JPS6259184B2 - - Google Patents

Info

Publication number
JPS6259184B2
JPS6259184B2 JP58142820A JP14282083A JPS6259184B2 JP S6259184 B2 JPS6259184 B2 JP S6259184B2 JP 58142820 A JP58142820 A JP 58142820A JP 14282083 A JP14282083 A JP 14282083A JP S6259184 B2 JPS6259184 B2 JP S6259184B2
Authority
JP
Japan
Prior art keywords
hydrogen
anode
cathode
electrochemical
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58142820A
Other languages
Japanese (ja)
Other versions
JPS6036302A (en
Inventor
Juko Fujita
Ikuo Tanigawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP58142820A priority Critical patent/JPS6036302A/en
Publication of JPS6036302A publication Critical patent/JPS6036302A/en
Publication of JPS6259184B2 publication Critical patent/JPS6259184B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、電気化学的手法を利用して水素を含
む混合ガスから水素を分離する方法に関するもの
であり、その目的とするところは、電気化学セル
の作動電流密度をより大きくして、水素の分離速
度をより速くせんとするにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of separating hydrogen from a hydrogen-containing gas mixture using an electrochemical method, and its purpose is to increase the operating current density of an electrochemical cell. The aim is to increase the hydrogen separation rate by increasing the size.

水素を含む混合ガスから水素を分離するという
操作は化学工業においては極めて重要であり、現
在次のような用途を期待して開発あるいは実用化
されている。
The operation of separating hydrogen from a hydrogen-containing gas mixture is extremely important in the chemical industry, and is currently being developed or put into practical use in anticipation of the following uses.

(1) アンモニア合成のパージガスからの水素の回
収。
(1) Recovery of hydrogen from purge gas for ammonia synthesis.

(2) 水素製造プラントのパージガス中に含まれる
水素の回収。
(2) Recovery of hydrogen contained in purge gas of hydrogen production plants.

(3) 石油脱硫に用いられた廃ガス中の水素の回
収。
(3) Recovery of hydrogen from waste gas used in petroleum desulfurization.

これらの水素の回収操作として、従来ポリジメ
チルシロキサン共重合体膜などの高分子非多孔質
膜による水素の選択分離を利用する方法が実用化
されている。しかしこの膜分離法によつて分離さ
れる水素の純度は一般にそれほど高くないという
欠点がみられる。
As a recovery operation for these hydrogens, a method has conventionally been put into practical use that utilizes selective separation of hydrogen using a non-porous polymeric membrane such as a polydimethylsiloxane copolymer membrane. However, a drawback is that the purity of hydrogen separated by this membrane separation method is generally not very high.

分離される水素を高純度にするためには、まだ
実用化はされていないが、電気化学的手法がすで
に提案されている。つまり電気化学的手法では、
陽極として燃料電池のいわゆる水素極といわれる
ガス拡散電極を用い、陰極として水電解に用いら
れるものと同様の電極を配し、電解液として、硫
酸,過塩素酸あるいは水酸化カリウムの水溶液を
用いて電気化学セルを構成し、陽極側に水素を含
む混合ガスを供給しつゝ、陽・陰両極間に直流電
流を通すと陽極側で、 H2+2OH-→2H2O+2e-(アルカリ電解液) (1) あるいは、 H2→2H++2e-(酸性電解液) (2) なる反応により、水素の選択的電解酸化が起り、
陰極側で、上述の(1)式あるいは(2)式の逆方向の反
応が起つて、純度の高い水素ガスが得られる。
Although it has not yet been put to practical use, electrochemical methods have already been proposed to make the hydrogen to be separated highly purified. In other words, in the electrochemical method,
A gas diffusion electrode called the so-called hydrogen electrode of a fuel cell is used as the anode, an electrode similar to that used for water electrolysis is used as the cathode, and an aqueous solution of sulfuric acid, perchloric acid, or potassium hydroxide is used as the electrolyte. When an electrochemical cell is constructed and a mixed gas containing hydrogen is supplied to the anode side, and a direct current is passed between the positive and negative electrodes, H 2 +2OH - →2H 2 O + 2e - (alkaline electrolyte) is generated on the anode side. (1) Alternatively, selective electrolytic oxidation of hydrogen occurs due to the reaction H 2 →2H + +2e - (acidic electrolyte) (2)
On the cathode side, a reaction in the opposite direction of equation (1) or equation (2) above occurs, yielding highly pure hydrogen gas.

