JPS6035708A - Stereo microscope - Google Patents

Stereo microscope

Info

Publication number
JPS6035708A
JPS6035708A JP58143686A JP14368683A JPS6035708A JP S6035708 A JPS6035708 A JP S6035708A JP 58143686 A JP58143686 A JP 58143686A JP 14368683 A JP14368683 A JP 14368683A JP S6035708 A JPS6035708 A JP S6035708A
Authority
JP
Japan
Prior art keywords
optical
angle
observation
objective lens
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58143686A
Other languages
Japanese (ja)
Other versions
JPH0526171B2 (en
Inventor
Toshikazu Yoshino
芳野 寿和
Shinichi Nishimura
西村 新一
Kazutoshi Takagi
高木 和俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Optical Co Ltd
Original Assignee
Tokyo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Optical Co Ltd filed Critical Tokyo Optical Co Ltd
Priority to JP58143686A priority Critical patent/JPS6035708A/en
Priority to US06/637,503 priority patent/US4601550A/en
Priority to DE19843429240 priority patent/DE3429240A1/en
Publication of JPS6035708A publication Critical patent/JPS6035708A/en
Priority to US06/817,931 priority patent/US4702570A/en
Publication of JPH0526171B2 publication Critical patent/JPH0526171B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements
    • G02B21/22Stereoscopic arrangements

Abstract

PURPOSE:To obtain the observation feel most approximate to the natural stereoscopic visual feel by the naked eyes by having an objective optical system for forming the 1st and 2nd intermediate images of an object to be examined, the 1st and 2nd eyepiece lens systems for said system and a means of adjusting an observation angle. CONSTITUTION:A binocular microscope has an objective optical system for forming the 1st and 2nd intermediate images 102, 202 of an object E to be examined and the eyepiece lens systems 105, 205 and is constituted of two optical paths:the 1st optical path 100 and 2nd optical path 200. The respective vertical angles alpha of prisms 106, 206 constituting deformed Porro prisms 104, 204 are given the size (90 deg.-omega/4), in which omega is the stereoscopic angle formed by the incident light axis 100A of the 1st optical path 100 to the object E and the incident light axis 200A to the 2nd optical path 200. If the angle omega and an observation angle theta are made equal, the observation feel most approximate to the natural stereoscopic visual feel by the naked eyes is obtd.

Description

【発明の詳細な説明】 本発明は双眼実体顕微鏡の光学構成に関し、さらに詳し
くは眼科分野で利用されるスリットランプの双眼顕微鏡
の光学構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical configuration of a binocular stereomicroscope, and more particularly to an optical configuration of a slit lamp binocular microscope used in the ophthalmology field.

双眼実体顕微鏡の光学型式はグリノー型とガリレオ型に
大別される。グリノー型は第1図に模式的に示すように
2つの光路l及びIIが挟角ωをもって被検物面で交差
するように構成されている。
The optical types of binocular stereomicroscopes are broadly divided into Greenough type and Galileo type. As schematically shown in FIG. 1, the Greenough type is constructed such that two optical paths I and II intersect at the surface of the object to be measured with an included angle ω.

これら光路1.IIにはそれぞれ対物レンズ系1a。These optical paths 1. II each has an objective lens system 1a.

1b、正立光学系2a、2b、及び接眼レンズ系3a、
3bを有しており、かつ対物レンズへの入射光軸IAと
接眼のwl察光軸IBが平行になるように構成されてい
る(同様に光路IJにおいても、その入射光Φ+l+ 
1.I Aと観察光軸11Bは平行)。ここで挟角ωは
検者眼(+1 、eニアが被検物Eを顕微鏡を使わずに
肉眼で自然視状態で近距離観察するときの!ll較角1
0’〜16°が選ば、1シる。このため、グリノー型双
眼顕微鏡では、対物レンズへの入射光軸IA、 IIA
の挟角ω(以下こAしをステレオアングルという)と接
眼レンズ系3a、3bの観察光軸1B、IIBの挟角。
1b, erecting optical systems 2a, 2b, and eyepiece system 3a,
3b, and is configured so that the optical axis IA of incidence on the objective lens and the optical axis IB of the eyepiece are parallel (Similarly, in the optical path IJ, the incident light Φ+l+
1. IA and observation optical axis 11B are parallel). Here, the included angle ω is the examiner's eye (+1), which is the !ll included angle 1 when the e-near observes the specimen E with the naked eye in natural vision without using a microscope.
0'~16° is selected, 1 degree is selected. For this reason, in a Greenough binocular microscope, the optical axes of incidence on the objective lens are IA and IIA.
The included angle ω (hereinafter referred to as stereo angle) and the included angle between the observation optical axes 1B and IIB of the eyepiece systems 3a and 3b.

(以下これをIn角という)とが等しく、かつ上述のよ
うにステレオアングルωが自然視状態の輻枝角に等しく
構成されているため、自然な立体視ができるという長所
を有する。しかしながら、光路I。
(hereinafter referred to as the In angle) are equal, and as described above, the stereo angle ω is configured to be equal to the radial angle in the natural viewing state, so it has the advantage of allowing natural stereoscopic viewing. However, optical path I.

