JPS6035707A - Stereomicroscope - Google Patents

Stereomicroscope

Info

Publication number
JPS6035707A
JPS6035707A JP58143685A JP14368583A JPS6035707A JP S6035707 A JPS6035707 A JP S6035707A JP 58143685 A JP58143685 A JP 58143685A JP 14368583 A JP14368583 A JP 14368583A JP S6035707 A JPS6035707 A JP S6035707A
Authority
JP
Japan
Prior art keywords
optical
lens system
angle
observation
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58143685A
Other languages
Japanese (ja)
Inventor
Toshikazu Yoshino
芳野 寿和
Shinichi Nishimura
西村 新一
Kazutoshi Takagi
高木 和俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Optical Co Ltd
Original Assignee
Tokyo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Optical Co Ltd filed Critical Tokyo Optical Co Ltd
Priority to JP58143685A priority Critical patent/JPS6035707A/en
Priority to US06/637,503 priority patent/US4601550A/en
Priority to DE19843429240 priority patent/DE3429240A1/en
Publication of JPS6035707A publication Critical patent/JPS6035707A/en
Priority to US06/817,931 priority patent/US4702570A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements
    • G02B21/22Stereoscopic arrangements

Abstract

PURPOSE:To obtain a stereoscopic feel by having one common objective lens system and the 1st and 2nd image-forming lens systems which have respectively the optical axes parallel with the optical axis of said objective lens system and are used for forming respectively the intermediate images of an object to be examined. CONSTITUTION:An objective optical system is constituted of one common objective lens system 101 and the 1st and 2nd image-forming lens systems 103, 203 which have the optical axes parallel with the optical axis 101a of the system 101 and are used for forming the 1st and 2nd intermediate images 102, 202. The respective vertical angles alpha of prisms 106, 206 constituting deformed Porro prisms 104, 204 are given the size (90 deg.-omega/4), in which omega is the stereoscopic angle to an object E to be examined. The observation feel most approximate to the natural stereoscopic visual feel by the naked eyes is thus obtd.

Description

【発明の詳細な説明】 本発明は双眼実体顕微鏡の光学構成に関し、さらに詳し
くは眼利分野で利用されるスリン1−ランプの双眼顕微
鏡の光学構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical configuration of a binocular stereomicroscope, and more particularly to an optical configuration of a Surin 1-lamp binocular microscope used in the field of ophthalmology.

双眼実体顕微鏡の光学型式はグリノー型とガリレオ型に
大別される。クリノー型は第1図に模式的に示すように
2つの光路■及び■が挟角ωをもって被検物面で交差す
るように構成されている。
The optical types of binocular stereomicroscopes are broadly divided into Greenough type and Galileo type. As schematically shown in FIG. 1, the Clineau type is constructed such that two optical paths (1) and (2) intersect at the surface of the object to be measured with an included angle ω.

これら光路1. 、11にはそれぞれ対物レンズ系1a
These optical paths 1. , 11 each have an objective lens system 1a.
.

比、正立光学系2a、 2b、及び接眼レンズ系3a、
3bを有しており、かつ対物レンズへの入射光軸IAと
接眼のlid察光軸IBが平行になるように構成されて
いる(同様に光路11においても、その入射光軸UAと
観察光軸11Bは平行)。ここで挟角ωは検者眼e1 
、e2か被検物Eを顕微鏡を使わずに肉眼で自然視状態
で近距l1Il観察するときの幅較角10゜〜16°が
選ばJしる。このため、グリノー型双眼顕微鏡では、対
物レンズへの入射光軸IA、HAの挟角ω(以下こ]し
をステレオアングルという)と接眼レンズ系3a、3b
のam光軸1n、IIBの挟角O(以下こ1+、をI2
察角という)とが等しく、かつ上述のようにステレオア
ングルωが自然視状f114の!l’Ii M角に等し
く構成されているため、自然な立体視かできるという長
所を有する。しかしながら、光路l。
ratio, erecting optical systems 2a, 2b, and eyepiece system 3a,
3b, and is configured so that the optical axis IA of incidence on the objective lens and the optical axis IB of the eyepiece lid are parallel (Similarly, in the optical path 11, the optical axis UA of incidence and the observation light axis 11B is parallel). Here, the included angle ω is the examiner's eye e1
, e2 or a width comparison angle of 10° to 16° is selected when observing the test object E with the naked eye in a natural visual state without using a microscope. For this reason, in a Greenough binocular microscope, the included angle ω (hereinafter referred to as stereo angle) of the optical axes IA and HA of incidence on the objective lens and the eyepiece systems 3a and 3b
am optical axis 1n, included angle O (hereinafter referred to as 1+) of IIB is I2
) are equal, and as mentioned above, the stereo angle ω is the natural viewing angle f114! Since the angle is equal to l'Ii M, it has the advantage of allowing natural stereoscopic viewing. However, the optical path l.

