JPH0526171B2 - - Google Patents

Info

Publication number
JPH0526171B2
JPH0526171B2 JP58143686A JP14368683A JPH0526171B2 JP H0526171 B2 JPH0526171 B2 JP H0526171B2 JP 58143686 A JP58143686 A JP 58143686A JP 14368683 A JP14368683 A JP 14368683A JP H0526171 B2 JPH0526171 B2 JP H0526171B2
Authority
JP
Japan
Prior art keywords
optical
objective lens
eyepiece
optical axis
systems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58143686A
Other languages
Japanese (ja)
Other versions
JPS6035708A (en
Inventor
Toshikazu Yoshino
Shinichi Nishimura
Kazutoshi Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP58143686A priority Critical patent/JPS6035708A/en
Priority to US06/637,503 priority patent/US4601550A/en
Priority to DE19843429240 priority patent/DE3429240A1/en
Publication of JPS6035708A publication Critical patent/JPS6035708A/en
Priority to US06/817,931 priority patent/US4702570A/en
Publication of JPH0526171B2 publication Critical patent/JPH0526171B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements
    • G02B21/22Stereoscopic arrangements

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は双眼実体顕微鏡の光学構成に関し、さ
らに詳しくは眼科分野で利用されるスリツトラン
プの双眼顕微鏡の光学構成に関するものである。 双眼実体顕微鏡の光学型式はグリノー型とガリ
レオ型に大別される。グリノー型は第1図に模式
的に示すように2つの光路及びが狭角ωをも
つて被検物面で交差するように構成されている。
これら光路,にはそれぞれ対物レンズ系1
a,1b、正立光学系2a,2b、及び接眼レン
ズ系3a,3bを有しており、かつ対物レンズへ
の入射光軸Aと接眼の観察光軸Bが平行にな
るように構成されている(同様に光路において
も、その入射光軸Aと観察光軸Bは平行)。
ここで狭角ωは検者眼e1,e2が被検物Eを顕微鏡
を使わずに肉眼で自然視状態で近距離観察すると
きの輻輳角10°〜16°が選ばれる。このため、グリ
ノー型双眼顕微鏡では、対物レンズへの入射光軸
A,Aの狭角ω(以下これをステレオアング
ルという)と接眼レンズ系3a,3bの観察光軸
B,Bの狭角θ(以下これを観察角という)
とが等しく、かつ上述のようにステレオアングル
ωが自然視状態の輻輳角に等しく構成されていた
め、自然な立体視ができるという長所を有する。
しかしながら、光路,を斜交させるため、光
学部品組み付けのための機械加工が複雑であり、
また対物レンズ系1a,1bと正立光学系2a,
2bとの間に通常配置される図示しない合焦や変
倍光学系の構成も複雑となるという欠点を有して
いた。 他方、ガリレオ型双眼顕微鏡は第2図に示すよ
うに光路及びはその光軸を互いにの平行に構
成している。光路は対物レンズ系4と、中間像
Paを作るための結像レンズ系7a、正立光学系
5a、及び中間像Paを観察するための接眼レン
ズ系6aとから構成される。また、光路は前記
対物レンズ系4を共通の対物レンズをして有し、
かつ光路と同様に結像レンズ系7b、正立光学
系5b、接眼レンズ系6bとから構成される。こ
こで両結像レンズ系7a,7bの光軸は、互いに
平行でかつ対物レンズ系4の光軸4aとも平行に
なつている。また、接眼レンズ系6a,6bの観
察光軸B,Bも結像レンズ系7a,7bの光
軸とそれぞれ平行になるよう構成されている。結
像レンズ系7a,7bの間隔で定義される基線長
lによつて対物レンズ系4への入射光軸A,
Aの作るステレオアングルωが定められる。この
ステレオアングルωによる視差をもつため、観察
光軸B,Bが作る観察角θが0であつても被
検物Eの立体視することができる。このガリレオ
型双眼顕微鏡は、上述したように2つの光路,
が互いに平行であるため光学系の構成が簡単で
あり、合焦機構や変倍機構の構成も簡単にでき、
また、撮影光学系や側視鏡等の附属光路の追加も
比較的楽にできる長所を有していた。 一般に、人間の眼は、遠方視状態では、両眼視
線に輻輳がなく、また水晶体の調節をしないもつ
とも楽で疲労の少ない観察状態をとつている。こ
のことは顕微鏡観察においても同様で、両観察光
軸B,Bが互いに平行なガリレオ型顕微鏡の
方が両者が輻輳しているグリノー型のそれよりも
観察時の疲労が少なく長時間の観察に有利である
といわれている。 しかしながら、顕微鏡は近距離に配置された小
物体を拡大観察する装置であり、ガリレオ型顕微
鏡におちえ、たとえ、光学的にはあたかも無限遠
方からの光束が眼に入射しようとも、脳へは近距
離の物体を見ているという前提情報があり、自然
な感覚との間に差を生むという欠点があつた。こ
のことは、特に、眼の回旋運動情報、すなわち輻
輳運動情報がないにもかかわらず、ステレオアン
グルωに起因する視差が観察されるため、観察者
は通常の立体感よりも強い不自然な立体視をする
という欠点があつた。 また、さらに眼科分野で利用されるスリツトラ
ンプ装置の双眼実体顕微鏡の場合を例にとれば、
医師は被検眼へのスリツト照明光の照射位置の調
整やスリツトの幅、長さ等の調整、あるいは被検
眼への簡単な手術処置のためにしばしば被検眼を
肉眼で観察する必要があり、その時は当然に医師
の観察眼は近用視状態におかれる。そして、次に
は顕微鏡をのぞき輻輳のない遠方視状態に眼を開
散させ、立体視しなければならず、なかなか瞬時
には隔像や立体視ができないという欠点があつ
た。 このようなガリレオ型双眼実体顕微鏡における
立体感の誇張や肉眼視から立体視生の開散運動の
必要性等は、従来いわれていた観察疲労の少なさ
を打消し、逆にグリノー型顕微鏡に比して観察疲
労が大きくなつたり、観察の不正確さや、距離感
誤認による処置ミスを招くなど、前述の種々の長
所を持つにもかかわらず、ガリレオ型顕微鏡の欠
点となつていた。 他方、グリノー型双眼実体顕微鏡にあつては、
被検物の肉眼による近用視と同じ立体視感で顕微
鏡下においても観察ができるという上述と長所を
有するが、より微少な高低差を知りたいとき、自
然視に近い立体感では判別ができない場合があ
り、立体感を強めたいという要求があつた。 本発明は、以上述べた従来の双眼顕微鏡の種々
の欠点の解消や要求を満たすためになされたもの
である。 以下、本発明を良好な実施例を示す図をもとに
説明する。第3図は本発明に係る双眼実体顕微鏡
を、スリツトランプの双眼実体顕微鏡部を例にそ
の光学配置を示すものである。この双眼顕微鏡
は、被検物Eの第1と第2の中間像102,20
2を作るための対物光学系、および接眼レンズ系
105,205をもち、第1光路100と第1光
路200の2つの光路から構成されている。第1
光路100は共通の単対物レンズ系101、中間
像102を結像するためのレンズでかつ単対物レ
ンズ系101の光軸101aと平行にその光軸を
もつ結像レンズ系103、光路偏光手段であり、
かつ正立光学系としての変形ポリプリズム10
4、及び中間像102を観察するための接眼レン
ズ系105から構成されている。他方、第2光路
200は、前記単対物レンズ系101、中間像2
02を形成するためのレンズでかつ単対物レンズ
系101の光軸101aと平行にその光軸をもつ
結像レンズ203、光路偏向手段であり、かつ正
立光学系としての変形ポロプリズム204、及び
中間像202を観察するための接眼レンズン系2
05から構成されている。 この型式で示す対物光学系は、1つの共通な対
物レンズ系101と対物レンズ系101の光軸1
01aと平行な光軸を有し、第1と第2の中間像
102,202を形成するための第1と第2の結
像レンズ系103,203とから構成されてい
る。 ここで、変形ポリプリズム104,204を構
成するプリズム106,206のそれぞれの頂角
αは(90°−ω/4)の大きさを持たせている。
ωは被検物Eへの、第1光路100の入射光軸1
00Aと第2光路200の入射光軸200Aとの
作るステレオアングルであり、大きさは2つの結
像レンズ103と203との間の基線長lによつ
て定まる。上記のαとωの関係から第1光路10
0の観察光軸100Bと第2光路200の観察光
軸200Bとの成す観察角θはステレオアングル
ωと等しい角度に構成される。 このようにステレオアングルωと観察角θとを
等しくすると、肉眼による自然な立体視感にもつ
とも近い観察感をもつことは以下の実験結果から
も裏付けられた。 実験は第4図に示すような内径a=2.0m/m、
深さd=2.0m/m(深さ/内径比=1)の円錐
柱穴300を有する被検物体を第1表に示す10人
の観察者にまず肉眼で観察させ、次に第2表に示
す5種類の双眼実体顕微鏡を使つて上記被検物体
を全観察者に観察させた。そして、各機種毎に顕
微鏡下観察における被検物体の内径aと深さdの
比が上記肉眼時のそれより大きいか小さいかを1
から5までの5段階評価で答えてもらつた。な
お、肉眼と同程度の場合を3とし、立体感が強く
なる。すなわち、深さ/内径比が大きくなる程
4、5と答えさせ、逆に立体感が少ない場合は
2、1と小さい数で答えさせた。10名の観察者に
よる5機種の顕微鏡の立体感は第3表の通りであ
る。
The present invention relates to an optical configuration of a binocular stereomicroscope, and more particularly to an optical configuration of a binocular microscope with a slit lamp used in the ophthalmology field. The optical types of binocular stereomicroscopes are broadly divided into Greenough type and Galileo type. As schematically shown in FIG. 1, the Greenough type is constructed such that two optical paths intersect at a narrow angle ω at the object surface.