■を斜交さぜるため、光学部品組み付けのための機械加
工が複雑であり、また対物レンズ系1a。
(2) Since the lenses are crossed obliquely, the machining for assembling the optical parts is complicated, and the objective lens system 1a.

(1b)と正立光学系2a(2b)との間に通常配置さ
れる図示しない合焦や変倍光学系の構成も複雑となると
いう欠点を有していた。
(1b) and the erecting optical system 2a (2b), the structure of a focusing and variable magnification optical system (not shown), which is usually arranged between the lens (1b) and the erecting optical system 2a (2b), is also complicated.

他方、ガリレオ型双眼顕微鏡は第2図に示すように光路
II及び■ばその光軸詮方いに平行に構成している。光
路■は対物レンズ系4と、中間像Paを作るための結像
レンズ系7a、正立光学系5d、及び中間像Paを観察
するための接眼レンズ系6aとから構成される。また、
光路1■は前記対物レンズ系4を共通の対物レンズとし
て有し、かつ光路I11と同様に結像レンズ系71)、
正立光学系5b、接11艮レンズ系6bとから構成され
る。ここで両結像レンズ系7a、7bの光軸は、互いに
平行でかつ対物レンズ系4の光軸4aとも平行になって
いる。また、接眼レンズ系6a、 6bのvA察光軸1
1113,1VI3も結像レンズ系7a、7bの光軸と
それぞれ平行になるよう構成されている。結像レンズ系
7a、71)の間隔で定義されるル線長Qによって対物
レンズ系4ノ\の入射光軸+11A、 IVAの作るス
テレオアングルωが定められる。
On the other hand, as shown in FIG. 2, the Galilean type binocular microscope has optical paths II and B whose optical axes are parallel to each other. The optical path (2) is composed of an objective lens system 4, an imaging lens system 7a for forming an intermediate image Pa, an erecting optical system 5d, and an eyepiece system 6a for observing the intermediate image Pa. Also,
The optical path 1■ has the objective lens system 4 as a common objective lens, and similarly to the optical path I11, an imaging lens system 71),
It is composed of an erecting optical system 5b and a tangent lens system 6b. Here, the optical axes of both imaging lens systems 7a and 7b are parallel to each other and also parallel to the optical axis 4a of the objective lens system 4. In addition, the vA optical axis 1 of the eyepiece systems 6a and 6b
1113 and 1VI3 are also configured to be parallel to the optical axes of the imaging lens systems 7a and 7b, respectively. The stereo angle ω formed by the incident optical axis +11A and IVA of the objective lens system 4 is determined by the line length Q defined by the interval between the imaging lens systems 7a and 71).

このステレオアンクルωによる視差をもつため、観察光
軸l[B、rVBが作る観察角OがOてあっても被検物
Eを立体視することができる。このガリレオ型双眼顕微
鏡は、上述したように2つの光路III 。
Because of the parallax caused by the stereo angle ω, the object E can be viewed stereoscopically even if the observation angle O formed by the observation optical axes l[B, rVB is O. As mentioned above, this Galileo type binocular microscope has two optical paths III.

IVが互いに平行であるため光学系の構成が簡単であり
、合焦機構や変倍機構の構成も簡単にでき、また、撮影
光学系や側視鏡等の附属光路の追加も比較的楽にできる
長所を有していた。
Since the IVs are parallel to each other, the configuration of the optical system is simple, and the configuration of the focusing mechanism and variable magnification mechanism is also simple, and it is relatively easy to add accessory optical paths such as the photographing optical system and side view mirror. It had its advantages.

一般に、人間の眼は、遠方視状態では、両眼視綿に幅快
がなく、また水晶体の調節をしないもっとも楽で疲労の
少ない観察状態をとっている。このことは顕微鏡観察に
おいても同様で、両m祭光軸+11[+、 IVDが互
いに平行なガリレオ型顕微鏡の方が両者が幅幀している
グリノー型のそれよりも観県時の疲労が少なく長時間の
観察に有利であるといわれている。
In general, human eyes are in the most comfortable and least tiring viewing state when viewing at a distance, with no range of binocular vision and no adjustment of the crystalline lenses. The same is true for microscopic observation; a Galileo-type microscope with both optical axes +11[+ and IVD parallel to each other causes less fatigue during observation than a Greenough-type microscope with both sides wide. It is said to be advantageous for long-term observation.