■を斜交させるため、光学部品組み(Jけのための機械
加工が複4′([であり、また対物レンズ系18゜(1
b)と正立光学系2a(2b)との間に通常配置される
図示しない合焦や変倍光学系の構成も複♀(Lとなると
いう欠点を有していた。
In order to obliquely intersect
The configuration of a focusing and variable magnification optical system (not shown), which is normally arranged between the lens 2a (b) and the erecting optical system 2a (2b), also has the disadvantage of being a double ♦ (L).

他方、ガリレオ型双眼顕微鏡は第2図に示すように光路
■及びIVはその先軸を互いに平行に構成している。光
路IIIは対物レンズ系4と、中間像Paを作るための
結像レンズ系7a、正立光学系5a、及び中間像Paを
観察するための接眼レンズ系611とから構成される。
On the other hand, in the Galileo type binocular microscope, as shown in FIG. 2, the optical paths (1) and (4) have their front axes parallel to each other. The optical path III is composed of an objective lens system 4, an imaging lens system 7a for forming an intermediate image Pa, an erecting optical system 5a, and an eyepiece system 611 for observing the intermediate image Pa.

また、光路IVは前記り」物レンズ系4を共通の対物レ
ンズとして有し、かつ光路Illと同様に結像レンズ系
7b、正立光学系5b、接眼レンズ系6bとから構成さ
れる。ここで両結像レンズ系7a、7bの光軸は、互い
に平行でかつ対物レンズ系4の光軸4aとも平行になっ
ている。また、接眼レンズ系6a、6bの観察光軸11
1B、 IVBも結像レンズ系7a、7bの光軸とそれ
ぞ扛平行になるよう構成されている。結像レンズ系7a
、7bの間隔で定義される基線長Qによって対物レンズ
系4/\の入射光軸111A、 IVAの作るステレオ
アングルωが定められる。
Further, the optical path IV has the above-mentioned object lens system 4 as a common objective lens, and, like the optical path Ill, is composed of an imaging lens system 7b, an erecting optical system 5b, and an eyepiece system 6b. Here, the optical axes of both imaging lens systems 7a and 7b are parallel to each other and also parallel to the optical axis 4a of the objective lens system 4. Moreover, the observation optical axis 11 of the eyepiece lens systems 6a and 6b
1B and IVB are also configured to be parallel to the optical axes of the imaging lens systems 7a and 7b, respectively. Imaging lens system 7a
, 7b defines the stereo angle ω formed by the incident optical axis 111A and IVA of the objective lens system 4/\.

このステレオアングルωによる視差をもつため、観察光
軸11[B、rVBが作る観察角θが0であっても被検
物Eを立体視することができる。このガリレオ型双眼顕
微鏡は、上述したように2つの光路■!■が互いに平行
であるため光学系の構成が簡単であり、合焦機構や変倍
機構の構成も簡単にでき、また、撮影光学系や側視鏡等
のjlJ属光路の追加も比較的楽にてきる長所を有して
いた。
Because of the parallax caused by this stereo angle ω, the object E can be viewed stereoscopically even if the observation angle θ formed by the observation optical axis 11[B, rVB is 0. As mentioned above, this Galileo type binocular microscope has two optical paths■! ■Because they are parallel to each other, the configuration of the optical system is simple, and the configuration of the focusing mechanism and variable magnification mechanism is also easy, and it is relatively easy to add optical paths for JlJ such as the photographing optical system and side view mirror. He had the advantage of being able to

一般に、人間の眼は、遠方視状1序では、両眼視線に幅
較がなく、また水晶体の調節をしないもっとも楽で疲労
の少ない観察状態をとっている。このことは顕微鏡vA
察においても同様で1両観察光軸11111.Inが互
いに平行なガリレオ型顕微鏡の方が両者が幅快している
グリノー型のそれよりも観察時の疲労が少なく長時間の
観察に有利であるといわれている。
In general, the human eye is in the most comfortable and least tiring viewing state in the distance viewing mode, where there is no difference in the width of the line of sight between the two eyes, and there is no adjustment of the crystalline lens. This means that the microscope vA
The same goes for observation, with one observation optical axis 11111. It is said that a Galilean type microscope, in which In is parallel to each other, causes less fatigue during observation than a Greenough type microscope, in which both sides are wide, and is advantageous for long-term observation.

