JPS6035553A - Thin film solar cell device - Google Patents

Thin film solar cell device

Info

Publication number
JPS6035553A
JPS6035553A JP59132581A JP13258184A JPS6035553A JP S6035553 A JPS6035553 A JP S6035553A JP 59132581 A JP59132581 A JP 59132581A JP 13258184 A JP13258184 A JP 13258184A JP S6035553 A JPS6035553 A JP S6035553A
Authority
JP
Japan
Prior art keywords
solar cell
thin film
film solar
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59132581A
Other languages
Japanese (ja)
Inventor
Yutaka Yamauchi
豊 山内
Katsumi Imaizumi
今泉 克美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59132581A priority Critical patent/JPS6035553A/en
Publication of JPS6035553A publication Critical patent/JPS6035553A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To obtain the titled device enabling the effective electrical connection among solar cell elements by forming plural electrodes, thin film solar cell element layers and back electrodes on an insulating substrate with the specified arrangement. CONSTITUTION:Plural electrodes 2 are formed on an insulating substrate 1 in the specified intervals and plural thin film solar cell element layers 4 are deposited to cover the electrodes 2 with leaving a part of each electrode 2. Further, back electrodes 6 are arranged on each region of the thin film solar cell element layers 4, the extended ends of which reach the exposed parts of the substrate electrodes 2 of the adjacent thin film solar cell element layers 4, thereby connecting the plural thin film solar cell elements in series. For example, on a light-transmitting glass substrate 1, electrodes 2 formed by printing with a paste of silver group, ITO transparent electrodes 3, amorphous Si thin films 4 and Ni back electrodes 6 formed by electroless plating and electrolytic plating are formed with the above described arrangement and the amorphous Si elements are connected electrically in series.

Description

【発明の詳細な説明】 く技術分野〉 本発明はアモルファス形態をなす薄膜太陽電池装置に関
するもので、特に同一基板上に複数個の素子を電気的接
続してなる薄膜太陽電池装置に関するものである。
[Detailed Description of the Invention] Technical Field The present invention relates to a thin film solar cell device in an amorphous form, and particularly relates to a thin film solar cell device in which a plurality of elements are electrically connected on the same substrate. .

〈従来技術〉 太陽エネルギーの有効利用を図るために高効率及び低価
格の電力用太陽電池の開発が急がれており、シリコン単
結晶を利用した太陽電池では低コスト化を図るためにウ
ェハーの面積を大きくして素子製造プロセスコストの低
減が試みられている。
<Prior art> In order to effectively utilize solar energy, there is an urgent need to develop high-efficiency, low-cost power solar cells. Attempts are being made to reduce the element manufacturing process cost by increasing the area.

しかし単一素子の面積を大きくした場合、出力として極
めて大きい電流が流れ、素子電極の抵抗を相昌小さくし
なければ電極抵抗による電力損失が大きくなって無視し
得なくなる。逆に電極41料か一定ならば電力損失を防
ぐために電離面積が大きくなり、素子の実効的な効率を
低下させることになる。従って従来の太陽電池において
は、ウェハーの周辺2〜8ケ所から電極全導出して相互
接続する方式が採られている。しかしこれは素子間の接
続配線コストヲ著しく高くする原因になっているO ’if:た太陽電池の出力は有効受光面積によって決別
され、出力=出力電圧X出力電流の関係にあるので、受
光面を多数の細長い矩形の単一太陽電池素子に分割し、
長辺方向に電気的に直列接続すれば、出力電圧は比例し
て増加し、相対的に出力電流を小さくすることが出来る
。従って電極抵抗に対する条件は緩和される。
However, when the area of a single element is increased, an extremely large current flows as an output, and unless the resistance of the element electrodes is reduced accordingly, the power loss due to the electrode resistance becomes large and cannot be ignored. On the other hand, if the electrode 41 charge is constant, the ionization area will increase in order to prevent power loss, which will reduce the effective efficiency of the device. Therefore, in conventional solar cells, a method is adopted in which all electrodes are led out from 2 to 8 locations around the wafer and interconnected. However, this causes the cost of connection wiring between elements to become extremely high. Divide into a large number of single rectangular solar cell elements,
If they are electrically connected in series in the long side direction, the output voltage increases proportionally, and the output current can be relatively reduced. Therefore, the conditions for electrode resistance are relaxed.