しかしながら、顕微鏡は近距離に配置された小物体を拡
大観察する装置であり、ガリレオ型顕微鏡において、た
とえ、光学的にはあたかも無限遠方からの光束が眼に入
J]J Lようとも、脳ノ\は近距離の物体を見ている
という前提情報があり、自然な感覚との間に差を生むと
いう欠点があった。このことは、特に、眼の回旋運動情
報、すなわち幅軽運動情+Uがないにもかかわらず、ス
テレオアングルωに起因する視差が観察されるため、観
察者は通常の立体感よりも強い不自然な立体視をすると
いう欠点があった。
However, a microscope is a device that magnifies and observes small objects placed at a close distance, and with a Galilean microscope, even if a beam of light from an infinite distance enters the eye, it does not reach the brain. \ has the prerequisite information that you are looking at an object at a short distance, which has the disadvantage of creating a difference from the natural sensation. This is especially true because parallax caused by the stereo angle ω is observed even though there is no rotational movement information of the eyes, that is, width and light movement information +U, so the viewer perceives an unnatural feeling that is stronger than the normal stereoscopic effect. It had the disadvantage of providing stereoscopic vision.

また、さらに眼科分野で利用されるスリン1−ランプ装
置の双眼実体顕微鏡の場合を例にとれば、医師は被検眼
へのスリット照明光の照射位置の調整やスリン1への幅
、長さ等の調1え、あるいは被検眼へのnii単な手1
!11処置のためにしばしば被検眼に肉眼で観察する必
要があり、その時は当然に医師の観察眼は近用視状態に
おかれる。そして、次には顕微鏡をのぞきlバ較のない
遠方視状態に眼を開敗さぜ、立体視しなければならず、
なかなか瞬時には陽像や立体視ができないという欠点が
あった。
Furthermore, taking the case of a binocular stereomicroscope with a Surin 1-lamp device used in the ophthalmology field as an example, a doctor can adjust the irradiation position of the slit illumination light onto the eye to be examined, and adjust the width, length, etc. of the Surin 1 lamp. key 1, or simple hand 1 to the eye to be examined
! 11 It is often necessary to observe the subject's eye with the naked eye for treatment, and at that time, the doctor's observing eye is naturally placed in a near-sighted state. Next, I had to look into the microscope and open my eyes to the unprecedented state of distance vision, and see in 3D.
The drawback was that positive images and stereoscopic vision could not be obtained instantaneously.

このようなガリレオ型双眼実体顕微鏡における立体感の
誇張や肉眼視から立体視の開数運動の必要性等は、従来
いわれていた!81察疲労の少なさを打消し、逆にグリ
ノー型顕微鏡に比してriJl察疲労が人きくなったり
、観察の不正確さや、距離感誤認による処置ミスを招く
など、前述の種々の長所を持つにもかかわらず、カリレ
オ型顕微鏡の欠点となっていた。
It has been said in the past that the Galileo-type binocular stereomicroscope exaggerates the stereoscopic effect and that it is necessary to move from macroscopic vision to stereoscopic vision! It has the various advantages mentioned above, such as reducing the fatigue caused by riJl observation compared to the Greenough type microscope, and causing inaccurate observation and treatment errors due to misperception of distance. Despite this, it was a drawback of the Carileo microscope.

他方、クリノー型双眼実体顕微鏡にあっては、被検物の
肉眼による近用視と同じ立体視感で顕微鏡下においても
観察ができるという上述の長所を有するが、より微少な
高低差を知りたいとき、自然視に近い立体感では判別が
できない場合があり、立体感を強めたいという要求があ
った。
On the other hand, the Clino type binocular stereo microscope has the above-mentioned advantage of being able to observe the object under a microscope with the same stereoscopic visibility as the near vision with the naked eye. In some cases, it may not be possible to distinguish images with a three-dimensional effect close to that of natural vision, and there has been a demand for a stronger three-dimensional effect.

本発明は、以上述べた従来の双眼顕微鏡の種々の欠点の
解消や要求を満たすためになさjしたものである。
The present invention has been made in order to eliminate the various drawbacks of the conventional binocular microscopes and to meet the demands described above.

以下、本発明を良好な実施例を示す図をもとに説明する
。第3図は本発明に係る双眼実体顕微鏡を、スリットラ
ンプの双眼実体顕微鏡部を例にその光学配置を示すもの
である。この双眼顕微鏡ば、被検物Eの第1と第2の中
間像102.202を作るための対物光学系、および接
眼レンズ系105.205をもち、第1光路100と第
2光路200の2つの光路から構成されている。第1光
路100は共通の単対物レンズ基101、中間像102
を結像するためのレンズでかつ111対物レンズ系10
1の光軸101aと平行にその光軸をもつ結像レンズ系
103、光路偏光手段であり、かつ正立光学系としての
変形ポロプリズム104、及び中間像102を観察する
ための接眼レンズ系105から措成さ4している。他方
、第2光路200は、前記単対物レンズ系101、中間
像202を形成するためのレンズでかつ単対物レンズ系
101の光軸101aと平行にその先軸をもつ結像レン
ズ203、光路偏向手段であり、かつ正立光学系どして
の変形ポロプリズム204、及び中間像202を観察す
るための接眼レンズ系205から構成されている。
The present invention will be described below with reference to figures showing preferred embodiments. FIG. 3 shows the optical arrangement of the binocular stereomicroscope according to the present invention, taking the binocular stereomicroscope section of a slit lamp as an example. This binocular microscope has an objective optical system for creating first and second intermediate images 102.202 of the object E, and an eyepiece system 105.205, and has two optical paths, a first optical path 100 and a second optical path 200. It consists of two optical paths. The first optical path 100 includes a common single objective lens group 101 and an intermediate image 102.
and 111 objective lens system 10.
an imaging lens system 103 whose optical axis is parallel to the optical axis 101a of the image forming apparatus 1; a deformed Porro prism 104 which serves as an optical path polarizing means and serves as an erecting optical system; and an eyepiece system 105 for observing the intermediate image 102. It has been constructed from 4. On the other hand, the second optical path 200 includes the single objective lens system 101, an imaging lens 203 which is a lens for forming an intermediate image 202 and whose front axis is parallel to the optical axis 101a of the single objective lens system 101, and an optical path deflector. It is composed of a deformed Porro prism 204 as a means and an erecting optical system, and an eyepiece system 205 for observing the intermediate image 202.