この電気化学的手法が従来、実用化されていな
い理由は、上述の如き水溶液電解液を用いる限
り、作動電流密度が高々100〜200mA/cm2であ
り、反応速度が遅かつたためである。
The reason why this electrochemical method has not been put to practical use so far is that, as long as the aqueous electrolyte described above is used, the operating current density is at most 100 to 200 mA/cm 2 and the reaction rate is slow.

これに対し、近年開発されたパーフロロカーボ
ンの如き含フツ素高子をベースにし、これにスル
フオン酸基の如きカチオン交換基を導入したイオ
ン交換樹脂膜を電解質とし、この膜に陰,陽両極
をそれぞれ一体接合した燃料電池の技術を応用す
ると、より高い電流密度で作動し得る水素の電気
化学的分離装置の可能性が出てきた。
In contrast, the electrolyte is an ion-exchange resin membrane based on a recently developed fluorine-containing polymer such as perfluorocarbon, into which cation exchange groups such as sulfonic acid groups are introduced, and this membrane has both negative and anode electrodes. Applying the technology of integrally bonded fuel cells offers the possibility of electrochemical separation devices for hydrogen that can operate at higher current densities.

しかしながら本発明者等は、種々実験をしてみ
た結果、このイオン交換樹脂膜を用いる方法には
ひとつの難点があることを発見した。つまり、イ
オン交換樹脂を用いる電気化学的水素分離装置に
おいては、陽極反応は上述の(2)式のようになるが
(2)式で生成する水素イオン(H+)が陽極側から陰
極側に移動する際、数モルの水分子を随伴するた
めに陽極とイオン交換樹脂膜との界面で水が欠乏
し、その結果として連続的な大電流密度での作動
が困難になるという事実を発見した。
However, as a result of various experiments, the present inventors discovered that this method using an ion exchange resin membrane has one drawback. In other words, in an electrochemical hydrogen separation device using ion exchange resin, the anodic reaction is as shown in equation (2) above.
When the hydrogen ions (H + ) generated in equation (2) move from the anode side to the cathode side, they are accompanied by several moles of water molecules, resulting in a lack of water at the interface between the anode and the ion exchange resin membrane. We discovered that as a result, it becomes difficult to operate at continuous high current densities.

本発明は、かゝる発見にもとづいてなされたも
のであり、陽極側に供給すべき水素を含む混合ガ
スを充分加湿することによつて、大電流密度での
作動を可能にしたものである。
The present invention was made based on this discovery, and enables operation at high current density by sufficiently humidifying the hydrogen-containing mixed gas to be supplied to the anode side. .

以下、本発明の一実施例について詳述する。 An embodiment of the present invention will be described in detail below.

実施例 第1図は本発明の一実施例にかかる電気化学的
水素分離装置の断面構造略図を示す。
Embodiment FIG. 1 shows a schematic cross-sectional structure of an electrochemical hydrogen separation apparatus according to an embodiment of the present invention.

1はパーフロロカーボンをベースにし、スルフ
オン酸基を導入してなるイオン交換樹脂膜であ
り、その片面に陽極2が、他面に陰極3が一体に
接合されている。陽極2は白金からなり、無電解
メツキ法により接合され、陰極3は白金ブラツク
粉末とポリ4フツ化エチレンとの混合物層からな
り、ホツトプレス法で接合されている。4は陽極
集電網,5は陰極集電網,6は陽極端子板,7は
陰極端子板,8はセルフレームである。
Reference numeral 1 denotes an ion exchange resin membrane made of perfluorocarbon as a base and into which sulfonic acid groups have been introduced, and an anode 2 is integrally joined to one side of the membrane, and a cathode 3 is integrally joined to the other side. The anode 2 is made of platinum and is bonded by electroless plating, and the cathode 3 is made of a layer of a mixture of platinum black powder and polytetrafluoroethylene and bonded by hot pressing. 4 is an anode current collection network, 5 is a cathode current collection network, 6 is an anode terminal plate, 7 is a cathode terminal plate, and 8 is a cell frame.