Each of these optical paths has an objective lens system 1.
a, 1b, erecting optical systems 2a, 2b, and eyepiece systems 3a, 3b, and is configured such that the optical axis A of incidence on the objective lens and the observation optical axis B of the eyepiece are parallel. (Similarly, in the optical path, the incident optical axis A and observation optical axis B are parallel).
Here, the narrow angle ω is selected to be a convergence angle of 10° to 16° when the examiner's eyes e 1 and e 2 observe the subject E at close range in a natural visual state with the naked eye without using a microscope. Therefore, in the Greenough binocular microscope, the narrow angle ω between the optical axes A and A of incidence on the objective lens (hereinafter referred to as stereo angle) and the narrow angle θ between the observation optical axes B and B of the eyepiece systems 3a and 3b ( (hereinafter referred to as observation angle)
are equal, and as described above, the stereo angle ω is configured to be equal to the convergence angle in the natural viewing state, so it has the advantage of allowing natural stereoscopic viewing.
However, since the optical paths are obliquely crossed, machining for assembling optical components is complicated.
Also, objective lens systems 1a, 1b and erecting optical system 2a,
2b, the configuration of a focusing and variable magnification optical system (not shown), which is usually arranged between the lens and the lens 2b, is also complicated. On the other hand, the Galilean type binocular microscope has optical paths and optical axes parallel to each other, as shown in FIG. The optical path includes objective lens system 4 and an intermediate image.
It is composed of an imaging lens system 7a for forming Pa, an erecting optical system 5a, and an eyepiece system 6a for observing intermediate image Pa. Further, the optical path has the objective lens system 4 as a common objective lens,
Similarly to the optical path, it is composed of an imaging lens system 7b, an erecting optical system 5b, and an eyepiece system 6b. Here, the optical axes of both imaging lens systems 7a and 7b are parallel to each other and also parallel to the optical axis 4a of the objective lens system 4. Further, the observation optical axes B and B of the eyepiece lens systems 6a and 6b are also configured to be parallel to the optical axes of the imaging lens systems 7a and 7b, respectively. The optical axis A of incidence on the objective lens system 4 is determined by the base line length l defined by the interval between the imaging lens systems 7a and 7b.
The stereo angle ω created by A is determined. Because of the parallax caused by this stereo angle ω, the object E can be viewed stereoscopically even if the observation angle θ formed by the observation optical axes B and B is 0. As mentioned above, this Galileo type binocular microscope has two optical paths,
are parallel to each other, so the configuration of the optical system is simple, and the configuration of the focusing mechanism and variable magnification mechanism is also simple.
It also had the advantage that it was relatively easy to add accessory optical paths such as a photographing optical system and a side mirror. In general, when the human eye is in a far viewing state, there is no convergence in the line of sight of both eyes, and even without adjusting the crystalline lens, the human eye is able to observe in a comfortable and fatigue-free state. The same is true for microscopic observation; a Galileo-type microscope, in which both observation optical axes B and B are parallel to each other, is less tiring during observation than a Greenough-type microscope, in which both observation optical axes are convergent, and can be used for long-term observation. It is said to be advantageous. However, a microscope is a device that magnifies and observes a small object placed at a close distance, and is comparable to a Galilean type microscope. The disadvantage was that there was prerequisite information that the user was looking at an object at a distance, which created a difference from the natural sensation. This is especially true because the parallax caused by the stereo angle ω is observed even though there is no eye rotational movement information, that is, no convergence movement information, so the viewer perceives an unnatural stereoscopic effect that is stronger than the normal stereoscopic effect. I had the disadvantage of being able to see. Furthermore, if we take the case of a binocular stereomicroscope, which is a slit lamp device used in the ophthalmology field, as an example,