しかしながら、顕微鏡は近距離に配置された小物体を拡
大観察する装置であり、ガリレオ型顕微鏡において、た
とえ、光学的にはあたかも無限遠方からの光束が眼に入
射しようとも、脳へは近距離の物体を見ているという前
提情報があり、自然な感覚との間に差を生むという欠点
かあった。このことは、特に、眼の回旋運動情報、すな
わち輻轢運動情報がないにもかかわらず、ステレオアン
グルωに起因する視差が観察されるため、11察者は通
常の立体感よりも強い不自然な立体視をするという欠点
があった。
However, a microscope is a device that magnifies and observes a small object placed at a close distance, and in a Galileo type microscope, even if the light flux from an infinite distance enters the eye, optically, even if the light beam from a short distance enters the eye, the light beam from a short distance does not reach the brain. The disadvantage was that there was a prerequisite information that one was looking at an object, which created a difference between natural sensations. This is especially true because parallax caused by the stereo angle ω is observed even though there is no eye rotational movement information, that is, no vertiginous movement information, so that 11 observers experience an unnatural feeling that is stronger than the normal stereoscopic effect. It had the disadvantage of providing stereoscopic vision.

また、さらに眼科分野で利用されるスリン1−ランプ装
置の双眼実体顕微鏡の場合を例にとれば、医師は被検眼
へのスリット照明光の照射位置の調整やスリットの幅、
長さ等の調整、あるいは被検眼への簡単な手術処置のた
めにしばしば被検眼を肉眼で観察する必要があり、その
時は当然に医師の観察眼は近用視状態におか4しる。そ
して、次には顕微鏡をのぞき幅轢のない遠方視状態に眼
を開数させ、立体視しなければならず、なかなか瞬時に
は陽像や立体視ができないという欠点があった。
Furthermore, taking the case of a binocular stereomicroscope with a Surin 1-lamp device used in the ophthalmology field as an example, a doctor can adjust the irradiation position of the slit illumination light onto the subject's eye, adjust the width of the slit, etc.
It is often necessary to observe the subject's eye with the naked eye in order to adjust the length or perform simple surgical procedures on the subject's eye, and at that time, the doctor's observing eye is naturally in a nearsighted state. Next, they had to look through a microscope and open their eyes to a distance vision state with no obstructions to see in 3D, which had the disadvantage of not being able to instantaneously achieve positive or 3D vision.

このようなカリレオ型双眼実体顕微鏡における立体感の
誇張や肉眼視から立体視の開数運動の必要性等は、従来
いわれていた観察疲労の少なさを打消し、逆にグリノー
型顕微鏡に比して観察疲労が大きくなったり、観察の不
正確さや、距離感誤認による処置ミスを招くなど、前述
の種々の長所を持つにもかかわらず、ガリレオ型顕微鏡
の欠点となっていた。
The exaggeration of the stereoscopic effect and the need for numerical movement from macroscopic to stereoscopic viewing in the Carileo binocular stereomicroscope negates the conventionally said lack of observation fatigue, and on the contrary, compared to the Greenough type microscope. Despite having the various advantages mentioned above, the Galilean type microscope had drawbacks such as increased observation fatigue, inaccurate observation, and treatment errors due to misperception of distance.

他方、クリノー型双眼実体顕微鏡にあっては、被検物の
肉眼による近用視と同じ立体視感で顕微鏡下においても
観察ができるという上述の長所を有するが、より微少な
高低差を知りたいとき、自然視に近い立体感では判別が
できない場合があり、立体感を強めたいという要求があ
った。
On the other hand, the Clino type binocular stereo microscope has the above-mentioned advantage of being able to observe the object under a microscope with the same stereoscopic visibility as the near vision with the naked eye. In some cases, it may not be possible to distinguish images with a three-dimensional effect close to that of natural vision, and there has been a demand for a stronger three-dimensional effect.

本発明は、以上述べた従来の双眼顕微鏡の種々の欠点の
解消や要求を満たずためになされたものである。
The present invention has been made in order to eliminate the various drawbacks of the conventional binocular microscopes and to satisfy the demands described above.

以下、本発明を良好な実施例を示す図をもとに説明する
。第3図は本発明に係る双眼実体顕微鏡を、スリンI・
ランプの双眼実体顕微鏡部を例にその光学配置を示すも
のである。この双眼顕微鏡は、被検物Eの第1と第2の
中間像1.02.202を作るための対物光学系、J3
よび接眼レンズ系105.205をもち、第1光路10
0と第2光路200の2つの光路から構成されている。
The present invention will be described below with reference to figures showing preferred embodiments. FIG. 3 shows a binocular stereomicroscope according to the present invention.
The optical arrangement is shown using the binocular stereoscopic microscope section of the lamp as an example. This binocular microscope includes an objective optical system J3 for creating first and second intermediate images 1.02.202 of the object E;
and an eyepiece system 105.205, the first optical path 10
It is composed of two optical paths: 0 and a second optical path 200.