この型式で示す対物光学系は、1つの共通な対物レンズ
系101 と対物レンズ系101の光軸101aと平行
な光軸を有し、第1と第2の中間像102.202を形
成するだめの第1と第2の結像レンズ系103゜203
とから構成されている。
The objective optical system shown in this type has one common objective lens system 101 and an optical axis parallel to the optical axis 101a of the objective lens system 101, and has an optical axis parallel to the optical axis 101a of the objective lens system 101. The first and second imaging lens systems 103°203
It is composed of.

ここで、変形ポロプリズム1.04.204を構成する
プリズムIO6,206のそれぞれの頂角αは(90”
−−ω/4)の大きさを持たせている。ωは被検物E/
\の、第1光路100の入射光軸100Aと第2光路2
00の入射光軸200Aとの作るステレオアングルであ
り大きさは2つの結像レンズ]03と203との間の基
線長Qによって定まる。上記のαとωの関係から第1光
路100の観察光軸100Bと第2光路200の観察光
1i111200 Bとの成す観身角Oはステレオアン
クルωと等しい角度に構成される。
Here, the apex angle α of each prism IO6, 206 constituting the modified Porro prism 1.04.204 is (90”
--ω/4). ω is the test object E/
\, the incident optical axis 100A of the first optical path 100 and the second optical path 2
It is the stereo angle formed by the incident optical axis 200A of 00, and its size is determined by the base line length Q between the two imaging lenses 03 and 203. From the above relationship between α and ω, the viewing angle O formed by the observation optical axis 100B of the first optical path 100 and the observation light 1i111200B of the second optical path 200 is configured to be equal to the stereo angle ω.

このようにステレオアングルωと1259角0とを等し
くすると、肉眼による自然な立体視感にもっとも近い観
=i感をもっことは以下の実験結果がらも裏イjけられ
た。
In this way, when the stereo angle ω and the 1259 angle 0 are made equal, the following experimental results are shown to provide a view that is closest to the natural stereoscopic visual sensation seen by the naked eye.

実験は第4191に示すような内径a=2.0m/m、
深さd−2,θm/ m (深さ/内径比=1)の円ガ
を社穴300 を有する被検物体を第1表に示す10人
のtl′A察者にまず肉眼で観察させ、次に第2表に示
ず5種類の双眼実体顕1#鏡を匝って上記被検物体を全
観察者に観察させた。ぞして、各機種毎に顕微鏡上観察
における被験物体の内径aと深さdの比が上記肉眼時の
そJしより大きいか小さいかを1から5までの5段階評
価で答えてもらった。なお、肉眼と同程度の場合を3ど
し、立体感が強くなる、すなわち、深さ/内径比が大き
くなる程4,5と答えさせ、逆に立体感が少ない場合は
2,1と小さい数で答えさせた。10名の観察名による
5機種の顕微鏡の立体感は第3表の通りである。
In the experiment, the inner diameter a = 2.0 m/m as shown in No. 4191,
The object to be tested, which has 300 round holes with a depth of d-2, θm/m (depth/inner diameter ratio = 1), was first observed with the naked eye by the 10 tl'A observers shown in Table 1. Next, all the observers were allowed to observe the above-mentioned object using five types of binocular stereoscopic microscopes (#1) not shown in Table 2. Then, for each model, the subjects were asked to rate on a five-point scale from 1 to 5 whether the ratio of the inner diameter a to the depth d of the test object when observed under a microscope was larger or smaller than the ratio when observed with the naked eye. . In addition, if the three-dimensional effect is the same as the naked eye, the number is 3, and the stronger the three-dimensional effect, that is, the larger the depth/inner diameter ratio, the higher the answer is 4.5, and conversely, if the three-dimensional effect is less, the answer is 2.1. I had them answer with numbers. Table 3 shows the three-dimensional effects of the five types of microscopes according to the observation names of 10 people.