水素と窒素との混合比が1:3の混合ガスは加
湿槽9でほヾ飽和になるまで加湿され、混合ガス
入口10から供給される。陽極2と陰極3との間
に直流電流を通電すると、陽極2で水素の選択イ
オン化反応が起ると同時に陰極3で水素が発生す
る。この発生した水素は水素導出口11から導出
される。一方、陽極2で水素が除去された残りの
残余ガスは残余ガス導出口12から導出される。
陰極から発生すると水素の純度は99.99%であ
る。次に本発明の効果について説明する。
A mixed gas containing hydrogen and nitrogen at a mixing ratio of 1:3 is humidified in a humidifying tank 9 until it is almost saturated, and then supplied from a mixed gas inlet 10. When a direct current is passed between the anode 2 and the cathode 3, a selective ionization reaction of hydrogen occurs at the anode 2, and at the same time hydrogen is generated at the cathode 3. This generated hydrogen is led out from the hydrogen outlet 11. On the other hand, the remaining gas from which hydrogen has been removed at the anode 2 is led out from the residual gas outlet 12.
When generated from the cathode, the purity of hydrogen is 99.99%. Next, the effects of the present invention will be explained.

せず上述の実施例で得られた電気化学的水素分
離装置の電流密度とセル電圧との関係Aと従来の
ように特に加湿しない場合のそれBとを比較する
と、第2図に示すようになる。
Comparing the relationship A between the current density and cell voltage of the electrochemical hydrogen separator obtained in the above-mentioned example with the relationship B when no particular humidification is performed as in the conventional case, as shown in Figure 2. Become.

つまり、本発明のように加湿によつて初めて、
1000〜1500mA/cm2といつた大電流密度での作動
が可能になることがわかる。
In other words, only through humidification as in the present invention,
It can be seen that operation at high current densities of 1000 to 1500 mA/cm 2 is possible.

以上詳述せる如く、本発明は、イオン交換樹脂
膜を使用する電気化学的水素分離装置において、
水素を含む混合ガスを加湿することによつて大電
流密度での作動、換言するとより効率的な水素の
分離を可能とするもので、その工業的価値極めて
大である。
As detailed above, the present invention provides an electrochemical hydrogen separation device using an ion exchange resin membrane.
By humidifying a mixed gas containing hydrogen, it is possible to operate at a high current density, in other words, to separate hydrogen more efficiently, and its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例にかかる電気化学
的水素分離装置の断面図、第2図は本発明の一実
施例にかかる電気化学的水素分離装置Aと従来品
Bとの電流密度とセル電圧との関係の比較を示す
図である。 1……イオン交換樹脂膜、2……陽極、3……
陰極、4……陽極集電網、5……陰極集電網、6
……陽極端子板、7……陰極端子板、8……セル
フレーム、9……加湿槽、10……混合ガス入
口、11……水素導出口、12……残余ガス導出
口。
FIG. 1 is a cross-sectional view of an electrochemical hydrogen separator according to an embodiment of the present invention, and FIG. 2 is a current density of an electrochemical hydrogen separator A according to an embodiment of the present invention and a conventional product B. FIG. 3 is a diagram showing a comparison of the relationship between and cell voltage. 1... Ion exchange resin membrane, 2... Anode, 3...
Cathode, 4...Anode current collection network, 5...Cathode current collection network, 6
... Anode terminal plate, 7 ... Cathode terminal plate, 8 ... Cell frame, 9 ... Humidification tank, 10 ... Mixed gas inlet, 11 ... Hydrogen outlet, 12 ... Residual gas outlet.

Claims (1)