第1光路100は共通のQi対物レンズ系101、中間
像102を結像するためのレンズでかつ単対物レンズ系
101の光軸101aと平行にその光軸をもつ結像レン
ズ系103、光路偏光手段であり、かつ王立光学系とし
ての変形ポロプリズム104、及び中間像102を観察
するための接眼レンズ系】05から構成されている。他
方、第2光路200は、前記単対物レンズ系101、中
間像202を形成するためのレンズでかつ単対物レンズ
系101の光軸101aと平行にその光軸をもつ結像レ
ンズ203、光路偏向手段であり、かつ正立光学系とし
ての変形ポロプリズム204、及び中間像202を観察
するための接眼レンズ系205から構成されている。
The first optical path 100 includes a common Qi objective lens system 101, an imaging lens system 103 which is a lens for forming an intermediate image 102 and whose optical axis is parallel to the optical axis 101a of the single objective lens system 101, and an optical path polarized light. It is composed of a modified Porro prism 104 which is a means and serves as a royal optical system, and an eyepiece system 05 for observing an intermediate image 102. On the other hand, the second optical path 200 includes the single objective lens system 101, an imaging lens 203 which is a lens for forming an intermediate image 202 and whose optical axis is parallel to the optical axis 101a of the single objective lens system 101, and an optical path deflector. It is composed of a deformed Porro prism 204 as a means and an erecting optical system, and an eyepiece system 205 for observing the intermediate image 202.

この型式で示す対物光学系は、1つの共通な対物レンズ
系101 と対物レンズ系101の光軸101aと平行
な光軸を有し、第1と第2の中間像102.202を形
成するための第1と第2の結像レンズ系103゜203
とから構成されている。
The objective optical system shown in this type has one common objective lens system 101 and an optical axis parallel to the optical axis 101a of the objective lens system 101, and forms first and second intermediate images 102.202. The first and second imaging lens systems 103°203
It is composed of.

ここで、変形ポロプリズム104.204を構成するプ
リズム106.206のそれぞれの頂角αは(90°−
ω/4)の大きさを持たせている。ωは被検物Eへの、
第1光路100の入射光軸100Aと第2光路200の
入射光軸200Aとの作るステレオアングルであり、大
きさは2つの結像レンズ103と203との間の基線長
Qによって定まる。上記のαとωの関係から第1光路1
00の観察光軸100Bと第2光路200の観察光軸2
00Bとの成す観察角0はステレオアンクルωと等しい
角度に構成される。
Here, the apex angle α of each prism 106.206 constituting the deformed Porro prism 104.204 is (90°−
ω/4). ω is to the test object E,
This is a stereo angle formed by the incident optical axis 100A of the first optical path 100 and the incident optical axis 200A of the second optical path 200, and the size is determined by the base line length Q between the two imaging lenses 103 and 203. From the above relationship between α and ω, the first optical path 1
00 observation optical axis 100B and second optical path 200 observation optical axis 2
The observation angle 0 formed with 00B is configured to be equal to the stereo ankle ω.

このようにステレオアングルωと観察角0とを等しくす
ると、肉眼による自然な立体視感にもっとも近いvA察
感をもっことは以下の実験結果からも裏イ」けられた。
The following experimental results confirm that when the stereo angle ω and the viewing angle 0 are made equal in this way, the VA perception is closest to the natural stereoscopic vision seen by the naked eye.

実験は第4図に示すような内径a = 2.0m/m、
深さd = 2.0m/m (深さ/内径比=1)ノ円
錐柱穴300を有する被検物体を第1表に示す10人の
観察者にまず肉眼で観察させ、次に第2表に示す5種類
の双眼実体顕微鏡を使って上記被検物体を全[察者に観
察させた。そして、各機種毎に顕微鏡下1131察にお
ける被検物体の内径aと深さdの比が上記肉眼時のそれ
より大きいか小さいかを1から5までの5段階評価で答
えてもらった。なお、肉眼と同程度の場合を3とし、立
体感が強くなる、すなわち、深さ/内径比が大きくなる
程4,5と答えさせ、逆に立体感が少ない場合は2,1
と小さし)数で答えさせた。10名の観察者による5機
種の顕微鏡の立体感は第3表の通りである。
The experiment was conducted using an inner diameter a = 2.0 m/m as shown in Figure 4.
A test object having a conical columnar hole 300 with a depth d = 2.0 m/m (depth/inner diameter ratio = 1) was first observed with the naked eye by 10 observers shown in Table 1, and then a second All of the test objects were observed by an observer using the five types of binocular stereomicroscopes shown in the table. For each model, the subjects were asked to rate on a five-point scale from 1 to 5 whether the ratio between the inner diameter a and the depth d of the object to be examined under the microscope was larger or smaller than that seen with the naked eye. In addition, if it is the same as the naked eye, the answer is 3, and the stronger the three-dimensional effect, that is, the larger the depth/inner diameter ratio, the higher the answer is 4 or 5. Conversely, if the three-dimensional effect is less, the answer is 2 or 1.
(Small) I asked them to answer in numbers. Table 3 shows the three-dimensional effects of five types of microscopes obtained by 10 observers.

