JPS6036302A - Separation of hydrogen from gaseous mixture containing hydrogen - Google Patents

Separation of hydrogen from gaseous mixture containing hydrogen

Info

Publication number
JPS6036302A
JPS6036302A JP58142820A JP14282083A JPS6036302A JP S6036302 A JPS6036302 A JP S6036302A JP 58142820 A JP58142820 A JP 58142820A JP 14282083 A JP14282083 A JP 14282083A JP S6036302 A JPS6036302 A JP S6036302A
Authority
JP
Japan
Prior art keywords
hydrogen
anode
cathode
ion exchange
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58142820A
Other languages
Japanese (ja)
Other versions
JPS6259184B2 (en
Inventor
Yuko Fujita
藤田 雄耕
Ikuo Tanigawa
谷川 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP58142820A priority Critical patent/JPS6036302A/en
Publication of JPS6036302A publication Critical patent/JPS6036302A/en
Publication of JPS6259184B2 publication Critical patent/JPS6259184B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To enable the operation of an electrochemical hydrogen separator using an ion exchange resin at high current density, by sufficiently humidifying the hydrogen-containing mixed gas supplied to the anode. CONSTITUTION:The ion exchange resin membrane 1 prepared by introducing sulfonic acid group to a perfluorocarbon resin base is integrated at one surface with the anode 2 and at the other surface with the cathode 3, and is furnished with charge-collecting mesh anode and cathode 4, 5, the terminal plates 6, 7 for the anode and cathode, and the cell frame 8. A gaseous mixture of H2 and N2 is humidified in the humidifying tank 9 to nearly the saturated state, and supplied to the apparatus through the gas inlet 10. When a DC current is passed between the anode 2 and the cathode 3, the selective ionization of H takes place at the anode 2, and at the same time, H2 is generated at the cathode 3. The generated H2 is discharged from the outlet 11, and the residual gas left after the removal of H2 at the anode 2 is discharged through the outlet 12. The separation apparatus can be operated at high current density by this process.

Description

【発明の詳細な説明】 本発明は、電気化学的手法を利用して水素を含む混合ガ
スから水素を分離する方法に関するものであり、その目
的とするところは、電気化学セルの作動電流W!lff
をより大きくして、水素の分離速度をより速くぜんとす
るにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of separating hydrogen from a mixed gas containing hydrogen using an electrochemical method, and its object is to reduce the operating current W! of an electrochemical cell. lff
The purpose is to increase the hydrogen separation rate to increase the hydrogen separation rate.

水素を含む混合ガスから水素を分離するという操作は化
学工業においては極めて重要であり、現在欠のような用
途を期待して開発あるいは実用化されている、 (1) ア゛7モニア合成のパージガスから)の水素の
回収。f、 (2) 水素製造プラントのパージガス中にaすれろ水
素の回収、 (3) 石油脱硫に用いらynrニー廃ガス中の水素の
回収。
The operation of separating hydrogen from a hydrogen-containing gas mixture is extremely important in the chemical industry, and is being developed or put into practical use in hopes of finding applications that are currently lacking. (1) Purge gas for 7monium synthesis hydrogen recovery from ). f. (2) recovery of a-filtered hydrogen in the purge gas of a hydrogen production plant; (3) recovery of hydrogen in the waste gas used for petroleum desulfurization.

こ1、らの水素の回収操作として、従来ポリジメチルシ
ロキサン共重合体膜などの高分子非多孔質膜による水素
の選択分離を利用する方法が実用化されている。しかし
この膜分離法によって分離される水素の純度は一般にそ
れほど蒔くないという欠点がみられる。
Conventionally, as the hydrogen recovery operation described above, a method using selective separation of hydrogen using a non-porous polymeric membrane such as a polydimethylsiloxane copolymer membrane has been put into practical use. However, the drawback is that the purity of the hydrogen separated by this membrane separation method is generally not that high.