【特許請求の範囲】[Claims] 1 含フツ素高分子をベースにし、カチオン交換
基を導入してなる水素イオン移動型のイオン交換
樹脂膜の片面に陰極を、他面に陽極を一体に接合
せしめてなる電気化学セルの陽極側に水素を含む
混合ガスを加湿したものを供給し、陽極と陰極と
の間に直流電圧を印加することにより、陽極にお
いて水素をイオン化せしめると同時に陰極におい
て水素を発生せしめることを特徴とする水素を含
む混合ガスから水素を分離する方法。
1 The anode side of an electrochemical cell made by integrally bonding a cathode on one side and an anode on the other side of a hydrogen ion-transfer type ion exchange resin membrane based on a fluorine-containing polymer and having a cation exchange group introduced therein. A method for producing hydrogen characterized by supplying a humidified mixed gas containing hydrogen to a container and applying a DC voltage between the anode and the cathode to ionize hydrogen at the anode and simultaneously generate hydrogen at the cathode. A method of separating hydrogen from a mixed gas containing
JP58142820A 1983-08-05 1983-08-05 Separation of hydrogen from gaseous mixture containing hydrogen Granted JPS6036302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58142820A JPS6036302A (en) 1983-08-05 1983-08-05 Separation of hydrogen from gaseous mixture containing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58142820A JPS6036302A (en) 1983-08-05 1983-08-05 Separation of hydrogen from gaseous mixture containing hydrogen

Publications (2)

Publication Number Publication Date
JPS6036302A JPS6036302A (en) 1985-02-25
JPS6259184B2 true JPS6259184B2 (en) 1987-12-09

Family

ID=15324382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58142820A Granted JPS6036302A (en) 1983-08-05 1983-08-05 Separation of hydrogen from gaseous mixture containing hydrogen

Country Status (1)

Country Link
JP (1) JPS6036302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013089221A1 (en) * 2011-12-15 2013-06-20 パナソニック株式会社 Device for permeation of carbon dioxide and method for transport of carbon dioxide

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166103U (en) * 1986-04-12 1987-10-22
JPS6483501A (en) * 1987-09-25 1989-03-29 Shirakawa Seisakusho Kk Hydrogen purifying device
JPH02102675A (en) * 1988-10-12 1990-04-16 Naka Tech Lab Emergency exit for building
JPH0349861U (en) * 1989-09-21 1991-05-15
JP4617648B2 (en) * 2003-02-27 2011-01-26 トヨタ自動車株式会社 Hydrogen extraction device
WO2018049343A1 (en) * 2016-09-09 2018-03-15 Sustainable Innovations, Inc. Apparatus and method for concentrating hydrogen isotopes
US20180257933A1 (en) 2017-03-09 2018-09-13 Sustainable Innovations, Inc. In situ apparatus and method for providing deuterium oxide or tritium oxide in an industrial apparatus or method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013089221A1 (en) * 2011-12-15 2013-06-20 パナソニック株式会社 Device for permeation of carbon dioxide and method for transport of carbon dioxide
JP5617048B2 (en) * 2011-12-15 2014-10-29 パナソニック株式会社 Carbon dioxide permeation apparatus and carbon dioxide transport method

Also Published As

Publication number Publication date
JPS6036302A (en) 1985-02-25

Similar Documents

Publication Publication Date Title
US9574276B2 (en) Production of low temperature electrolytic hydrogen
US6994929B2 (en) Electrochemical hydrogen compressor for electrochemical cell system and method for controlling
JP2554664B2 (en) Two-chamber anodic structure
JP2841868B2 (en) Electrochemical conversion of anhydrous hydrogen halide to halogen gas using cation transfer membrane
US4311569A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
US4528083A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
US4707229A (en) Method for evolution of oxygen with ternary electrocatalysts containing valve metals
EP0208230A1 (en) Apparatus and method for purifying hydrogen
US20090159456A1 (en) Separating Gas Using Ion Exchange
JP3360349B2 (en) Fuel cell
JPS6259184B2 (en)
US3553092A (en) Electrodialysis process and cell
CN114402095B (en) Cross-flow water electrolysis
JPS60500190A (en) electrochemical cell with at least one gas electrode
US3470026A (en) Method of operating fuel cell with carbon-containing fuel
US3796647A (en) Apparatus for hydrogen production
JPS634639B2 (en)
US3577329A (en) Process for the production of high purity hydrogen
US3455804A (en) Process for reversible electrodialysis
JPH0244764B2 (en) DENKIKAGAKUTEKISANSOBUNRISOCHINOSADOHOHO
CN112376067B (en) Fuel cell-electrolytic cell series device for degrading ethanolamine and simultaneously producing hydrogen
CN212077164U (en) Electric energy supply type electrochemical reactor
JPS59162284A (en) Method for generating hydrogen, oxygen and inert gas
US3580823A (en) Hydrogen production
CN111206264A (en) Electric energy supply type electrochemical reactor and use method thereof