JPS6035344A - Light emitting device and optical signal processor using light emitting device - Google Patents

Light emitting device and optical signal processor using light emitting device

Info

Publication number
JPS6035344A
JPS6035344A JP58143879A JP14387983A JPS6035344A JP S6035344 A JPS6035344 A JP S6035344A JP 58143879 A JP58143879 A JP 58143879A JP 14387983 A JP14387983 A JP 14387983A JP S6035344 A JPS6035344 A JP S6035344A
Authority
JP
Japan
Prior art keywords
current
laser
frequency
light
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58143879A
Other languages
Japanese (ja)
Inventor
Takeo Takahashi
健夫 高橋
Naoki Kayane
茅根 直樹
Kazuchika Urita
瓜田 一幾
Akio Oishi
大石 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Renesas Eastern Japan Semiconductor Inc
Hitachi Iruma Electronic Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Tohbu Semiconductor Ltd
Hitachi Iruma Electronic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Tohbu Semiconductor Ltd, Hitachi Iruma Electronic Co Ltd filed Critical Hitachi Ltd
Priority to JP58143879A priority Critical patent/JPS6035344A/en
Priority to FR8410207A priority patent/FR2550645A1/en
Priority to KR1019840004527A priority patent/KR850002707A/en
Priority to IT22244/84A priority patent/IT1176571B/en
Priority to GB08420060A priority patent/GB2144912B/en
Priority to DE19843429255 priority patent/DE3429255A1/en
Publication of JPS6035344A publication Critical patent/JPS6035344A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/06216Pulse modulation or generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0652Coherence lowering or collapse, e.g. multimode emission by additional input or modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0658Self-pulsating

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optical Head (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce noise by applying a high-frequency current to a laser for on-off modulation and obtaining plural modes, and increasing the spectrum width of the modes apparently and reducing coherence. CONSTITUTION:The high-frequency current is superposed upon a DC current to impose modulation upon the laser, plural oscillation longitudinal modes are obtained, and the period of high frequency is approximated to a slow oscillation period to impose high-speed modulation upon the laser. When a pulse current shown in a figure (a) is applied while held almost at the threshold value current (Ith) of the laser of a bias current I0, ''light flicker'' (attenuation oscillation characteristic to a laser diode) of resonance frequency of the laser is generated as shown in a figure (b). At this time, when the period T1 of the applied pulse is much longer than the slow oscillation period T2, the width DELTAlambda of a multimode light spectrum is small (figure c). At this time, when the periods T1 and T2 are synchronized with each other, a light output of only the slow oscillation part shown in a figure b' is obtained, the spectrum waveform of the output light is as shown in a figure c', and variation DELTAlambda with wavelength lambda is increased, thereby reducing the coherence.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は発9°0装置、4”tに半導体レーザー素子を
具(4iiする発光装F7卦よびこれを用いた光ピ2・
クアソプ装置に門するものである3、 〔背旦技術〕 光ビデオディスクや光デイスクファイルメモリー等の信
号ピックアップ用光汀として単色性がよく、強い光が待
られる半導体レーザーダイオード(以下単にレーザーと
称す。)が用いられる。しかしながら、レーザーのノイ
ズに起因する画り1等の乱れの問題はまだ解決されてい
ない。通常レーザーのノイズは31’iD’3’fに分
類される。以下簡単にこれらについて説明する。モード
ホッピングノイズ(Mode l(opping No
1se)は、レーザーダイオードのチップ温度(ケース
温度)あるいは駆!IIII電流が変化した時に発振モ
ードが変化して起こる。
Detailed Description of the Invention [Technical Field] The present invention relates to a light emitting device F7 equipped with a 9°0 device, a 4”t semiconductor laser element (4ii), and an optical P2/F7 using the same.
3. [Seudan technology] Semiconductor laser diodes (hereinafter simply referred to as lasers), which have good monochromaticity and emit strong light, are used as light sources for signal pickup of optical video disks, optical disk file memories, etc. ) is used. However, the problem of disturbance of image 1 etc. due to laser noise has not yet been solved. Normal laser noise is classified as 31'iD'3'f. These will be briefly explained below. Mode hopping noise
1se) is the laser diode chip temperature (case temperature) or drive! III This occurs when the oscillation mode changes when the current changes.