Doctors often need to visually observe the eye to be examined in order to adjust the irradiation position of the slit illumination light onto the eye, adjust the width and length of the slit, or perform simple surgical procedures on the eye. Naturally, the doctor's observing eye is placed in a near-sighted state. Next, he had to look through a microscope and dilate his eyes to a state of distance vision without convergence to see stereoscopically, which had the disadvantage that it was not possible to instantly achieve distance vision or stereoscopic vision. The exaggeration of the stereoscopic effect and the need for divergence movement from macroscopic to stereoscopic viewing in the Galileo type binocular stereomicroscope negates the conventionally said lack of observation fatigue, and on the contrary, compared to the Greenough type microscope. Despite having the various advantages mentioned above, the Galilean type microscope had disadvantages such as increased observation fatigue, inaccurate observation, and treatment errors due to misperception of distance. On the other hand, in the case of a Greenough-type binocular stereomicroscope,
It has the above-mentioned advantage of being able to observe the object under a microscope with the same 3D visibility as close vision with the naked eye, but when you want to know even more minute differences in height, you cannot distinguish with the 3D visibility close to natural vision. In some cases, there was a request to enhance the three-dimensional effect. The present invention has been made in order to eliminate the various drawbacks of the conventional binocular microscopes described above and to satisfy the demands. The present invention will be described below with reference to figures showing preferred embodiments. FIG. 3 shows the optical arrangement of a binocular stereomicroscope according to the present invention, taking the binocular stereomicroscope section of a slit lamp as an example. This binocular microscope has first and second intermediate images 102 and 20 of the object E.
The optical system has an objective optical system for creating the optical system 2, and an eyepiece system 105, 205, and is composed of two optical paths, a first optical path 100 and a first optical path 200. 1st
The optical path 100 includes a common single objective lens system 101, an imaging lens system 103 which is a lens for forming an intermediate image 102 and whose optical axis is parallel to the optical axis 101a of the single objective lens system 101, and an optical path polarizing means. can be,
And deformed polyprism 10 as an erecting optical system
4, and an eyepiece system 105 for observing the intermediate image 102. On the other hand, the second optical path 200 includes the single objective lens system 101 and the intermediate image 2.
02, an imaging lens 203 having its optical axis parallel to the optical axis 101a of the single objective lens system 101, a deformed Porro prism 204 serving as an optical path deflection means and an erecting optical system, and Eyepiece system 2 for observing intermediate image 202
It consists of 05. The objective optical system shown in this type has one common objective lens system 101 and an optical axis 1 of the objective lens system 101.
01a, and is composed of first and second imaging lens systems 103 and 203 for forming first and second intermediate images 102 and 202. Here, the apex angle α of each of the prisms 106 and 206 constituting the deformed polyprisms 104 and 204 is (90°−ω/4).
ω is the incident optical axis 1 of the first optical path 100 to the test object E.
This is a stereo angle formed by 00A and the incident optical axis 200A of the second optical path 200, and the size is determined by the base line length l between the two imaging lenses 103 and 203. From the above relationship between α and ω, the first optical path 10
The observation angle θ formed by the observation optical axis 100B of 0 and the observation optical axis 200B of the second optical path 200 is configured to be equal to the stereo angle ω. The following experimental results also support the fact that when the stereo angle ω and the viewing angle θ are made equal in this manner, the viewing feeling is close to the natural stereoscopic viewing feeling seen by the naked eye. The experiment was conducted using an inner diameter a = 2.0 m/m as shown in Figure 4.
A test object having a conical cylindrical hole 300 with a depth d = 2.0 m/m (depth/inner diameter ratio = 1) was first observed with the naked eye by the 10 observers shown in Table 1, and then the objects shown in Table 2 were All the observers observed the above-mentioned test object using the five types of binocular stereomicroscopes shown in FIG. Then, for each model, determine whether the ratio of the inner diameter a to the depth d of the object to be examined when observed under a microscope is larger or smaller than that observed with the naked eye.
They were asked to answer on a 5-point scale from 5 to 5. Note that 3 indicates a case where the image is comparable to that seen with the naked eye, and the three-dimensional effect becomes stronger. That is, as the depth/inner diameter ratio increased, the subjects were asked to answer 4 or 5, and conversely, when the three-dimensional effect was less, they were asked to answer smaller numbers such as 2 or 1. Table 3 shows the three-dimensional effects of five types of microscopes obtained by 10 observers.