今n個の太陽電池素子を接続して太陽電池パネルを構成
する場合に、各素子間全第1図(a)の如く並列接続し
た回路と第1図(1))の如く直列接続した回路の各素
子の抵抗rによる電力損失W a + l’l’ 5 
全比へてみると、 〜’Vb−nlr となり、太陽電池パネル構造においては直列接続の方が
電力損失を小さくすることができ、上式から明らかなよ
うに素子数が増加するに従って両者のひらきは顕著にな
る。
When constructing a solar cell panel by connecting n solar cell elements, a circuit in which each element is connected in parallel as shown in Figure 1 (a) and a circuit in series as shown in Figure 1 (1)) Power loss due to resistance r of each element W a + l'l' 5
Looking at the total ratio, it becomes ~'Vb-nlr, and in the solar panel structure, series connection can reduce power loss, and as it is clear from the above equation, as the number of elements increases, the difference between the two becomes becomes noticeable.

上記のように電力損失の点で直列接続方式が優れでいる
にもかかわらず従来のシリコン結晶太陽電池にこの方式
が積極的に利用されないのは、ウェハーサイズが小さく
することによって製造プロセスの費用が高くなり、また
組立て配線費用か高くなる等の欠点があることに多くは
原因している。
Although the series connection method is superior in terms of power loss as mentioned above, it is not actively used in conventional silicon crystal solar cells because the manufacturing process costs are reduced by reducing the wafer size. This is mostly due to disadvantages such as high cost and high assembly and wiring costs.

く発明の目的〉 木兄’5Jは、上記シリコン単結晶太陽電池に代って、
素子分割が容易で且つ素子数の増加が製造プロセス及び
配線組立てコストの上昇につながらないアモルフテス薄
膜太陽電池素子を用いて装置を構成するもので、太陽電
池素子間全効率的に電気的接続した薄膜太陽電池装置を
提供する。
Purpose of the Invention: Kinoi '5J replaces the above-mentioned silicon single crystal solar cell.
The device is constructed using Amorphous thin film solar cell elements that can be easily divided into elements, and an increase in the number of elements does not lead to an increase in manufacturing process and wiring assembly costs. Provides a battery device.

〈実施例〉 薄膜半導体としてアモルファスンリコンt 用いた実施
例を挙げて説明する。第2図及び第3図に於て、1は太
陽電池装置の受光面全構成する透光性ガラス基板で、該
ガラス基板Iの表面には銀糸電極バースト2かンルクス
クリーン法によりパターン印刷され、続いて焼成されて
ガラス基板面に焼付けられている。該電極2は受光面の
内部量接続用バスバ一部と該バスバ一部によって共通接
続されるグリッド電極とで形成されている。電極2の膜
厚は7〜2071mでソート抵抗は約ax+o”ΩA]
に形成され、クリッド電極のrlJf01〜O,15m
+11.間隙全33鴫、qt−素子の11]を25門と
すると、クリッド側の電極抵抗は 15X 10 Ω/] 程度で、クリッド部分の電極面
積の受光面に対する占有率は3〜4%、史にハスハ・一
部分を加えると9〜11%になる。
<Example> An example using amorphous silicon t as a thin film semiconductor will be described. In FIGS. 2 and 3, reference numeral 1 denotes a translucent glass substrate that constitutes the entire light-receiving surface of the solar cell device, and the surface of the glass substrate I is pattern-printed with silver thread electrode bursts by the lux screen method. , followed by firing and printing onto the glass substrate surface. The electrode 2 is formed of a part of a bus bar for internal connection on the light receiving surface and a grid electrode commonly connected by the part of the bus bar. The film thickness of electrode 2 is 7 to 2071 m, and the sorting resistance is approximately ax+o''ΩA]
, and rlJf01~O, 15m of the crid electrode.
+11. Assuming a total gap of 33 mm and a QT-element of 25 gates, the electrode resistance on the lid side is about 15 x 10 Ω/], and the ratio of the electrode area of the lid part to the light receiving surface is 3 to 4%, which is historically If you add Hasha/Part, it becomes 9-11%.