分離さl、ろ水素を高純度にする1こめには、まだ実用
化はされていないが、′電気化学的手法がすでに捏業さ
れている。つまり電気化学的手法では、陰極として燃料
電池のいわゆる水素礪といわれるガス拡散を甑を用い、
陰面として水電解に用いられるものと同様の電属を配し
、電解液とじて、硫酸、過塩素酸あるいは水酸化カリウ
ムの水浴液を用いて電気化学セルを構成し、陰極側に水
素を含む混合ガスを供給しつ一1陽・陰画極間に直流電
流を通すと陽極側で、 1(2−1−2oir −42HgQ + 2e (7
Jl/カリ電解液)(1)あるいは、 H2→2[+ 26− (酸性電解液)(2)なる反応
により、水素の選択的電解酸化が起り、陰極側で、上述
の(11式あるいは(2)式の逆方向の反応が起って、
純度の高い水素ガスが得られる。
Although it has not yet been put into practical use, an electrochemical method has already been developed to make the separated hydrogen highly pure. In other words, in the electrochemical method, a gas diffusion pot called a hydrogen tank in a fuel cell is used as a cathode.
An electrochemical cell is constructed by placing a metal similar to that used in water electrolysis as the negative surface, and using a water bath solution of sulfuric acid, perchloric acid, or potassium hydroxide as the electrolyte, and containing hydrogen on the cathode side. When a mixed gas is supplied and a direct current is passed between the positive and negative electrodes, on the anode side, 1(2-1-2oir -42HgQ + 2e (7
Jl/potassium electrolyte) (1) or H2→2[+ 26- (acidic electrolyte) (2), selective electrolytic oxidation of hydrogen occurs, and on the cathode side, the above (Equation 11 or ( 2) A reaction in the opposite direction of the equation occurs,
Highly pure hydrogen gas can be obtained.

この電気化学的手法が従来、゛イ実用化されていない理
由は、上述の如き水溶液電解液を用いる限り、作動電流
密度が高々100〜20.OmA/ ciであり、反応
速度が遅かつ1こTこめである、 これに対し、近年開発さf′L1こパーフロロカーボン
の如き含フ・ノ、素高子をベースにし、これにスルフォ
ン酸慕の如きカチオン交換基を導入し1こイオン交換閏
脂膜を電解質とし、この膜に陰、陽1iIil極をそれ
ぞれ一体接合しTコ燃料電池の技術を応用すると、より
高い電流密度で作動し得る水素の電気化学的分離装置の
可能性が出てき1コ。
The reason why this electrochemical method has not been put to practical use so far is that as long as the above-mentioned aqueous electrolyte is used, the operating current density is at most 100-20. OmA/ci, the reaction rate is slow and the reaction rate is very low.In contrast, recently developed polymers based on F-containing polymers such as f'L1-perfluorocarbons and sulfonic acid-based polymers have been developed in recent years. By introducing a cation-exchange group such as cation-exchange group, using an ion-exchange resin membrane as an electrolyte, and integrally bonding anode and anode electrodes to this membrane, applying T-co fuel cell technology, it is possible to operate at a higher current density. The possibility of an electrochemical separation device for hydrogen has emerged.

しかしながら本発明者等は、種々実験をしてみ1こ結果
、このイオン交換[脂膜を用いる方法にはひとつの難点
があることを発見し1こ。つまり、イオン交換樹脂を中
いる電気化学的水素分離装置においては、陽極反応は上
述の(2)式のようになるが(2)式で生成する水素イ
オン(H+)がIn側から陰極側に移動する際、数モル
の水分子を随伴する1こめに1fllとイオン交換樹脂
膜との界面で水が欠りし、その結県として連続的な大電
流密度での作動が困難になるという$実を発見しγこ。
However, the inventors of the present invention have conducted various experiments and discovered that this method of ion exchange (using a lipid membrane) has one drawback. In other words, in an electrochemical hydrogen separation device containing an ion exchange resin, the anode reaction is as shown in equation (2) above, but the hydrogen ions (H+) generated in equation (2) move from the In side to the cathode side. When moving, water is depleted at the interface between the ion exchange resin membrane and the ion exchange resin membrane, which is accompanied by several moles of water molecules, making it difficult to operate at a continuous high current density. I discovered the fruit.

