物層からなるr、l[である
。陰極(2)はイオン交換樹脂膜tl+に無電解メッキ
法S接合され、陽極(3)はイオン交換樹脂膜(1+に
ホーIドブレス法で接合されろ。
In Figure 1, (1) is an ion exchange resin membrane made of perfluorocarbon as a base and introduced with sulfonic acid groups, (2) is a cathode made of platinum, and (8) is platinum black powder and styrene-divinyl. r, l[, which consists of a mixture layer of ion exchange resin powder obtained by introducing a sulfonic acid group into a benzene copolymer and polytetrafluoroethylene. The cathode (2) is bonded to the ion exchange resin membrane tl+ by an electroless plating method, and the anode (3) is bonded to the ion exchange resin membrane (1+) by a hot press method.

(4)は白金メッキを師しTこチタンのエキスパンデッ
ドメタルからなる陰拐集電体、(5)は白金メッキを施
し1こチタンのエキスパンデッドメタルからなる陽極集
電体であり、陰櫃集電体(4)の間隙に陰極ガス室が、
腸阪集電体(5ンの間隙に陽極ガス室が形成されている
。(6)はチタン板からなる陰極端子板。
(4) is an anode current collector made of expanded metal of titanium plated with platinum, and (5) is an anode current collector made of expanded metal of titanium plated with platinum. A cathode gas chamber is located in the gap between the cathode current collector (4).
Isaka current collector (an anode gas chamber is formed in a 5 inch gap. (6) is a cathode terminal plate made of a titanium plate.

(7)はチタン板からなる陽極端子板である。(8)は
ポリプロピレン製のセルフレームである。
(7) is an anode terminal plate made of a titanium plate. (8) is a cell frame made of polypropylene.

この電気化学セルにおいて、飽和に加湿され1こ相対的
に高濃度の水素を含む混合ガスが一部ガス供給口(9)
から供給される間に陰極端子板(6)と陽極端子板(7
)との間に外部電源から@流電流を通電すると鴫憧(8
)で水素のイオン化反応が起り陰極2〕で水素の発生反
応が起り、この水素は水素導出口(10)から導出され
ろ。一方、陽極(3)で水素が一部消費さ:n、r、:
残余の相対的に低濃度の水素を含む混合ガスが二次ガス
導出口(11)から導出される。
In this electrochemical cell, a part of the mixed gas that is humidified to saturation and contains a relatively high concentration of hydrogen is supplied to the gas supply port (9).
The cathode terminal plate (6) and the anode terminal plate (7) are
), when a current is passed from an external power supply between the
), a hydrogen ionization reaction occurs, and a hydrogen generation reaction occurs at the cathode 2], and this hydrogen is led out from the hydrogen outlet (10). On the other hand, some hydrogen is consumed at the anode (3): n, r,:
The remaining mixed gas containing hydrogen at a relatively low concentration is led out from the secondary gas outlet (11).

次に第2図において、(13)は第1図の単位の電気化
学セルが複数個集合され1こ電気化学的水素分離装置で
ある。−酸化炭素と水素の容積比が1 : 10のコー
クス炉ガスはまず加湿器(14ンで飽和に加湿さ旧、−
次ガスマニホールド(15)で分配され、電気化学的水
素分離装置(13)に供給され、「B流電源装置を内蔵
せるコントローラ(16)から′M、気化学的水素分離
装置(13ば1流電流が通電さtLると、コークス炉ガ
スの一部の水素が分離され、水素ガスマニホールド(1
7)で一旦集合されて導出される同時にコークス炉ガス
から水素が消費されて一酸化炭素と水素との容積比がに
3の合成天然ガスが二次カスマニホールド(■8)で集
合され導出されろ。
Next, in FIG. 2, (13) is an electrochemical hydrogen separation apparatus in which a plurality of electrochemical cells of the unit shown in FIG. 1 are assembled. - Coke oven gas with a volume ratio of carbon oxide and hydrogen of 1:10 is first humidified to saturation at 14 °C, -
The next gas is distributed by the gas manifold (15) and supplied to the electrochemical hydrogen separator (13). When the current is applied tL, some hydrogen in the coke oven gas is separated and the hydrogen gas manifold (1
At the same time, hydrogen is consumed from the coke oven gas and synthetic natural gas with a volume ratio of carbon monoxide to hydrogen of 3 is collected and extracted in the secondary waste manifold (■8). reactor.