第」し退 第3表の結果かられかるように、観察者の立体感はi察
角Oともっとも密接な関係にあり、本願もガリレオ型も
グリノー型もともに観察角Oが小さくなる程立体感は大
きくなる。また、両型式ともステレオアングルωと1m
角Oとか等しい場合、肉眼と同様の自然な立体感が得ら
れることが立証された。
As can be seen from the results in Table 3, the observer's three-dimensional perception is most closely related to the angle of observation O, and in both the Galileo type and the Greenough type, the smaller the viewing angle O, the more the stereoscopic effect The feeling grows. Also, both models have a stereo angle of ω and 1m.
It has been proven that when the angles O are equal, a natural three-dimensional effect similar to that seen with the naked eye can be obtained.

以−11、説明したように、本実施例によれは、結にし
ているため、この前後に配置さAしる変倍光学系や合焦
光学系(結像レンズがこJしを兼ねる場合もある)及び
これらの駆動機構がグリノー型に比較して簡単にできる
し、また撮像光学系等の附属光学系の組み込みも容易で
あるというガリレオ型式の双眼実体顕微鏡の利点と、肉
眼観察時と同様の自然な立体感で顕微鏡下ill察がで
きるグリノー型の利点を合せ持つ、新しいガリレオ型式
の双眼実体顕微鏡螢得ることができる。
As explained in Section 11, since the lens in this embodiment is used as a lens, the variable magnification optical system and the focusing optical system (if the imaging lens also serves as a lens) are placed before and after the lens. The advantage of the Galileo type binocular stereo microscope is that its drive mechanism is simpler than that of the Greenough type, and it is easier to incorporate attached optical systems such as an imaging optical system. A new Galileo-type binocular stereoscopic microscope can be obtained, which has the advantage of the Greenough type, which allows illumination observation under a microscope with the same natural three-dimensional effect.

」二記第1の実施例においてはステレオアングルωど観
察角Oが等しく成るよう固定的構成どしたか、11角O
を可変とすることによって、クリノー型式、ガリレオ型
式両型式とも、顕微鏡上観察時の立体感を肉眼時のそ扛
よりも大きくしたり、小さくしたり変化できることが望
まれる場合がある。
2. In the first embodiment, the stereo angle ω is fixedly configured so that the observation angle O is equal, and the 11 angle O
In both the Klino type and the Galileo type, it may be desirable to be able to change the stereoscopic effect when observed under a microscope by making it larger or smaller than that seen with the naked eye by making it variable.

第5図は、そのため観察角調節手段を備えた構成の1実
施例を示すもので、第1図または第2図に示した両型式
の光路偏光手段であり、かつ正立光学系の変形例を−っ
の光路の正立光学系のみを図示するものである。光路偏
向手段である正立光学系400は2つのドーププリズム
40..1と402とから構成され、第2のドーププリ
ズム402の反射面402aは第1の1−一プブリスム
40.1の反射面401.aに対し垂直になるように配
置さ1+、ており、両ドーププリズムにより倒立f象か
正立像として観察さAしるよう正立光学系を構成してい
る。そして、第2ドーププリズム402を軸403を回
転軸として回転することにより観察光軸7104を水平
面内で移動できる観察角調節手段をもっており、この観
察角0を変化させることにより立体感を変化させ得るよ
うに構成されている。
FIG. 5 shows an embodiment of a configuration equipped with an observation angle adjusting means for this purpose, which is both types of optical path polarizing means shown in FIG. 1 or FIG. 2, and a modification of the erecting optical system. Only the erect optical system of the optical path is shown. The erecting optical system 400, which is an optical path deflection means, includes two doped prisms 40. .. 1 and 402, and the reflective surface 402a of the second doped prism 402 is the reflective surface 401.1 of the first 1-1 prism 40.1. The erecting optical system is constructed so that the doped prisms can be observed as an inverted f-elephant or an erect image. It also has an observation angle adjustment means that can move the observation optical axis 7104 in a horizontal plane by rotating the second doped prism 402 about the axis 403, and by changing this observation angle 0, the three-dimensional effect can be changed. It is configured as follows.

第6図は立体感を変化させるための他の実施例を示す図
である。一つの光路の光路偏向手段である正立光学系4
]、0ば、第1の直角ブリスA/illと、回転ミラー
412と、第1直角プリズム411 の稜線と垂直な面
内に稜線をもつ第2の直角プリズム413とから構成さ
れ、しかも回転ミラー412と第2直角プリズム413
とは接眼レンズ500とともに−体トなって回転軸41
2aを軸として回転できるような観察角調節手段をもっ
て構成さ肛ている。これにより、観察角Oを変化させ、
もって立体感を変化できるようにしている。
FIG. 6 is a diagram showing another embodiment for changing the three-dimensional effect. Erecting optical system 4 which is optical path deflection means for one optical path
], 0, consists of a first right-angle prism A/ill, a rotating mirror 412, and a second right-angle prism 413 having a ridgeline in a plane perpendicular to the ridgeline of the first right-angle prism 411; 412 and second right angle prism 413
The axis of rotation 41 together with the eyepiece 500
The viewing angle adjustment means is configured to be rotatable about 2a as an axis. This changes the observation angle O,
This makes it possible to change the three-dimensional effect.