本発明は、か−る発見にもとづいてなされ1こものであ
り、陽極側に供給すべき水素を含む混合ガスを充分p1
湿することによって、大wL流密度での作動を可能にし
γこものである。
The present invention was made based on this discovery, and the hydrogen-containing mixed gas to be supplied to the anode side is sufficiently p1.
Wetting allows operation at large wL flow densities.

以下、本発明の一実施例について詳述するう芙褌例 it図は本発明の一実施例にかかる?[気化学的水素分
離装置の断面構造略図を示す。
Hereinafter, an example of an embodiment of the present invention will be described in detail. [Schematic cross-sectional structure of a vapor chemical hydrogen separation device is shown.]

tlll、tパーフロロカーボンをベースにし、スルフ
オソ酸基を導入1.て1なるイオン交換樹脂膜であり、
その片面に陽序(2)が、池面にVA 仮ta+が一体
に接合さ第1.でいる。陽極(2)は白金からなり、無
電解メIキ上により接合され、陰極(3)は白金ブラ・
lり ′fパ扮末とポリ4フツ化エチレンとの混合物1
〜からなり、ホlドブレス法で接合されている。(4)
は陽(寅集電網、(5)は隘俣集電網、(6)は陽極端
子板。
tllll, t based on perfluorocarbon, with sulfoiso acid group introduced 1. It is an ion exchange resin membrane,
The positive order (2) is attached to one side, and the VA temporary ta+ is integrally attached to the pond side. I'm here. The anode (2) is made of platinum and is joined by electroless plated plate, and the cathode (3) is made of platinum plated plate.
Mixture of powder and polytetrafluoroethylene 1
It consists of ~ and is joined by the hold breath method. (4)
is the positive (Tora current collector network), (5) is the Amata current collector network, and (6) is the anode terminal plate.

(7)は陰工端子板、(8)はセルフレームである。(7) is a negative terminal board, and (8) is a cell frame.

水素と窒素との混合比がl:3の混合ガスは加湿pII
+9+では\飽和になるまで加湿され、混合ガス入口(
10)から供給される。陽憧(2)と陰極(3)との間
に1ば流電流を通電すると、陽極(2)で水素の選択イ
オン化反応が起ると同時に陰層(3)で水素が発生する
。この発生し1こ水素は水素導出口(11)から導出さ
れる。一方、陽極(2)で水素が除去され1こ残りの残
余ガスは残余ガー導出口(12)から導出される。
A mixed gas of hydrogen and nitrogen at a mixing ratio of 1:3 is humidified pII.
+9+ humidifies until saturated, and the mixed gas inlet (
10). When a current of 1 current is passed between the positive electrode (2) and the negative electrode (3), a selective ionization reaction of hydrogen occurs at the positive electrode (2), and at the same time hydrogen is generated in the negative layer (3). This generated hydrogen is led out from the hydrogen outlet (11). On the other hand, hydrogen is removed at the anode (2) and the remaining gas is led out from the remaining gas outlet (12).

陰極から発生すると水素の純度は99.99%である。When generated from the cathode, the purity of hydrogen is 99.99%.

欠に不発明の効果について説明する。Let me explain the effect of non-invention.

せず上述の実施例で得らn、 y:電気化学的水素分離
装置の電流密度とセル電圧との関係が)と従来のように
特に加湿しない場合のそれ(Blとを比較すると、第2
図に示すようになる。
Comparing the relationship between the current density and cell voltage of an electrochemical hydrogen separation device (n, y obtained in the above example without using humidification) and that obtained in the case of no particular humidification as in the conventional case (Bl), the second
The result will be as shown in the figure.