L表 第3表の結果かられかるように、観察者の立体感は観察
角Oともっとも密接な関係にあり、本願もカリレオ型も
グリノー型もともに観察角υか小さくなる程立体感(1
人きくなる。また、両型式どもステレオアングルωと観
察角Oどが等しい場、1、肉眼と同様の自然な立体感が
1uらJLることが立証された。
As can be seen from the results in Table 3, the viewer's stereoscopic perception is most closely related to the observation angle O, and in both the present invention, the Carileo type, and the Greenough type, the smaller the observation angle υ, the more the stereoscopic effect (1
Become a people person. In addition, it has been proven that for both types, when the stereo angle ω and the observation angle O are equal, 1, a natural three-dimensional effect similar to that seen with the naked eye can be obtained from 1u to JL.

以上、説明したように、本実施例によれは、結像レンズ
103.203の光軸を互いに平行配置のままにしてい
るため、この前後に配置される変倍光学系や合焦光学系
(結像レンズがこ4しを兼ねる場合もある)及びこれら
の駆動機構がグリノー型に比較して簡単にてきるし、ま
た撮像光学系等の附属光学系の組み込みも容易であると
いうカリレオ型式の双眼実体顕微鏡の利点と、肉眼観察
時と同様の自然な立体感で顕微鏡上観察ができるグリノ
ー型の利点を合せ持つ、新しいカリレオ型式の双眼実体
顕微鏡を得ることができる、 上記第1の実施例し;おいてはステレオアングルωと観
察角Oが等しく成るよう固定的構成とじたが、観察角O
を可変とすることによって、クリノー型式、カリレオ型
式両型式とも、顕微鏡下観察時の立体感を肉眼時のそれ
よりも大きくしたり。
As explained above, in this embodiment, since the optical axes of the imaging lenses 103 and 203 are kept parallel to each other, the variable magnification optical system and the focusing optical system ( The Carileo type is characterized by the fact that the imaging lens (sometimes it also serves as a lens) and its drive mechanism are simpler than the Greenough type, and it is also easier to incorporate attached optical systems such as the imaging optical system. The first embodiment described above makes it possible to obtain a new Carileo type binocular stereo microscope that combines the advantages of a binocular stereo microscope and the Greenough type which allows microscopic observation with the same natural three-dimensional effect as when observed with the naked eye. In this case, a fixed configuration was used so that the stereo angle ω and the observation angle O were equal, but the observation angle O
By making it variable, the three-dimensional effect when observed under a microscope is made larger than that seen with the naked eye in both the Clino and Calileo models.

小さくしたり変化できることが望まれる場合がある。It may be desirable to be able to make it smaller or change it.

第5図は、そのため観察角調節手段を備えた構成の1実
施例を示すもので、第1図または第2図に示した両型式
の光路偏光手段であり、かつ正立光学系の変形例を−っ
の光路の正立光学系のみを図示するものである。光路偏
向手段である正立光学系400は2つのドーププリズム
401と402とから構成さ9、第2の(く−ププリズ
ム402の反射面/l02aは第1のドーププリズム4
01の反射面401aに対し垂直になるように配置され
ており、両トーププリズムにより倒立像が正立像として
観察されるよう正立光学系を構成している。そして、第
21−−ププリズム402を1++l+4o:aを回転
軸として回転することにより観察光軸404を水平面内
で移動できる観察角調節手段をもっており、この観察角
0を変化させることにより立体感を変化させ得るように
構成されている。
FIG. 5 shows an embodiment of a configuration equipped with an observation angle adjusting means for this purpose, which is both types of optical path polarizing means shown in FIG. 1 or FIG. 2, and a modification of the erecting optical system. Only the erect optical system of the optical path is shown. The erecting optical system 400, which is an optical path deflection means, is composed of two doped prisms 401 and 4029, and the reflective surface /l02a of the second doped prism 402 is the same as the first doped prism 402.
The two tope prisms constitute an erecting optical system such that an inverted image is observed as an erect image. It has an observation angle adjustment means that can move the observation optical axis 404 in a horizontal plane by rotating the 21st prism 402 about 1++l+4o:a as the rotation axis, and by changing this observation angle 0, the three-dimensional effect can be changed. It is configured so that it can be used.

第6図は立体感を変化させるための他の実施例を示す図
である。一つの光路の光路偏向手段である正立光学系1
110は、第1の直角プリズム411 と、回転ミラー
4]2と、第1直角プリズム411 の稜線と垂直な面
内に稜線をもつ第2の直角プリズム413 とから構成
され、しかも回転ミラー4I2と第2直角ブリスム41
3とは接眼レンズ500とともに一体となって回転軸4
12aを軸として回転できるような観察角調節手段をも
って構成されている。これにより、観察角Oを変化させ
、もって立体感を変化できるようにしている。
FIG. 6 is a diagram showing another embodiment for changing the three-dimensional effect. Erecting optical system 1 as optical path deflection means for one optical path
110 is composed of a first right-angle prism 411, a rotating mirror 4]2, and a second right-angle prism 413 having a ridgeline in a plane perpendicular to the ridgeline of the first right-angle prism 411. 2nd right angle brism 41
3 refers to the rotation axis 4 which is integrated with the eyepiece 500.
The viewing angle adjustment means is configured to be rotatable about the axis 12a. This allows the viewing angle O to be changed, thereby changing the three-dimensional effect.