第7図は、立体感を可変とするだめのさらに他の実施例
を示ず図であり、一つの光路の光路偏向手段である正立
光学系420はダハ面421aを有するタハ直角プリス
ム421と、第2の直角プリズム422とから構成され
、この第2直角プリスム422ば、その反則面422a
内の回転軸422L+を中心に接眼レンズ500と一体
に回転できるような観察角調節手段をもって横1戊され
ている。これにより、観察角Oを変化させ、立体感を変
化できるようにしている。
FIG. 7 is a diagram not showing yet another embodiment of the device for making the three-dimensional effect variable; the erecting optical system 420, which is the optical path deflection means for one optical path, is composed of a Taha right-angle prism 421 having a roof surface 421a; , a second right-angle prism 422, and the second right-angle prism 422 has an irregular surface 422a.
It has an observation angle adjustment means that can rotate integrally with the eyepiece lens 500 about the inner rotation axis 422L+. This allows the viewing angle O to be changed and the three-dimensional effect to be changed.

また、第2直角プリズム422はダハ直角プリズム42
1 との間隔Dk変化でき、こ4しにより観9d者の瞳
孔間距+i+Ikに観察光学系を調節できるように構成
されている。
Further, the second right angle prism 422 is a roof right angle prism 42.
1 and the distance Dk can be changed so that the observation optical system can be adjusted to the interpupillary distance +i+Ik of the viewer.

ところで、このようなwt察角調節手段を備えることは
、第3図に示す例に限らず、第1図に示すグリノー型、
第2図に示すガリレオ型においても適用できる。この場
合、クリノー型は、対物レンズ型と結像レンズ系とが共
用されており、対物光学系は第1の中間像を形成するた
めの第1の対物レンズ系1aと第2の中間像を形成する
ための第2の対物レンズ系1bとからなり、かつ第1と
第2の対物レンズ系1a、lbはステレオアングルωを
有するように互いの光中lll&交差している。
By the way, the provision of such a wt viewing angle adjustment means is not limited to the example shown in FIG. 3, but also the Greenough type shown in FIG.
It can also be applied to the Galileo type shown in FIG. In this case, in the Clineau type, the objective lens type and the imaging lens system are shared, and the objective optical system has the first objective lens system 1a for forming the first intermediate image and the second intermediate image. The first and second objective lens systems 1a and lb intersect within each other's light so as to have a stereo angle ω.

以上説明したように、第5図から第7図の観察角調節手
段をもつ双眼実体顕微鏡を使用すれば、顕微鏡下の観察
時の立体感を自由に選ぶことができ、立体視観察に極め
て便利である。
As explained above, if you use a binocular stereomicroscope with the observation angle adjustment means shown in Figures 5 to 7, you can freely select the stereoscopic effect when observing under the microscope, which is extremely convenient for stereoscopic observation. It is.

また、上記の名実施例とも観察角0を得るのに反射面を
利用しているか、本願はこれに限定されるものでなく、
プリズムの屈折作用を利用してもよい。第8図はその一
例を示すもので、第1光路100の対物レンズ101 
と結像レンズ103の間に偏向プリズム505を、同様
に第2光路200の対物レンズ101と結像レンズ20
3の間に偏向プリズム506をそれぞれ配置することに
より観察角θを得ている。
In addition, the present application is not limited to whether a reflective surface is used to obtain an observation angle of 0 in the above-mentioned examples.
The refraction effect of a prism may also be used. FIG. 8 shows an example, in which the objective lens 101 of the first optical path 100
Similarly, a deflecting prism 505 is placed between the objective lens 101 of the second optical path 200 and the imaging lens 20.
Observation angle θ is obtained by arranging deflection prisms 506 between 3 and 3, respectively.