つまり、本発明のように加湿によって初めて、1000
〜1500mA/d といッ1コ大を流密間での作動が
可能になることがわかる。
In other words, only by humidifying as in the present invention, 1000
It can be seen that it is possible to operate at a flow rate of up to 1500 mA/d, which is about the same as that of one car.

水素を含む混合ガスを加湿することによって大電流密度
での作動、換言するとより効率的な水素の分離を可能と
するもので、その工業的価値%めて大である。
By humidifying a mixed gas containing hydrogen, it is possible to operate at a high current density, in other words, to separate hydrogen more efficiently, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例にかかる電気化学的水素分
離装置の断面図、第2図は本発明の一実施例VCかかる
電気化学的水素分離装置桃)と従来品(11)との電流
WI度とセル電圧との関係の比較を示す図である、 ■・・・・・イオン交換JhRilRL、 2・・・・
・陽 極。 8・・・・・・陰極、4・・・・・・陰極集電網、5・
・・・・陰極集電網、 6・・・・・・陽極端子板、7
・・・・・・陰甑端子板、 8・・・・・・セルフレー
ム、 9・・曲m湿n 。 10・・・・混合ガス入口、11・・−・・水素導出口
。 I2・・・・・・残余ガス導出口。
FIG. 1 is a sectional view of an electrochemical hydrogen separator according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of an electrochemical hydrogen separator according to an embodiment of the present invention and a conventional product (11). It is a diagram showing a comparison of the relationship between the current WI degree and the cell voltage. ■...Ion exchange JhRilRL, 2...
・Anode. 8... cathode, 4... cathode current collection network, 5...
...Cathode current collector network, 6...Anode terminal plate, 7
・・・・・・Terminal board, 8・・・Cell frame, 9・・Moisture n. 10...Mixed gas inlet, 11...Hydrogen outlet. I2...Residual gas outlet.

Claims (1)

【特許請求の範囲】[Claims] 含フッ素萬分子をペースにし、カチオン交換基を導入し
てなろ水素イオン移動型のイオン交換樹脂膜の片面に陰
極を、他面に陽極を一体に接合せしめてなる電気化学セ
ルの陽極側に水素を含む混合ガスを加湿し1こものを供
給し、陽(M Y:= II mとの間に直流電子を印
加することにより、陽極において水素をイオン化せしめ
ろと同時に陰頽において水素を発生せしめろことを特徴
とする水素を含む混合ガスから水素を分離する方法。
Hydrogen is attached to the anode side of an electrochemical cell, which is made of a fluorine-containing 10,000-molecule molecule and has a cation exchange group introduced into it.The cathode is integrally bonded to one side of a hydrogen ion transfer type ion exchange resin membrane, and the anode is bonded to the other side. By humidifying a mixed gas containing A method for separating hydrogen from a hydrogen-containing gas mixture characterized by a filter.
JP58142820A 1983-08-05 1983-08-05 Separation of hydrogen from gaseous mixture containing hydrogen Granted JPS6036302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58142820A JPS6036302A (en) 1983-08-05 1983-08-05 Separation of hydrogen from gaseous mixture containing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58142820A JPS6036302A (en) 1983-08-05 1983-08-05 Separation of hydrogen from gaseous mixture containing hydrogen

Publications (2)

Publication Number Publication Date
JPS6036302A true JPS6036302A (en) 1985-02-25
JPS6259184B2 JPS6259184B2 (en) 1987-12-09

Family

ID=15324382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58142820A Granted JPS6036302A (en) 1983-08-05 1983-08-05 Separation of hydrogen from gaseous mixture containing hydrogen

Country Status (1)