次にITO(酸化インジュームと酸化スズの混合物)透
明電極材料が電子ヒーム蒸着装置を用いてガラス基板の
上記電極2を被って全面に1000〜1500^厚に蒸
着される。透IJIJ電極利料は所望バター・ンに耐酸
性マスクで被われて酸性溶液でパターンエツチングされ
、ITO透明電極3が形成される。該ITO膜3の可視
域での屈折率は19〜2、0 テ、h−5ス基板1の屈
折率が14〜15、アモルフ7スンリコンの屈折率が3
0〜35であるのに対して両者の中間の値を採り、入射
された光が界面で反射するのを防止する効果を果す。電
極が形成されたガラス基板上にアモルファスシリコン薄
膜4が形成される。該シリコン薄膜4は水素カスペース
にモノシランを10%添加した混合ガスを原石とし、ダ
イオード型の低圧グロー放電装置を用いて上記電極2及
び透明電極3上を被って成長させるか、ます上記混合ガ
スにホスフィンガス(PH3/H2)を少量添加して、
ドーピングされた500〜1000λ厚(7)n+アモ
ルファスンリコン膜全膜長成長、次に混合ガスのみを用
いて4000〜2000OA 厚のアンドープアモルフ
ァスシリコン膜を堆積させ、更に混合ガスにジボランガ
ス(B2■16/H2)ガスを少量添加して、80−5
00λ厚のp 型アモルファスシリコン膜を成長させる
Next, ITO (a mixture of indium oxide and tin oxide) transparent electrode material is evaporated to a thickness of 1000 to 1500 mm over the entire surface of the glass substrate using an electronic beam evaporation apparatus, covering the electrode 2 of the glass substrate. The transparent IJIJ electrode material is covered with an acid-resistant mask in a desired pattern and pattern-etched with an acidic solution to form an ITO transparent electrode 3. The refractive index of the ITO film 3 in the visible range is 19-2.0, the refractive index of the H-5 substrate 1 is 14-15, and the refractive index of the Amorph 7 silicon is 3.
0 to 35, but it takes a value intermediate between the two, and has the effect of preventing incident light from being reflected at the interface. An amorphous silicon thin film 4 is formed on a glass substrate on which electrodes are formed. The silicon thin film 4 is grown using a gas mixture of hydrogen caspase and 10% monosilane as raw material, and grown over the electrode 2 and transparent electrode 3 using a diode-type low-pressure glow discharge device, or grown using the mixed gas described above. Add a small amount of phosphine gas (PH3/H2) to
A doped 500-1000λ thick (7) n+ amorphous silicon film is grown to the full film length, then a 4000-2000 OA thick undoped amorphous silicon film is deposited using only a mixed gas, and then diborane gas (B2 /H2) Add a small amount of gas to 80-5
A p-type amorphous silicon film with a thickness of 00λ is grown.

即ちn −n −p 構造をもった太陽電池素子層が得
られる。
That is, a solar cell element layer having an n-n-p structure is obtained.