なお、本実施例では、さらに偏向プリズム505は色消
しの小プリズム50]と502から成るロータリープリ
ズムで構成され、これらは軸505aを回転1i111
として互いに反対方向に同量づつ回転するロータリープ
リズムを採用している。また同様に偏向プリズム506
も色消し小プリズム503,504から成るロータリー
プリズムで構成されている。これら観察角調節手段であ
るロータリープリズムを作動させると、観察角Oが変化
できるようになっている。なお、結像レンズ103.2
03以降の左右それぞれの接眼系もロータリープリズム
の作動と同時に連動してその交差角を変化させ、観察角
Oの変化に追従して軸ズレをおこさないように構成され
ている。
In this embodiment, the deflection prism 505 is further composed of a rotary prism consisting of a small achromatic prism 50] and 502, which are rotated 1i111 about an axis 505a.
It uses rotary prisms that rotate by the same amount in opposite directions. Similarly, the deflection prism 506
It is also constituted by a rotary prism consisting of small achromatic prisms 503 and 504. The viewing angle O can be changed by operating the rotary prism serving as the viewing angle adjustment means. Note that the imaging lens 103.2
The left and right eyepiece systems after 03 are also configured to change their crossing angles in conjunction with the operation of the rotary prism, so as to follow the change in the observation angle O so as not to cause axis misalignment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のタリノー型双眼実体顕微鏡の光学配置を
示す図、第2図は従来のガリレオ型双眼実体顕御鏡の光
学配置を示す図、第3図は本願の第1の実施例を示す光
学配置図、第4図は立体感テストに実用した被検物を示
す斜視図、第5図は本発明の第2の実施例をその一方の
光路の正立光学系部のみを示す図、第6図は本発明の第
3の実施例をその一方の光路の王立光学系部のみて示す
図、第7図は本願発明の第4の実施例をその一方の光路
の正立光学系部のみで示す図、第8図は本発明の第5の
実施例を示す光学配置図である。 100B、 200B・・観察光軸、 Ia、lb、101・対物レンズ系。 102.202・中間像、103,203・・・結像レ
ンズ基、1.04,204,400./110,420
−光路偏向手段、1.05,205・−接眼レンズ基、 ω・ステレオアングル、0−観察角、 E・・被検物。
Fig. 1 shows the optical arrangement of a conventional Talino type binocular stereo microscope, Fig. 2 shows the optical arrangement of a conventional Galileo type binocular stereo microscope, and Fig. 3 shows the first embodiment of the present application. FIG. 4 is a perspective view of a test object used in a three-dimensional effect test, and FIG. 5 is a diagram showing only the erecting optical system section of one optical path of the second embodiment of the present invention. , FIG. 6 is a diagram showing the third embodiment of the present invention, showing only the royal optical system section of one optical path, and FIG. 7 is a diagram showing the fourth embodiment of the present invention, showing only the erect optical system section of one optical path. FIG. 8 is an optical layout diagram showing a fifth embodiment of the present invention. 100B, 200B...Observation optical axis, Ia, lb, 101.Objective lens system. 102.202・Intermediate image, 103,203...Imaging lens base, 1.04,204,400. /110,420
- Optical path deflection means, 1.05,205 - Eyepiece base, ω - Stereo angle, 0 - Observation angle, E - Test object.

Claims (4)

【特許請求の範囲】[Claims] (1)被検物の第1と第2の中間像を作るための対物光
学系と、該第1と第2の中間像をそれぞ]し観察するた
めの第1と第2の接眼レンズ系とを有し、前記中間像を
正立像として観察できるように第1と第2の王立光学系
を前記第1と第2の接眼レンズの前方にそれぞれ配する
双眼実体顕微鏡であって、前記第1と第2の接眼レンズ
系のwJl察光軸の作る観察角Oを変化させる観察角調
節手段を有することにより観察者の観察立体感を変化で
きるように構成したことを特徴とする′35眼実体顕微
鏡。
(1) An objective optical system for creating first and second intermediate images of a subject, and first and second eyepieces for observing the first and second intermediate images, respectively. a binocular stereomicroscope, comprising a first and second royal optical system disposed in front of the first and second eyepieces, respectively, so that the intermediate image can be observed as an erect image; '35 characterized by having an observation angle adjusting means for changing the observation angle O formed by the wJl optical axes of the first and second eyepiece systems, so that the three-dimensional effect of observation for the observer can be changed.'35 Ocular stereomicroscope.
(2)第1と第2の正立光学系はそれぞれ少な(とも2
つの反射面を有し、該反射面の少なくとも1つをその入
射光軸に対する傾角を変化できるように構成したことを
特徴とする特許請求の範囲第1項記載の双眼実体顕微鏡
(2) The first and second erecting optical systems each have a small
2. The binocular stereomicroscope according to claim 1, wherein the binocular stereomicroscope has two reflecting surfaces, and at least one of the reflecting surfaces is configured to be able to change its inclination angle with respect to the incident optical axis.
(3)対物光学系は1つの共通な対物レンズ系と該対物
Iノンズ系の光軸と平行な光軸を有し、第1と第2の中
間像を形成するための第1と第2の結像レンズ系とから
構成されたことを特徴とする特許請求の範囲第1項又は
第2項記載の双眼実体顕微鏡。
(3) The objective optical system has one common objective lens system and an optical axis parallel to the optical axis of the objective lens system, and has first and second intermediate images for forming first and second intermediate images. A binocular stereomicroscope according to claim 1 or 2, characterized in that the binocular stereomicroscope is comprised of an imaging lens system.
(4)対物光学系は第1の中間像を形成するだめの第1
の対物レンズ系と、第2の中間像を形成するための第2
の対物レンズ系とから成り、かつ該第1と第2の対物レ
ンズ系はステ1ノオアングルωを有するように互いの光
軸を交差して成ることを特徴とする特許請求の範囲第1
項記載の双眼実体顕微鏡。
(4) The objective optical system is the first optical system for forming the first intermediate image.
and a second objective lens system for forming a second intermediate image.
and an objective lens system, and the first and second objective lens systems are arranged so that their optical axes intersect with each other so as to have an angle ω.
Binocular stereo microscope described in section.
JP58143686A 1983-08-08 1983-08-08 Stereo microscope Granted JPS6035708A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58143686A JPS6035708A (en) 1983-08-08 1983-08-08 Stereo microscope
US06/637,503 US4601550A (en) 1983-08-08 1984-08-01 Stereo-microscope with a common objective lens system
DE19843429240 DE3429240A1 (en) 1983-08-08 1984-08-08 STEREOMICROSCOPE
US06/817,931 US4702570A (en) 1983-08-08 1986-01-10 Stereo-microscope with two observation optical systems each including a right angle prism and a roof right angle prism providing both rotation and relative separation adjustments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58143686A JPS6035708A (en) 1983-08-08 1983-08-08 Stereo microscope