Country Link
JP (1) JPS6036302A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166103U (en) * 1986-04-12 1987-10-22
JPS6483501A (en) * 1987-09-25 1989-03-29 Shirakawa Seisakusho Kk Hydrogen purifying device
JPH02102675A (en) * 1988-10-12 1990-04-16 Naka Tech Lab Emergency exit for building
JPH0349861U (en) * 1989-09-21 1991-05-15
JP2004277275A (en) * 2003-02-27 2004-10-07 Toyota Motor Corp Hydrogen extraction apparatus
JP2019526446A (en) * 2016-09-09 2019-09-19 スカイヤ インコーポレイテッドSkyre,Inc. Apparatus and method for concentrating hydrogen isotopes
US11649165B2 (en) 2017-03-09 2023-05-16 Sustainable Innovations, Inc. In situ apparatus and method for providing deuterium oxide or tritium oxide in an industrial apparatus or method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140326603A1 (en) * 2011-12-15 2014-11-06 Panasonic Corporation Carbon dioxide permeation device and method of transporting carbon dioxide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166103U (en) * 1986-04-12 1987-10-22
JPS6483501A (en) * 1987-09-25 1989-03-29 Shirakawa Seisakusho Kk Hydrogen purifying device
JPH02102675A (en) * 1988-10-12 1990-04-16 Naka Tech Lab Emergency exit for building
JPH0349861U (en) * 1989-09-21 1991-05-15
JP2004277275A (en) * 2003-02-27 2004-10-07 Toyota Motor Corp Hydrogen extraction apparatus
JP4617648B2 (en) * 2003-02-27 2011-01-26 トヨタ自動車株式会社 Hydrogen extraction device
JP2019526446A (en) * 2016-09-09 2019-09-19 スカイヤ インコーポレイテッドSkyre,Inc. Apparatus and method for concentrating hydrogen isotopes
US11649165B2 (en) 2017-03-09 2023-05-16 Sustainable Innovations, Inc. In situ apparatus and method for providing deuterium oxide or tritium oxide in an industrial apparatus or method

Also Published As

Publication number Publication date
JPS6259184B2 (en) 1987-12-09

Similar Documents

Publication Publication Date Title
US8900435B2 (en) Separating gas using ion exchange
US4673473A (en) Means and method for reducing carbon dioxide to a product
US4416747A (en) Process for the synthetic production of ozone by electrolysis and use thereof
EP0068508A2 (en) Methanol fuel cell
KR101089623B1 (en) Fluorine separation and generation device
EP0208230A1 (en) Apparatus and method for purifying hydrogen
EP0730676A1 (en) Anode useful for electrochemical conversion of anhydrous hydrogen halide to halogen gas
JP7209623B2 (en) Apparatus and method for enriching hydrogen isotopes
US5141620A (en) Device and method for separating and compressing carbon dioxide from a carbonate salt
WO1996005336A1 (en) Electrochemical device for removal and regeneration of oxygen and method
JPH04191387A (en) Electrolytic ozone generating method and device
US4321313A (en) Electrogenerative reduction of nitrogen oxides
JPS6036302A (en) Separation of hydrogen from gaseous mixture containing hydrogen
US5425857A (en) Process and device for the electrolytic generation of arsine
CN114402095B (en) Cross-flow water electrolysis
US20020164521A1 (en) Novel applications of exfoliated transition metal dichalcogenides to electrochemical fuel cells
US11471829B2 (en) Electrochemical carbon dioxide recovery system
JP2005011691A (en) Direct liquid type fuel cell system
US3796647A (en) Apparatus for hydrogen production
JP2003002610A (en) Method for isolating hydrogen from reformed hydrocarbon bas by using high temperature durable proton conducting material
US3577329A (en) Process for the production of high purity hydrogen
WO2022049638A1 (en) Method for producing ethylene oxide
RU2785846C1 (en) Water electrolysis with cross flow
JPS6270203A (en) Removal of hydrogen gas
US20230126907A1 (en) Biopolar membrane cell for the capture of carbon dioxide