【表】【table】

【表】【table】

【表】 第3表の結果からわかるように、観察者の立体
感は観察角θともつとも密接な関係にあり、本願
もガリレオ型もグリノー型もともに観察角θが小
さくなる程立体感は大きくなる。また、両型式と
もステレオアングルωと観察角θとが等しい場
合、肉眼と同様の自然な立体感が得られることが
立証された。 以上、説明したように、本実施例によれば、結
像レンズ103,203の光軸を互いに平行配置
のままにしているため、この前後に配置される変
倍光学系や合焦光学系(結像レンズがこれを兼ね
る場合もある)及びこれらの駆動機構がグリノー
型に比較して簡単にできるし、また撮像光学系等
の附属光学系の組み込みも容易であるというガリ
レオ型式の双眼実体顕微鏡の利点と、肉眼観察時
と同様の自然な立体感で顕微鏡下観察ができるグ
リノー型の利点を合せ持つ、新しいガリレオ型式
の双眼実体顕微鏡を得ることができる。 上記第1の実施例においてはステレオアングル
ωと観察角θが等しく成るよう固定的構成とした
が、観察角θを可変とすることによつて、グリノ
ー型式、ガリレオ型式両型式とも、顕微鏡下観察
時の立体感を肉眼時のそれよりも大きくしたり、
小さくしたり変化できることが望まれる場合があ
る。 第5図は、そのため観察角調節手段を備えた構
成の1実施例を示すもので、第1図または第2図
に示した両型式の光路偏光手段であり、かつ正立
光学系の変形例を一つの光路の正立光学系のみを
図示するものである。光路偏向手段である正立光
学系400は2つのドーププリズム401と40
2とから構成され、第2のドーププリズム402
の反射面402aは第1のドーププリズム401
の反射面401aに対し垂直になるように配置さ
れており、両ドーププリズムにより倒立像が正立
像として観察されるよう正立光学系を構成してい
る。そして、第2ドーププリズム402を軸40
3を回転軸として回転することにより観察光軸4
04を水平面内で移動できる観察角調節手段をも
つており、この観察角θを変化させることにより
立体感を変化させ得るように構成されている。 第6図は立体感を変化させるための他の実施例
を示す図である。一つの光路の光路偏向手段であ
る正立光学系410は、第1の直角プリズム41
1と、回転ミラー412と、第1直角プリズム4
11の稜線と垂直な面内に稜線をもつ第2の直角
プリズム413とから構成され、しかも回転ミラ
ー412と第2直角プリズム413とは接眼レン
ズ500とともに一体となつて回転軸412aを
軸として回転できるような観察角調節手段をもつ
て構成されている。これにより、観察角θを変化
させ、もつて立体感を変化できるようにしてい
る。 第7図は、立体感を可変とするためのさらに他
の実施例を示す図であり、一つの光路の光路偏向
手段である正立光学系420はダハ面421aを
有するダハ直角プリズム421と、第2の直角プ
リズム422とから構成され、この第2直角プリ
ズム422は、その反射面422a内の回転軸4
22bを中心に接眼レンズ500と一体に回転で
きるような観察角調節手段をもつて構成されてい
る。これにより、観察角θを変化させ、立体感を
変化できるようにしている。また、第2直角プリ
ズム422はダハ直角プリズム421との間隔D
を変化でき、これにより観察者の瞳孔間距離に観
察光学系を調節できるように構成されている。 ところで、このような観察角調節手段を備える
ことは、第3図に示す例に限らず、第1図に示す
グリノー型、第2図に示すガリレオ型においても
適用できる。この場合、グリノー型は、対物レン
ズ型と結像レンズ系とが共用されており、対物光
学系は第1の中間像を形成するための第1を対物
レンズ系1aと第2の中間像を形成するための第
2の対物レンズ系1bとからなり、かつ第1と第
2の対物レンズ系1a,1bはステレオアングル
ωを有するように互いの光軸を交差している。 以上説明したように、第5図から第7図の観察
角調節手段をもつ双眼実体顕微鏡を使用すれば、
顕微鏡下の観察時の立体感を自由に選ぶことがで
き、立体視観察に極めて便利である。 また、上記の各実施例とも観察角θを得るのに
反射面を利用しているが、本願はこれに限定され
るものでなく、プリズムの屈折作用を利用しても
よい。第8図はその一例を示すもので、第1光路
100の対物レンズ101と結像レンズ103の
間に観察角θを形成するための偏向プリズム50
5を、同様に第2光路200の対物レンズ100
と結像レンズ203の間に観察角θを形成するた
めの偏向プリズム506をそれぞれ配置すること
により観察角θを得ている。なお、本実施例で
は、さらに偏向プリズム505は色消しの小プリ
ズム501と502から成るロータリープリズム
で構成され、これらは軸505aを回転軸として
互いに反対方向に同量づつ回転するロータリープ
リズムを採用している。また同様に偏向プリズム
506も色消し小プリズム503,504から成
るロータリープリズムで構成されている。これら
観察角調節手段であるロータリープリズムを作動
させると、観察角θが変化できるようになつてい
る。なお、結像レンズ103,203以降の左右
それぞれの接眼系もロータリプリズムの作動と同
時に連動してその交差角を変化させ、観察角θの
変化に追従して軸ズレをおこさないように構成さ
れている。本願発明は、以上説明したように各正
立光学系の光軸上でこの光軸に沿つて進む光線を
各接眼レンズの光軸に沿つて進ませるという条件
を維持させつつ、第1と第2の接眼レンズの観察
光軸の作る観察角θを変化させる観察角調節手段
を対物レンズと接眼レンズとの間に設ける構成と
したので、グリノー型実体顕微鏡、ガリレオ型実
体顕微鏡の双方の長所を兼ね備えさせつつ、か
つ、観察像の劣化を伴うことなく顕微鏡下の観察
時の立体感を自由に選ぶことができ、立体視観察
に極めて便利な双眼実体顕微鏡を提供することが
できるという効果を奏する。 また、各接眼レンズ系と対物レンズとの間で前
記対物光学系の光軸と平行な光軸に沿つて定義さ
れる一対の光路に、互いに外側に向けて偏向させ
て観察角を形成するための偏向プリズムを設ける
ことによる検者の視軸と各接眼レンズの光学中心
を通る光軸とが一致するように構成したので、眼
幅調整の際に接眼レンズ系を互いに接近する方向
又は離れる方向に回動させたとしても偏向プリズ
ムは、その眼幅調整のための接眼レンズ系の回動
に伴つて回動せず、従つて眼幅調整に伴う観察角
の補正を行うために偏向プリズムを回転させる必
要がないという効果を奏する。
[Table] As can be seen from the results in Table 3, the viewer's three-dimensional impression is closely related to the viewing angle θ, and for both the Galileo type and the Greenough type, the smaller the viewing angle θ, the greater the three-dimensional effect. Become. Furthermore, it has been proven that in both types, when the stereo angle ω and the observation angle θ are equal, a natural three-dimensional effect similar to that seen with the naked eye can be obtained. As explained above, according to this embodiment, since the optical axes of the imaging lenses 103 and 203 remain parallel to each other, the variable magnification optical system and the focusing optical system ( (In some cases, the imaging lens also serves as this function) and the drive mechanism for these is simpler than that of the Greenough type, and it is also easier to incorporate attached optical systems such as the imaging optical system in the Galileo type binocular stereo microscope. It is possible to obtain a new Galileo-type binocular stereomicroscope that combines the advantages of the Greenough type, which allows observation under a microscope with the same natural three-dimensional effect as when observed with the naked eye. In the first embodiment, the configuration is fixed so that the stereo angle ω and the observation angle θ are equal, but by making the observation angle θ variable, both Greenough type and Galileo type can be used for observation under a microscope. Making the three-dimensional effect of time larger than that seen with the naked eye,