上記シリコン薄膜4は従来公知のフォ) IJソゲラフ
イー技術によって所望パターンにマスクで被われ、プラ
ズマによるドライエツチングで電極パターンに対応させ
て例えば4個の単体素子に分割される。各分割されたシ
リコン薄膜4のエッヂ部側局面は、グロー放電法により
、SiH4/H2゜NH4及びN2の混合ガスから合成
された1000〜3000λ厚の窒化膜5で被われてい
る。窒化膜5で被われるこおなく露出したシリコン薄膜
面に無電解メッキ法及び電解メッキ法全併用したニッケ
ルの背面電極6が形成され、各アモルファスシリコン素
子間が直列に電気的接続される。該背面電極6は+07
7m厚程度で1ソート抵抗は7XIOΩ/コの極めて低
い値に形I戊される。
The silicon thin film 4 is covered with a mask in a desired pattern using the conventionally known 4-IJ photolithography technique, and is divided into, for example, four individual devices by dry etching using plasma, corresponding to the electrode patterns. The edge side surface of each divided silicon thin film 4 is covered with a 1000-3000λ thick nitride film 5 synthesized from a mixed gas of SiH4/H2°NH4 and N2 by a glow discharge method. A nickel back electrode 6 is formed using both electroless plating and electrolytic plating on the exposed silicon thin film surface covered with the nitride film 5, and the amorphous silicon elements are electrically connected in series. The back electrode 6 is +07
At a thickness of about 7 m, the resistance of one sort can be reduced to an extremely low value of 7XIOΩ/Ω.

同一基板1上で分割された」二記シリコン薄膜4゜4・
・間の電気的接続は、図からも明らかなように、各シリ
コン薄膜4全被って形成された背面電極6が、基板1上
の隣接するシリコン薄膜4に接続された電極2のハスバ
一部に達することによって行われる。該接続構造は分割
さノした各シリコンrJ 膜4の長辺において隣接素子
間の電気的接続がなされるため、実質的な抵抗値の低減
か図られる。
Silicon thin film 4゜4・divided on the same substrate 1
- As is clear from the figure, the electrical connection between the back electrode 6 formed to cover the entirety of each silicon thin film 4 is connected to the helical part of the electrode 2 connected to the adjacent silicon thin film 4 on the substrate 1. This is done by reaching . In this connection structure, since electrical connections are made between adjacent elements on the long sides of each divided silicon rJ film 4, the resistance value can be substantially reduced.

次に直列接続された上記シリコン素子を被ってガラス基
板上の全領域(外部配線のためのAg系焼成電極パッド
部2′ヲ除く)にグロー放電、低圧CVD、イオンブレ
ーティング、スパンタリンク膜厚に形成されるか、或い
は有機系物質を用いて形1戊される。
Next, over the silicon elements connected in series, the entire area on the glass substrate (excluding the Ag-based fired electrode pad part 2' for external wiring) was subjected to glow discharge, low-pressure CVD, ion blating, and spantal link film. It is formed to be thick or shaped using an organic material.

上記のように無機系物質或いは有機系物質でパンベーシ
ョン膜7が形成された太陽電池ガラス基板は、外部接続
用リード線8が取付けられた後、背面側のよ1り確実な
機械的保護を図るために、基板背面全体を比較的軟質の
シリコン樹脂層9f:介して背面支持板となるガラス板
IOが重ねられ、周縁がソールされて外部から封止され
る。
As described above, after the external connection lead wires 8 are attached to the solar cell glass substrate on which the panvation film 7 is formed using an inorganic or organic material, more reliable mechanical protection is applied to the back side. In order to achieve this, a glass plate IO serving as a back support plate is placed over the entire back surface of the substrate via a relatively soft silicone resin layer 9f, and the periphery is sealed to seal it from the outside.

尚パネル面積の大きい太陽電池装置’fcMlj成する
場合には、第4図及び第5図に示す如く、アモルファス
シリコン素子の直列接続によって構成された弔位モジュ
ールを更に並列接続して、所望の出力電圧を得ることが
できる。
In addition, when constructing a solar cell device with a large panel area, as shown in Figs. 4 and 5, amorphous silicon elements are connected in parallel to each other in order to obtain the desired output. voltage can be obtained.