第7図は、立体感を可変とするためのさらに他の実施例
を示す図であり、一つの光路の光路偏向手段である正立
光学系420はダハ面/12]、aを有するダハ直角プ
リズム421と、第2の直角プリズム422とから構成
され、この第2直角プリズム422は、その反射面42
2a内の回転軸422bを中心に接眼レンズ500と一
体に回転できるような観察角調節手段をもって構成され
ている。これにより、vA察角0を変化させ、立体感を
変化できるようにしている。
FIG. 7 is a diagram showing still another embodiment for making the stereoscopic effect variable. It is composed of a prism 421 and a second right-angle prism 422, and the second right-angle prism 422 has a reflective surface 42.
The viewing angle adjustment means is configured to be able to rotate integrally with the eyepiece lens 500 around a rotation axis 422b inside the eyepiece 2a. This allows the vA viewing angle 0 to be changed and the three-dimensional effect to be changed.

また、第2直角プリズム422はダハ直角プリズム42
1 との間隔りを変化でき、これによりa察者の瞳孔間
距離に観察光学系を調節できるように構成されている。
Further, the second right angle prism 422 is a roof right angle prism 42.
1 can be changed, so that the observation optical system can be adjusted to the interpupillary distance of observer A.

ところで、このような観察角調節手段を備えることは、
第3図に示す例に限らず、第1図に示すクリノー型、第
2図に示すカリレオ型においても適用できる。この場合
、グリノー型は、対物レンズ型と結像レンズ系とが共用
されており、対物光学系は第1の中間像を形成するため
の第1の対物レンズ系1aと第2の中間像を形成するた
めの第2の対物レンズ系1bとからなり、かつ第1と第
2の対物レンズ系1a、lbはステレオアングルωを有
するように互いの光軸を交差している。
By the way, having such an observation angle adjustment means,
The present invention is not limited to the example shown in FIG. 3, but can also be applied to the Klino type shown in FIG. 1 and the Calileo type shown in FIG. In this case, in the Greenough type, the objective lens type and the imaging lens system are shared, and the objective optical system has the first objective lens system 1a for forming the first intermediate image and the second intermediate image. The optical axes of the first and second objective lens systems 1a and lb intersect with each other so as to form a stereo angle ω.

以上説明したように、第5図から第7図の観察角調節手
段をもつ双眼実体顕微鏡を使用すれば、顕微鏡下の観察
時の立体感を自由に選ふことかでき、立体視観察に極め
て便利である。
As explained above, if you use a binocular stereomicroscope with the observation angle adjustment means shown in Figures 5 to 7, you can freely select the stereoscopic effect when observing under the microscope, making it extremely useful for stereoscopic observation. It's convenient.

また、上記の各実施例とも観察角0を得るのに反射面を
利用しているが、本願はこれに限定さAしるものでなく
、プリズムの屈折作用を利用してもよい。第8図はその
一例を示すもので、第1光路100の対物レンズ101
 と結像レンズ103の間に偏向プリス4505を、同
様に第2光路200の対物レンズ101と結像レンズ2
030間に偏向プリズム50Gをそれぞれ配置すること
により観察角Oを得てU)る。
Furthermore, although each of the above embodiments uses a reflective surface to obtain an observation angle of 0, the present invention is not limited to this, and the refraction effect of a prism may also be used. FIG. 8 shows an example, in which the objective lens 101 of the first optical path 100
Similarly, a deflection prism 4505 is placed between the objective lens 101 and the imaging lens 2 in the second optical path 200.
By arranging the deflection prisms 50G between 030 and 030, an observation angle O is obtained.