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6009054A Division JPH075372A (en) 1994-01-31 1994-01-31 Stereo-microscope

Publications (2)

Publication Number Publication Date
JPS6035708A true JPS6035708A (en) 1985-02-23
JPH0526171B2 JPH0526171B2 (en) 1993-04-15

Family

ID=15344589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58143686A Granted JPS6035708A (en) 1983-08-08 1983-08-08 Stereo microscope

Country Status (1)

Country Link
JP (1) JPS6035708A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226722A (en) * 1985-03-29 1986-10-08 Canon Inc Stereomicroscope
JPH01164401U (en) * 1988-04-30 1989-11-16
JP2007114666A (en) * 2005-10-24 2007-05-10 Olympus Corp Binocular barrel for stereoscopic microscope
WO2008139828A1 (en) * 2007-05-14 2008-11-20 Mitaka Kohki Co., Ltd. Three-dimeeeeeensional image display device
US7490439B2 (en) 2002-02-05 2009-02-17 Obayashi Corporation Double floor structure
JP2019084411A (en) * 2019-03-14 2019-06-06 株式会社トプコン Ophthalmologic microscope system
US10932665B2 (en) 2015-06-30 2021-03-02 Kabushiki Kaisha Topcon Ophthalmologic microscope system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536805U (en) * 1978-08-31 1980-03-10
JPS5819530U (en) * 1981-07-29 1983-02-07 サンケン電気株式会社 Interlocking mechanism of push button tuner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536805U (en) * 1978-08-31 1980-03-10
JPS5819530U (en) * 1981-07-29 1983-02-07 サンケン電気株式会社 Interlocking mechanism of push button tuner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226722A (en) * 1985-03-29 1986-10-08 Canon Inc Stereomicroscope
JPH01164401U (en) * 1988-04-30 1989-11-16
US7490439B2 (en) 2002-02-05 2009-02-17 Obayashi Corporation Double floor structure
JP2007114666A (en) * 2005-10-24 2007-05-10 Olympus Corp Binocular barrel for stereoscopic microscope
WO2008139828A1 (en) * 2007-05-14 2008-11-20 Mitaka Kohki Co., Ltd. Three-dimeeeeeensional image display device
JPWO2008139828A1 (en) * 2007-05-14 2010-07-29 三鷹光器株式会社 3D image display device
US10932665B2 (en) 2015-06-30 2021-03-02 Kabushiki Kaisha Topcon Ophthalmologic microscope system
JP2019084411A (en) * 2019-03-14 2019-06-06 株式会社トプコン Ophthalmologic microscope system

Also Published As

Publication number Publication date
JPH0526171B2 (en) 1993-04-15

Similar Documents

Publication Publication Date Title
US4702570A (en) Stereo-microscope with two observation optical systems each including a right angle prism and a roof right angle prism providing both rotation and relative separation adjustments
US7768702B2 (en) Medical stereo observation system
US4761066A (en) Stereoscopic optical system
KR0147414B1 (en) Optical magnifying apparatus
US5351152A (en) Direct-view stereoscopic confocal microscope
JPH0554087B2 (en)
US4704012A (en) Stereoscopic microscope
JPH085923A (en) Stereomicroscope
JPS6035708A (en) Stereo microscope
US4174884A (en) Optical viewer with adjustable angular convergence
JP3290467B2 (en) Binocular stereo microscope
JP4727356B2 (en) Medical stereoscopic observation device
JPS6035707A (en) Stereomicroscope
JPH075372A (en) Stereo-microscope
JP2945118B2 (en) Stereo microscope
JP3645655B2 (en) Stereo microscope
JPS63167318A (en) Stereoscopic microscope
JP2530014B2 (en) Stereomicroscope
JP2958096B2 (en) Stereo microscope
JP3944262B2 (en) Surgical microscope
JPH05107481A (en) Stereoscopic microscope
JPH03503323A (en) Optical device that projects images for three-dimensional observation
JPS61226723A (en) Stereomicroscope
JP2001311876A (en) Stereo-microscope
JPS61100714A (en) Stereoscopic microscope