太陽電池装置に用い、られるITOが背面電極等のソー
ト抵抗をある値以下にするには非常にコスト高になるの
に対して、集電用及び外部リードのための焼成電極や金
属薄膜による電極は低いソート抵抗をもつものを比較的
容易に低コストで得ることができ、素子を分割すること
による不都合はほとんどなく、直列接続のすぐノ1.た
点を有効に利用し得る。
ITO, which is used in solar cell devices, is extremely expensive to reduce the sorting resistance of back electrodes, etc. below a certain value, whereas fired electrodes and metal thin film electrodes for current collection and external leads are used. can be obtained relatively easily and at low cost with low sorting resistance, there is almost no inconvenience caused by dividing the elements, and it is possible to easily connect the elements in series. The points obtained can be effectively utilized.

く効果〉 以上本発明によれば、薄膜太陽電池素子間を接続する電
極位置を選ぶことにより、効率的に出力を取り出すこと
ができ、電極抵抗による電力損失の減少によって高効率
の太陽電池を得ることかできる。
Effects> As described above, according to the present invention, by selecting the electrode positions that connect thin film solar cell elements, output can be efficiently extracted, and a highly efficient solar cell can be obtained by reducing power loss due to electrode resistance. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)及び(b)は太陽電池素子か並列及び直列
接続された等価回路図、第2図は本発明による実施例を
示す分解図、第3図は同実施例の断面図、第4図は本発
明による他の実施例の斜視図、第5図は同実施例の等価
回路図である。 1°ガラス基板、2:電極、3:透明電極、4:アモル
ファスシリコン素子16 :背面型Th、 7バシベー
シヨン膜、9:シリコン樹脂、] O:背面ガラス板。 代理人 弁理士 福 士 愛 彦 (他2名)(Q) (b) 第1図 0 第3図 し 第2図
1(a) and (b) are equivalent circuit diagrams of solar cell elements connected in parallel and series, FIG. 2 is an exploded view showing an embodiment according to the present invention, and FIG. 3 is a sectional view of the same embodiment. FIG. 4 is a perspective view of another embodiment of the present invention, and FIG. 5 is an equivalent circuit diagram of the same embodiment. 1° glass substrate, 2: electrode, 3: transparent electrode, 4: amorphous silicon element 16: back type Th, 7 vacillation film, 9: silicone resin,] O: back glass plate. Agent Patent attorney Aihiko Fukushi (2 others) (Q) (b) Figure 1 0 Figure 3 and Figure 2

Claims (1)