なお、本実施例では、さらに偏向プリズム505(ま色
消しの小プリズム501と502から成るロータ1ノー
プリズムで構成され、これらは軸505aを回転軸とし
て互いに反対方向に同量づつ回転するロータ1ノープリ
ズムを採用している。また同様に偏向ブ1ノスム506
も色消し小プリズム503,504から成るロータリー
プリズムで構成されている。これら観察frl調節手段
であるロータリープリズムを作動させると、観察角Oが
変化できるようになってし)る。なお、結像レンズ10
3.203以降の左右それぞれの接眼系もロータリープ
リズムの作動と同時番;連動してその交差角を変化させ
、観察角Oの変1ヒレこ)B従して軸ズレをおこさない
ように構成されてし)る。
In this embodiment, the rotor 1 is further configured with a deflecting prism 505 (a rotor 1 no prism consisting of small achromatic prisms 501 and 502, which rotate by the same amount in opposite directions with the shaft 505a as the rotation axis). Adopts no prism.Similarly, deflection beam 506
It is also constituted by a rotary prism consisting of small achromatic prisms 503 and 504. By operating the rotary prism, which is the observation frl adjustment means, the observation angle O can be changed. Note that the imaging lens 10
3. After 203, the left and right eyepiece systems operate at the same time as the rotary prism; their intersecting angles are changed in conjunction with each other, and the observation angle O is changed so that the axis does not shift. be done)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のクリノー型双眼実体顕微鏡の光学配置を
示す図、第2図は従来のガリレオ型双眼実体顕御鏡の光
学配置を示す図、第3図は本願の第1の実施例を示す光
学配置図、第4図は立体感テストに使用した被検物を示
す斜視図、第5図は本願発明の第2の実施例をその一方
の光路の正立光学系部のみで示す図、第6図は本願発明
の第3の実施例をその一方の光路の正立光学系部のみで
示す図、第7図は本願発明の第4の実施例をその一方の
光路の正立光学系部のみで示す図、第8図は本発明の第
5の実施例を示す光学配置図である。 100B、200B・・・観察光軸、 la、1b、101一対物レンズ系、 1.02,202・・・中間像、103,203・・結
像レンズ系、104.204,400.?110,42
0・・光路偏向手段、105、205・・・接眼レンズ
系、 ω・・・ステレオアングル、0・・観察角、E・・被検
物。
Fig. 1 shows the optical arrangement of a conventional Clino type binocular stereo microscope, Fig. 2 shows the optical arrangement of a conventional Galileo type binocular stereo microscope, and Fig. 3 shows the first embodiment of the present application. FIG. 4 is a perspective view showing the object to be tested used for the stereoscopic effect test, and FIG. 5 is a diagram showing the second embodiment of the present invention with only the erecting optical system part of one optical path. , FIG. 6 is a diagram showing the third embodiment of the present invention with only the erecting optical system portion of one optical path, and FIG. 7 is a diagram showing the fourth embodiment of the present invention with the erecting optical system section of one of the optical paths. FIG. 8, which shows only the system part, is an optical layout diagram showing a fifth embodiment of the present invention. 100B, 200B...Observation optical axis, la, 1b, 101-objective lens system, 1.02,202...Intermediate image, 103,203...Imaging lens system, 104.204,400. ? 110,42
0... Optical path deflection means, 105, 205... Eyepiece system, ω... Stereo angle, 0... Observation angle, E... Test object.

Claims (3)

【特許請求の範囲】[Claims] (1)1つの共通な対物レンズ系と、該対物レンズ系の
光軸と平行な光軸をそれぞれ有し、被検物の中間像をそ
れぞれ作るための第1および第2の結像レンズ系と、該
2つの結像レンズ系のそれぞれの後方に配置され、該結
像レンズ系からの射出光束のそれぞれを前記対物レンズ
系の光軸に対し外側に偏向させるだめの第1および第2
の光路偏向手段と、該2つの光路偏向手段のそれぞれの
後方に配置され、前記中間像のそれぞれを観察するため
の第1および第2の接眼レンズ系とから成る双眼実体顕
微鏡において、 前記第1および第2の結像レンズ系間のJJ= 線長に
よって定まるステレオアングルωと、前記第1および第
2の接眼レンズ系の観察光軸が作る観察角Oとが略等し
い角度で構成されたことを特徴どする双眼実体顕微鏡。
(1) First and second imaging lens systems each having one common objective lens system and an optical axis parallel to the optical axis of the objective lens system, and each forming an intermediate image of the object to be examined. and first and second lenses disposed behind each of the two imaging lens systems and deflecting each of the light beams emitted from the imaging lens system outward with respect to the optical axis of the objective lens system.
A binocular stereomicroscope comprising: an optical path deflecting means; and first and second eyepiece systems disposed behind each of the two optical path deflecting means for observing each of the intermediate images; and that the stereo angle ω determined by the JJ= line length between the second imaging lens system and the observation angle O formed by the observation optical axes of the first and second eyepiece systems are approximately equal. A binocular stereo microscope featuring
(2)第1および第2の光路偏向手段は、それぞれ正立
光学系を兼ねていることを特徴とする特許請求の範囲第
1項記載の双眼実体顕微鏡。
(2) The binocular stereomicroscope according to claim 1, wherein the first and second optical path deflecting means each serve as an erecting optical system.
(3)第1および第2の光路偏光手段のそれぞれは、結
像レンズ系の射出光束をその左右方向を反転させるため
の第1および第2の反射面を有する第1プリズムと、該
第1プリズムを射出した光束の上下方向を反転し前記接
眼レンズ系に導びくための第3および第4の反射面を有
する第2プリズムとから構成され、かつ前記第1および
第2の反射面の交差角αは α=90″ −ω/4 の関係を有していることを特徴とする特許請求の範囲第
2項記載の双眼実体顕微鏡。
(3) Each of the first and second optical path polarizing means includes a first prism having first and second reflective surfaces for reversing the left and right direction of the light beam emitted from the imaging lens system; a second prism having third and fourth reflective surfaces for reversing the vertical direction of the luminous flux emitted from the prism and guiding it to the eyepiece lens system, and an intersection of the first and second reflective surfaces; 3. The binocular stereomicroscope according to claim 2, wherein the angle α has a relationship of α=90″−ω/4.
JP58143685A 1983-08-08 1983-08-08 Stereomicroscope Pending JPS6035707A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58143685A JPS6035707A (en) 1983-08-08 1983-08-08 Stereomicroscope
US06/637,503 US4601550A (en) 1983-08-08 1984-08-01 Stereo-microscope with a common objective lens system
DE19843429240 DE3429240A1 (en) 1983-08-08 1984-08-08 STEREOMICROSCOPE
US06/817,931 US4702570A (en) 1983-08-08 1986-01-10 Stereo-microscope with two observation optical systems each including a right angle prism and a roof right angle prism providing both rotation and relative separation adjustments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58143685A JPS6035707A (en) 1983-08-08 1983-08-08 Stereomicroscope