It may be desirable to be able to make it smaller or change it. FIG. 5 shows an embodiment of a configuration equipped with an observation angle adjusting means for this purpose, which is both types of optical path polarizing means shown in FIG. 1 or FIG. 2, and a modification of the erecting optical system. shows only an erect optical system with one optical path. The erecting optical system 400, which is an optical path deflection means, includes two doped prisms 401 and 40.
2, the second doped prism 402
The reflective surface 402a of the first doped prism 401
The two doped prisms constitute an erecting optical system such that an inverted image is observed as an erect image. Then, the second doped prism 402 is
3 as the rotation axis, the observation optical axis 4
04 within a horizontal plane, and is configured so that the three-dimensional effect can be changed by changing the viewing angle θ. FIG. 6 is a diagram showing another embodiment for changing the three-dimensional effect. An erecting optical system 410 which is an optical path deflection means for one optical path includes a first right angle prism 41
1, a rotating mirror 412, and a first right angle prism 4
The rotating mirror 412 and the second right angle prism 413 are integrated with the eyepiece 500 and rotate about the rotation axis 412a. The camera is constructed with observation angle adjustment means that allows the user to adjust the observation angle. This allows the viewing angle θ to be changed, thereby making it possible to change the three-dimensional effect. FIG. 7 is a diagram showing still another embodiment for making the three-dimensional effect variable, in which an erecting optical system 420 that is an optical path deflection means for one optical path includes a roof rectangular prism 421 having a roof surface 421a, This second right-angle prism 422 has a rotation axis 4 within its reflecting surface 422a.
The viewing angle adjustment means is configured to be able to rotate integrally with the eyepiece lens 500 about 22b. This allows the viewing angle θ to be changed and the three-dimensional effect to be changed. Further, the distance D between the second right angle prism 422 and the roof right angle prism 421 is
The optical system is configured so that the observation optical system can be adjusted to the interpupillary distance of the observer. Incidentally, the provision of such an observation angle adjusting means is applicable not only to the example shown in FIG. 3 but also to the Greenough type shown in FIG. 1 and the Galileo type shown in FIG. 2. In this case, in the Greenough type, the objective lens type and the imaging lens system are used in common, and the objective optical system uses the first objective lens system 1a for forming the first intermediate image and the second intermediate image. The first and second objective lens systems 1a and 1b intersect each other's optical axes so as to form a stereo angle ω. As explained above, if a binocular stereomicroscope with the observation angle adjusting means shown in FIGS. 5 to 7 is used,
You can freely select the stereoscopic effect when observing under a microscope, making it extremely convenient for stereoscopic observation. Further, although each of the above embodiments uses a reflective surface to obtain the observation angle θ, the present application is not limited to this, and the refraction effect of a prism may also be used. FIG. 8 shows an example of this, in which a deflection prism 50 is used to form an observation angle θ between the objective lens 101 and the imaging lens 103 in the first optical path 100.