【特許請求の範囲】 1)絶縁基板上に所定の間隔で形成した複数の電極と、
各電極の一部を残して電極を夫々被って堆積した複数の
薄膜太陽電池素子層と、該薄膜太陽電池素子層の各領域
上に形成し且つ延長端が近接する薄膜太陽電池素子層の
上記基板電極の露出部に達する背面電極とを備えてなり
、複数個の薄膜太陽電池素子を直列接続してなることを
特徴とする薄膜太陽電池装置f;t。 2)前記近接する薄膜太陽電池素子層間を電気的接続す
る基板電極と背面電極との接続部は、薄膜太陽電池素子
形状の長辺方向に位置することを特徴とする請求の範囲
第1項記載の薄膜太陽電池装置。 3)前記背面電極の延長部で被われる各薄膜太陽電池の
側壁は予め絶縁薄膜で被覆されてなることを特徴とする
請求の範囲第1項又は第2項記載)前記絶縁基板は透光
性基板からなり、基板電極は透明電極からなるこ(!:
全特徴とする請求の範囲第1項、第2項又は第3項記載
の薄膜太陽電池装置。 5)前記基板電極は、集電用のグリッド電極と、該グリ
ッド電極間全接続するパスバー都々、クリッド電極部を
被う透りj電極とからなるこさ全特徴とする請求の範囲
第1項、第2項第3項又は第4項記載の薄膜太陽電池装
置。 6)前記バスバ一部は、背面電極との電気的接続部とな
るこ七を特徴とする第5項記載の薄膜太陽電池装置。
[Claims] 1) a plurality of electrodes formed at predetermined intervals on an insulating substrate;
A plurality of thin film solar cell element layers deposited covering each electrode, leaving a part of each electrode, and a thin film solar cell element layer formed on each region of the thin film solar cell element layer and having extended ends close to each other. A thin film solar cell device f;t characterized by comprising a back electrode reaching the exposed portion of the substrate electrode, and comprising a plurality of thin film solar cell elements connected in series. 2) The connecting portion between the substrate electrode and the back electrode that electrically connects the adjacent thin film solar cell element layers is located in the long side direction of the thin film solar cell element shape. thin film solar cell device. 3) The side wall of each thin-film solar cell covered by the extension of the back electrode is coated with an insulating thin film in advance.) The insulating substrate is translucent. It consists of a substrate, and the substrate electrode consists of a transparent electrode (!:
The thin film solar cell device according to claim 1, 2, or 3, characterized in that it has all the characteristics. 5) The substrate electrode is comprised of a grid electrode for current collection, a pass bar that connects all the grid electrodes, and a transparent J electrode that covers the grid electrode part. The thin film solar cell device according to item 2, item 3 or item 4. 6) The thin film solar cell device according to item 5, wherein a portion of the bus bar serves as an electrical connection portion with a back electrode.
JP59132581A 1984-06-26 1984-06-26 Thin film solar cell device Pending JPS6035553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59132581A JPS6035553A (en) 1984-06-26 1984-06-26 Thin film solar cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59132581A JPS6035553A (en) 1984-06-26 1984-06-26 Thin film solar cell device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1630879A Division JPS55108779A (en) 1979-02-14 1979-02-14 Thin film solar cell

Publications (1)

Publication Number Publication Date
JPS6035553A true JPS6035553A (en) 1985-02-23

Family

ID=15084674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59132581A Pending JPS6035553A (en) 1984-06-26 1984-06-26 Thin film solar cell device

Country Status (1)

Country Link
JP (1) JPS6035553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013532907A (en) * 2010-07-30 2013-08-19 エルジー イノテック カンパニー リミテッド Photovoltaic power generation apparatus and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013532907A (en) * 2010-07-30 2013-08-19 エルジー イノテック カンパニー リミテッド Photovoltaic power generation apparatus and manufacturing method thereof
US9391215B2 (en) 2010-07-30 2016-07-12 Lg Innotek Co., Ltd. Device for generating photovoltaic power and method for manufacturing same

Similar Documents

Publication Publication Date Title
US4281208A (en) Photovoltaic device and method of manufacturing thereof
US4540843A (en) Solar cell
US4454372A (en) Photovoltaic battery
US7057102B2 (en) Solar cell module and portable electronic apparatus with it
US10840393B2 (en) Solar cell module and solar cell module manufacturing method
JPS60240171A (en) Solar electric generator
CN108538948A (en) Solar cell grid line structure, solar battery sheet and solar energy stacked wafer moudle
JPS5821827B2 (en) photovoltaic device
JPS5963774A (en) Thin-film silicon solar cell
JPS6035553A (en) Thin film solar cell device
US5458695A (en) Solar cell and process for fabricating the same
JPS58196060A (en) Thin film semiconductor device
JPS6266684A (en) Manufacture of photovoltaic device
JPS6035554A (en) Thin film solar cell
JPS5946426B2 (en) How to manufacture solar cells
JPS61284974A (en) Solar battery
US4570030A (en) Solar cell device
JPH0125234B2 (en)
CN211350675U (en) Annular series connection structure of photovoltaic cell
JPS6214954B2 (en)
JPS59213175A (en) Semiconductor photovoltaic device
JPS59167072A (en) Series-connected type thin film solar battery
JPS62154788A (en) Integrated type solar battery
JPS6326555B2 (en)
JPH06120533A (en) Thin film solar cell and manufacture thereof