Publications (1)

Publication Number Publication Date
JPS6035707A true JPS6035707A (en) 1985-02-23

Family

ID=15344564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58143685A Pending JPS6035707A (en) 1983-08-08 1983-08-08 Stereomicroscope

Country Status (1)

Country Link
JP (1) JPS6035707A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106429A (en) * 1985-10-29 1987-05-16 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Optical type visual inspector or projector
JP2004510198A (en) * 2000-09-26 2004-04-02 カール−ツアイス−スチフツング Image reversal system, ophthalmoscope auxiliary module, surgical microscope
JP2016185178A (en) * 2015-03-27 2016-10-27 株式会社トプコン Ophthalmic microscope system
JP2017023583A (en) * 2015-07-27 2017-02-02 株式会社トプコン Ophthalmic microscope
WO2020095443A1 (en) * 2018-11-09 2020-05-14 株式会社ニコン Microscope

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536805U (en) * 1978-08-31 1980-03-10
JPS5819530U (en) * 1981-07-29 1983-02-07 サンケン電気株式会社 Interlocking mechanism of push button tuner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536805U (en) * 1978-08-31 1980-03-10
JPS5819530U (en) * 1981-07-29 1983-02-07 サンケン電気株式会社 Interlocking mechanism of push button tuner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106429A (en) * 1985-10-29 1987-05-16 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Optical type visual inspector or projector
JP2004510198A (en) * 2000-09-26 2004-04-02 カール−ツアイス−スチフツング Image reversal system, ophthalmoscope auxiliary module, surgical microscope
JP2016185178A (en) * 2015-03-27 2016-10-27 株式会社トプコン Ophthalmic microscope system
US10456034B2 (en) 2015-03-27 2019-10-29 Kabushiki Kaisha Topcon Ophthalmic microscope system
JP2017023583A (en) * 2015-07-27 2017-02-02 株式会社トプコン Ophthalmic microscope
WO2020095443A1 (en) * 2018-11-09 2020-05-14 株式会社ニコン Microscope

Similar Documents

Publication Publication Date Title
US7768702B2 (en) Medical stereo observation system
US4702570A (en) Stereo-microscope with two observation optical systems each including a right angle prism and a roof right angle prism providing both rotation and relative separation adjustments
US6678090B2 (en) Microscope
US4761066A (en) Stereoscopic optical system
JPH0554087B2 (en)
JPH085923A (en) Stereomicroscope
JP4508569B2 (en) Binocular stereoscopic observation device, electronic image stereoscopic microscope, electronic image stereoscopic observation device, electronic image observation device
JP3290467B2 (en) Binocular stereo microscope
JPS6035708A (en) Stereo microscope
JPS6035707A (en) Stereomicroscope
JPH02311812A (en) Dual stereoscopic microscope
JP2945118B2 (en) Stereo microscope
JPH0493912A (en) Microscope for operation
JPH075372A (en) Stereo-microscope
JP3619858B2 (en) Stereoscopic microscope
JPS63167318A (en) Stereoscopic microscope
JP2958096B2 (en) Stereo microscope
JP3944262B2 (en) Surgical microscope
JP4847095B2 (en) Stereo microscope binocular tube
JPH05107481A (en) Stereoscopic microscope
JPS63143519A (en) Stereoscopic microscope
JPS61226723A (en) Stereomicroscope
JP2001311876A (en) Stereo-microscope
JP2012141470A (en) Imaging optical system and microscope device
JP3479123B2 (en) Multiple image stereoscopic device