5, similarly, the objective lens 100 of the second optical path 200
The observation angle θ is obtained by disposing deflection prisms 506 for forming the observation angle θ between the image forming lens 203 and the imaging lens 203, respectively. In this embodiment, the deflection prism 505 is further constituted by a rotary prism consisting of small achromatic prisms 501 and 502, and these rotary prisms rotate by the same amount in opposite directions about a shaft 505a. ing. Similarly, the deflection prism 506 is also constituted by a rotary prism consisting of small achromatic prisms 503 and 504. By operating the rotary prism serving as the viewing angle adjustment means, the viewing angle θ can be changed. Note that the left and right eyepiece systems after the imaging lenses 103 and 203 are also configured to change their crossing angles in conjunction with the operation of the rotary prism, so as to follow changes in the observation angle θ so as not to cause axis misalignment. ing. As explained above, the present invention maintains the condition that the light rays traveling along the optical axis of each erecting optical system travel along the optical axis of each eyepiece, and Since the observation angle adjusting means for changing the observation angle θ formed by the observation optical axis of the second eyepiece is provided between the objective lens and the eyepiece, the advantages of both the Greenough type stereo microscope and the Galileo type stereo microscope are achieved. In addition, it is possible to freely select the stereoscopic effect during observation under the microscope without deteriorating the observed image, and it is possible to provide a binocular stereomicroscope that is extremely convenient for stereoscopic observation. . Further, a pair of optical paths defined between each eyepiece lens system and the objective lens along an optical axis parallel to the optical axis of the objective optical system is deflected outward from each other to form an observation angle. By providing a deflecting prism, the examiner's visual axis is aligned with the optical axis passing through the optical center of each eyepiece, so when adjusting interpupillary distance, the eyepiece system can be moved in the direction toward or away from each other. Even if the deflection prism is rotated, the deflection prism will not rotate with the rotation of the eyepiece lens system for adjusting the interpupillary distance. This has the effect that there is no need to rotate it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来グリノー型双眼実体顕微鏡の光学
配置を示す図、第2図は従来のガリレオ型双眼実
体顕微鏡の光学配置を示す図、第3図は本願の第
1の実施例を示す光学配置図、第4図は立体感テ
ストに使用した被検物を示す斜視図、第5図は本
発明の第2の実施例をその一方の光路の正立光学
系部のみを示す図、第6図は本発明の第3の実施
例をその一方の光路の正立光学系部のみで示す
図、第7図は本願発明の第4の実施例をその一方
の光路の正立光学系部のみで示す図、第8図は本
発明の第5の実施例を示す光学配置図である。 100B,200B……観察光軸、1a,1
b,101……対物レンズ系、102,202…
…中間像、103,203……結像レンズ系、1
04,204,400,410,420……光路
偏向手段、105,205……接眼レンズ系、ω
……ステレオアングル、θ……観察角、E……被
検物。
Fig. 1 is a diagram showing the optical arrangement of a conventional Greenough type binocular stereo microscope, Fig. 2 is a diagram showing the optical arrangement of a conventional Galileo type binocular stereo microscope, and Fig. 3 is an optical arrangement showing the first embodiment of the present application. 4 is a perspective view showing the object to be tested used for the stereoscopic effect test, FIG. The figure shows the third embodiment of the present invention with only the erecting optical system part of one optical path, and FIG. 7 shows the fourth embodiment of the present invention with only the erecting optical system part of one optical path. FIG. 8 is an optical layout diagram showing a fifth embodiment of the present invention. 100B, 200B...Observation optical axis, 1a, 1
b, 101... Objective lens system, 102, 202...
...Intermediate image, 103,203...Imaging lens system, 1
04,204,400,410,420...Optical path deflection means, 105,205...Eyepiece system, ω
...stereo angle, θ...observation angle, E...test object.