二次ガスマニ′ホールド(18)には水素濃度i (1
9)が配設されていて、この水素!問計(19)によっ
て二、欠ガスマニホールド(■8)内の水素a反が検知
され、その信号がコントローラ(16)に送られ、二次
ガスマニホールド(18)の中の一酸化炭素と水素との
容積比がl:3に維持さt”するように、電気化学的7
に素分I4装置べ(13)に給電される″6L流値がコ
ントローラ(16)によって制御される。
The secondary gas manifold (18) has a hydrogen concentration i (1
9) is installed, and this hydrogen! The interrogator (19) detects hydrogen in the secondary gas manifold (■8), and the signal is sent to the controller (16), which detects carbon monoxide and hydrogen in the secondary gas manifold (18). The electrochemical 7
The "6L flow value supplied to the elementary I4 device bench (13) is controlled by the controller (16).

欠に第2図に示すシステムの具体的な作動条件例につい
て述べる。
An example of specific operating conditions for the system shown in FIG. 2 will be briefly described.

まず、用いTコミ気化学的水素分離装置としては、l 
dm2の作用面積をイ1する単位“1ド気化学セルを1
6セル積層しfコロので構成しfコ。この電気化学的水
素分離装置に、1時間あ1こりlQNm のコークス炉
ガスを加m Wで60℃ の露点にし1こものを供給し
、100Aの直流電流で作動させ1こところ、電気化学
的水素分離装置(電気旧には直列接続)の電圧は4.8
Vであつfこ。まγこ水素導U40から導出された7に
39ガスは、1時間あ1こり5.4 Nm”であり、二
次ガス導出口から得らn1コ合成天然ガス量は[時間あ
Tこり3. (i Nm であつ1こ。
First, the Tcomi vapor chemical hydrogen separation device used is L
The unit of action area of dm2 is 1.
It consists of 6 cells stacked and F-coll. This electrochemical hydrogen separator was supplied with 1 QNm of coke oven gas for 1 hour to bring the dew point to 60°C with mW, and was operated with a DC current of 100 A. The voltage of the hydrogen separator (connected in series to the electric model) is 4.8
Atsufko in V. The amount of 7 to 39 gas derived from the hydrogen guide U40 is 5.4 Nm per hour per hour, and the amount of synthetic natural gas obtained from the secondary gas outlet is [hour per hour per 3 .(i Nm and one piece.

以上詳述せる如く、本発明は極めて簡便に相対的に高濃
度の水素を含む混合ガスから相対的に低濃度の水素を含
む混合ガスを製造する方法を提供するもので、その工業
的価値は極めて大きい。
As detailed above, the present invention provides a very simple method for producing a mixed gas containing a relatively low concentration of hydrogen from a mixed gas containing a relatively high concentration of hydrogen, and its industrial value is Extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による電気化学的水素分離装
置の一部を構成する単位電気化学セルの断面構造略図、
第2図は本発明の一実施例にかかるコークス炉ガスから
合成天然ガスを製庫f口r:めのシステム系統図を示す
。 ■・・・・・イオン交換樹脂膜、2・・−・・陰 極。 3・・・・・・腸揃、 4・・・・・・陽極集電体、 
5・・・・・・陽極集電体、 6・−・陰僑端子板、7
・・−・・陽極端子板。 8・・−・・セルフレーム、 9・・−・・−zガス供
給口。 10・・・・・・水素導出口、11・・・・・・二次ガ
ス導出口。 13・・・・パ直気化学的水素分離装置、14・・・・
・・加湿器。 I5・・・・・・−次ガスマニホールド、16・・・・
・・コントローラ、 【7・・・・・水素ガスマニホー
ルド。 【8・・・・・・二次ガスマニホールド、19・・・・
・・水素濃度計。
FIG. 1 is a schematic cross-sectional structure diagram of a unit electrochemical cell that constitutes a part of an electrochemical hydrogen separation device according to an embodiment of the present invention;
FIG. 2 shows a system diagram of a system for producing synthetic natural gas from coke oven gas according to an embodiment of the present invention. ■...Ion exchange resin membrane, 2...Cathode. 3... Intestine arrangement, 4... Anode current collector,
5... Anode current collector, 6... Negative terminal board, 7
・・・−・Anode terminal plate. 8...Cell frame, 9...-z gas supply port. 10...Hydrogen outlet, 11...Secondary gas outlet. 13...Par direct gas chemical hydrogen separation equipment, 14...
··humidifier. I5...-Next gas manifold, 16...
...Controller, [7...Hydrogen gas manifold. [8... Secondary gas manifold, 19...
...Hydrogen concentration meter.