Claims (1)

【特許請求の範囲】 1 被検物の第1と第2の中間像を作るための対
物光学系と、該第1と第2の中間像のそれぞれを
観察するための第1と第2の接眼レンズ系とを有
し、前記中間像を正立像として観察できるように
第1と第2の正立光学系を前記第1と第2の接眼
レンズの前方にそれぞれ配置した双眼実体顕微鏡
であつて、 前記第1と第2の接眼レンズ系の作る観察角θ
を変化させて観察角の立体感を変化させるための
観察角調節手段として前記第1と第2の正立光学
系を用い、該観察角調節手段はその光軸上でこの
光軸に沿つて進む光線を各接眼レンズの光軸に沿
つて進ませるという条件が維持されていることを
特徴とする双眼実体顕微鏡。 2 対物光学系は1つの共通な対物レンズ系と該
対物レンズ系の光軸と平行な光軸を有し、第1と
第2の結像レンズ系とから構成されたことを特徴
とする特許請求の範囲第1項に記載の双眼実体顕
微鏡。 3 対物光学系は第1の中間像を形成するための
第1の対物レンズ系と、第2の中間像を形成する
ための第2の対物レンズ系とからなり、かつ該第
1と第2の対物レンズ系はステレオアングルωを
有するように互いの光軸を交差してなることを特
徴とする特許請求の範囲第1項記載の双眼実体顕
微鏡。 4 一個の対物レンズを有し被検物の第1と第2
の中間像を作るための対物光学系と、該第1と第
2の接眼レンズ系と、該各接眼レンズ系と前記各
対物レンズとの間に設けられた第1、第2の正立
光学系とを有し、該各正立光学系と前記対物レン
ズとの間で該対物レンズの光学中心を通る光軸と
平行な光軸に沿つて定義される一対の光路に、該
一対の光路を互いに外側に向けて偏向させて観察
角を形成する偏向プリズムを設けることにより検
者の視軸と各接眼レンズの光学中心を通る光軸と
が一致するように構成したことを特徴とする双眼
実体顕微鏡。
[Scope of Claims] 1. An objective optical system for forming first and second intermediate images of a subject, and first and second optical systems for observing the first and second intermediate images, respectively. a binocular stereomicroscope, the binocular stereomicroscope has an eyepiece system, and has first and second erecting optical systems disposed in front of the first and second eyepieces, respectively, so that the intermediate image can be observed as an erect image. The observation angle θ formed by the first and second eyepiece systems is
The first and second erecting optical systems are used as viewing angle adjusting means for changing the three-dimensional effect of the viewing angle by changing the angle of view, and the viewing angle adjusting means is arranged along the optical axis on the optical axis. A binocular stereomicroscope characterized in that the condition is maintained that the traveling light ray travels along the optical axis of each eyepiece. 2. A patent characterized in that the objective optical system has one common objective lens system and an optical axis parallel to the optical axis of the objective lens system, and is composed of a first and a second imaging lens system. A binocular stereomicroscope according to claim 1. 3. The objective optical system consists of a first objective lens system for forming a first intermediate image and a second objective lens system for forming a second intermediate image, and 2. The binocular stereomicroscope according to claim 1, wherein the objective lens systems have their optical axes intersecting each other so as to have a stereo angle ω. 4 has one objective lens and the first and second
an objective optical system for creating an intermediate image, the first and second eyepiece systems, and first and second erecting optical systems provided between each of the eyepiece systems and each of the objective lenses. a pair of optical paths defined between each erecting optical system and the objective lens along an optical axis parallel to an optical axis passing through the optical center of the objective lens; Binoculars characterized in that the binoculars are configured such that the visual axis of the examiner coincides with the optical axis passing through the optical center of each eyepiece by providing deflecting prisms that deflect the lenses outward from each other to form an observation angle. Stereo microscope.
JP58143686A 1983-08-08 1983-08-08 Stereo microscope Granted JPS6035708A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58143686A JPS6035708A (en) 1983-08-08 1983-08-08 Stereo microscope
US06/637,503 US4601550A (en) 1983-08-08 1984-08-01 Stereo-microscope with a common objective lens system
DE19843429240 DE3429240A1 (en) 1983-08-08 1984-08-08 STEREOMICROSCOPE
US06/817,931 US4702570A (en) 1983-08-08 1986-01-10 Stereo-microscope with two observation optical systems each including a right angle prism and a roof right angle prism providing both rotation and relative separation adjustments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58143686A JPS6035708A (en) 1983-08-08 1983-08-08 Stereo microscope