Claims (1)

【特許請求の範囲】 1、含フツ素高分子をベースにし、カチオン交換基を導
入してなる水素イオツ移動型のイオン交換樹脂膜の片面
に陰極を、他面に陽僅を各々一体に接合せしめてなる接
合体、陰極ガス室、陽極ガス室、水素導出口、相対的に
高濃度の水素を含む混合ガスの供給口および相対的に低
濃度の水素を含む混合ガスの導出口から構成されろ電気
化学的水素分離装置において、相対的に高濃度の水素を
含む混合ガスを加湿し1こ状態で、相対的に尚濃度の水
素を含む混合ガスの供給口から供給するとともに、前記
電気化学的水素分離装置の陰極とrfIJ極との間に直
流電流を流すことにより、相対的に高濃度の水素を含む
混合哲ス中の水素の一部を電気化学的に陽極側から陰極
側に移行せしめ、水素導出口から導出するとともに、残
余の相対的に低濃度になつ1こ水素を含む混合ガスを相
対的に低濃度の水素を含む混合ガスの導出口から導出せ
しめることを特徴とする一足#1度の水素を含む混合ガ
スを製造する方法。 2、相対的に低濃度の水素を含む混合ガスの導出口から
導出される相対的に低濃度の水素を含む混合ガス中の水
素濃度を水素濃度計で検出し、該導出ガスの水素濃度が
所定a度になるように、・電気化学的水素分離装置に通
電すべき電流値もしくは印加すべきtFE値を制御して
なる特許請求の範囲第1項記載の一疋濃度の水素を含む
混合ガスを製造する方法。
[Scope of Claims] 1. A cathode is integrally bonded to one side of a hydrogen iodine transfer type ion exchange resin membrane which is based on a fluorine-containing polymer and has a cation exchange group introduced thereto, and a cathode is integrally bonded to the other side. It consists of a bonded body, a cathode gas chamber, an anode gas chamber, a hydrogen outlet, a supply port for a mixed gas containing a relatively high concentration of hydrogen, and an outlet for a mixed gas containing a relatively low concentration of hydrogen. In the filtration electrochemical hydrogen separation device, a mixed gas containing a relatively high concentration of hydrogen is humidified and supplied from the supply port of the mixed gas containing a relatively still high concentration of hydrogen, and the electrochemical By passing a direct current between the cathode and the rfIJ electrode of a commercial hydrogen separator, a portion of the hydrogen in the mixed solution containing a relatively high concentration of hydrogen is electrochemically transferred from the anode side to the cathode side. hydrogen is extracted from the hydrogen outlet, and the remaining mixed gas containing hydrogen at a relatively low concentration is extracted from the outlet for the mixed gas containing hydrogen at a relatively low concentration. A method of producing a mixed gas containing #1 degree hydrogen. 2. Detect the hydrogen concentration in the mixed gas containing relatively low concentration of hydrogen derived from the outlet of the mixed gas containing relatively low concentration of hydrogen with a hydrogen concentration meter, and check that the hydrogen concentration of the derived gas is A mixed gas containing hydrogen at a concentration as set forth in claim 1 is obtained by controlling the current value to be applied or the tFE value to be applied to the electrochemical hydrogen separation device so as to have a predetermined degree a degree. How to manufacture.
JP58142821A 1983-08-05 1983-08-05 Production of mixed gas containing hydrogen in definite concentration Granted JPS6036303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58142821A JPS6036303A (en) 1983-08-05 1983-08-05 Production of mixed gas containing hydrogen in definite concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58142821A JPS6036303A (en) 1983-08-05 1983-08-05 Production of mixed gas containing hydrogen in definite concentration