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6009054A Division JPH075372A (en) 1994-01-31 1994-01-31 Stereo-microscope

Publications (2)

Publication Number Publication Date
JPS6035708A JPS6035708A (en) 1985-02-23
JPH0526171B2 true JPH0526171B2 (en) 1993-04-15

Family

ID=15344589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58143686A Granted JPS6035708A (en) 1983-08-08 1983-08-08 Stereo microscope

Country Status (1)

Country Link
JP (1) JPS6035708A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226722A (en) * 1985-03-29 1986-10-08 Canon Inc Stereomicroscope
JPH0641208Y2 (en) * 1988-04-30 1994-10-26 株式会社高木製作所 Combination prism and binocular microscope using this combination prism
JP4221935B2 (en) 2002-02-05 2009-02-12 株式会社大林組 Double floor structure
JP4847095B2 (en) * 2005-10-24 2011-12-28 オリンパス株式会社 Stereo microscope binocular tube
US20100259820A1 (en) * 2007-05-14 2010-10-14 Mitaka Kohki Co., Ltd Stereoscopic image display
JP6588750B2 (en) 2015-06-30 2019-10-09 株式会社トプコン Ophthalmic microscope system
JP6707162B2 (en) * 2019-03-14 2020-06-10 株式会社トプコン Ophthalmic microscope system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536805U (en) * 1978-08-31 1980-03-10
JPS5819530U (en) * 1981-07-29 1983-02-07 サンケン電気株式会社 Interlocking mechanism of push button tuner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536805U (en) * 1978-08-31 1980-03-10
JPS5819530U (en) * 1981-07-29 1983-02-07 サンケン電気株式会社 Interlocking mechanism of push button tuner

Also Published As

Publication number Publication date
JPS6035708A (en) 1985-02-23

Similar Documents

Publication Publication Date Title
US7768702B2 (en) Medical stereo observation system
US4601550A (en) Stereo-microscope with a common objective lens system
US5321447A (en) Ophthalmoscopic attachment for a surgical microscope
US4761066A (en) Stereoscopic optical system
US5438456A (en) Optical stereoscopic microscope system
KR0147414B1 (en) Optical magnifying apparatus
US5668661A (en) Microscope
JPS61269108A (en) Stereoscopic microscope for implementing operation
JPH0554087B2 (en)
US4704012A (en) Stereoscopic microscope
JPH085923A (en) Stereomicroscope
JP4508569B2 (en) Binocular stereoscopic observation device, electronic image stereoscopic microscope, electronic image stereoscopic observation device, electronic image observation device
EP0890127B1 (en) Binocular night vision goggles, where one ocular could be moved from the beam path
JP3290467B2 (en) Binocular stereo microscope
US6081372A (en) Stereoscopic microscope with convergent optics provided with a slot lamp for video recording
JPH0526171B2 (en)
JPS6035707A (en) Stereomicroscope
JP2945118B2 (en) Stereo microscope
JPH075372A (en) Stereo-microscope
JP3645655B2 (en) Stereo microscope
JPS63167318A (en) Stereoscopic microscope
JP3619858B2 (en) Stereoscopic microscope
US5341239A (en) Stereomicroscope equipped with eyepiece including variable magnification optical system
JP2958096B2 (en) Stereo microscope
EP0701706B1 (en) Optical stereoscopic microscope system