Publications (2)

Publication Number Publication Date
JPS6036303A true JPS6036303A (en) 1985-02-25
JPS634639B2 JPS634639B2 (en) 1988-01-29

Family

ID=15324404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58142821A Granted JPS6036303A (en) 1983-08-05 1983-08-05 Production of mixed gas containing hydrogen in definite concentration

Country Status (1)

Country Link
JP (1) JPS6036303A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117120A (en) * 2007-11-05 2009-05-28 Honda Motor Co Ltd Method of operating hydrogen and power generation system
JP2009179553A (en) * 2009-04-24 2009-08-13 Toshiba Corp Multiple fuel feeding system
WO2020054334A1 (en) * 2018-09-14 2020-03-19 パナソニックIpマネジメント株式会社 Hydrogen generation system and hydrogen generation system operation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117120A (en) * 2007-11-05 2009-05-28 Honda Motor Co Ltd Method of operating hydrogen and power generation system
JP2009179553A (en) * 2009-04-24 2009-08-13 Toshiba Corp Multiple fuel feeding system
WO2020054334A1 (en) * 2018-09-14 2020-03-19 パナソニックIpマネジメント株式会社 Hydrogen generation system and hydrogen generation system operation method

Also Published As

Publication number Publication date
JPS634639B2 (en) 1988-01-29

Similar Documents

Publication Publication Date Title
US9574276B2 (en) Production of low temperature electrolytic hydrogen
US6994929B2 (en) Electrochemical hydrogen compressor for electrochemical cell system and method for controlling
CN103806014B (en) A kind of proton exchange membrane water electrolyzer device
US3012086A (en) Fuel cell
JP3107229B2 (en) Diaphragm humidification structure of solid polymer electrolyte fuel cell and electrolytic cell
IL288368A (en) Modular electrolyzer stack and process to convert carbon dioxide to gaseous products at elevated pressure and with high conversion rate
EP3017089A1 (en) Hydrogen system and method of operation
US4321313A (en) Electrogenerative reduction of nitrogen oxides
JP3321219B2 (en) Method for producing diaphragm for solid polymer electrolyte electrochemical cell
US20020034671A1 (en) Fuel cell
Andreassen Hydrogen production by electrolysis
JPS6036303A (en) Production of mixed gas containing hydrogen in definite concentration
CN111232921B (en) Method and device for preparing hydrogen and sulfur by decomposing hydrogen sulfide with assistance of flow battery
JPS6259184B2 (en)
KR20140133301A (en) The membrane electrdoe assembly for an electrochemical cell
JPS62182292A (en) Diaphragm electrolysis of hci
CN212077164U (en) Electric energy supply type electrochemical reactor
KR100488723B1 (en) A bipolar plate for fuel cell comprising prominence and depression type gas flow channel
CN218059236U (en) Production device for producing hydrogen peroxide and hydrogen by high-efficiency electro-catalysis
CN216237301U (en) Efficient proton exchange membrane electrolytic cell
CN111206264A (en) Electric energy supply type electrochemical reactor and use method thereof
CN112376067B (en) Fuel cell-electrolytic cell series device for degrading ethanolamine and simultaneously producing hydrogen
CN215328394U (en) Electrolytic tank structure
KR101320328B1 (en) Hydrogen pump system operable without external electric power supply
Fouda et al. MANUFACTURING AND ASSESSMENT OF A UNIT FOR PRODUCING HYDROGEN GAS FROM WATER