スクープノイズ(Scoop No1se)はレーザー
から出射された光が途中の光学系や記録媒体であるディ
スクで反射してレーザーにd5)4tすることによって
生ずるノイズでちる。通常スペックルノイズと呼ばれる
ノイズは、ディスクや光学系で反射した光同志又は、反
射光とレーザ出射光が互いに干渉し合い干渉しまができ
ることに起因する情報再生時(元ピックアップ時)に発
生するノイズである。これらの対策として、例えば、特
開昭56−37834号公報に示されるように、単一モ
ードレーザー駆動電流(直流)に高周波電流を重畳する
ことによ#)縦モードをマルチ化し、モードホッピング
ノイズ、スクープノイズを低減する技術が提案されてい
る。しかし、この方法は、モードホッピングノイズに対
しては、ある程度の効果が期待できるが、スクープノイ
ズ発生を防止する効果は充分でなく、スクープノイズの
場合さらにレーザーチップと反射物との光路−iLおよ
びレーザーに重畳する高周波の周波数fとの組合せをf
NC/2゜(Cは光速)となるように選ばないとノイズ
が充分に低減しないことが本願発明者等の研究によって
明らかとなっている。また、前記した方法は、スペック
ルノイズに対する対策とd:なり得す、各光学部品の迷
光に対する対策を充分に行なわないとノイズ低減は期待
できなかった。
Scoop noise is noise generated when light emitted from a laser is reflected by an intermediate optical system or a disk serving as a recording medium and is reflected back to the laser. Noise, usually called speckle noise, is noise that occurs during information reproduction (original pickup) due to interference between light beams reflected by a disk or optical system, or between reflected light and laser emitted light. It is. As a countermeasure against these problems, for example, as shown in Japanese Patent Application Laid-Open No. 56-37834, by superimposing a high frequency current on a single mode laser drive current (DC), longitudinal modes are multiplied and mode hopping noise is reduced. , techniques for reducing scoop noise have been proposed. However, although this method can be expected to have some effect on mode hopping noise, it is not sufficiently effective in preventing scoop noise. The combination with the frequency f of the high frequency superimposed on the laser is f
It has become clear through research by the inventors of the present invention that noise cannot be sufficiently reduced unless it is selected so that NC/2° (C is the speed of light). Further, in the method described above, noise reduction could not be expected unless sufficient countermeasures were taken against speckle noise and stray light from each optical component.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、光路長と変調周波数の組合わせを考
慮することなくスクープノイズを低減し、さらにモード
ホッピングノイズ、スペックルノイズの発生をも低減で
きる技術を提供することにある。この発明の目的と新規
な特徴は、本明細書の記述および添付図面から明らかに
なるであろう。
An object of the present invention is to provide a technique that can reduce scoop noise without considering the combination of optical path length and modulation frequency, and can also reduce mode hopping noise and speckle noise. The objects and novel features of this invention will become apparent from the description of this specification and the accompanying drawings.

〔発明の概を〕[Outline of the invention]

本願において開示される発明のうち代聚的なものの概要
を簡単に説明すれば下記の通りでおる。
A brief overview of some of the inventions disclosed in this application is as follows.

すなわち、レーザーに、レーザーの緩和振動周期截(共
振周波数)に近く、かつ充分な変社1度の高周波電流を
印加し、レーザーを高速でオン、オフ変調することによ
シレーブー光をマルチモード化し、さらにマルチモード
化しているモードの一本一本のスペクトル幅を見かけ上
太らせ、レーザー光の可干渉性を低下させることにより
、ノイズを低減するという前記目的を達成するものであ
る。
That is, by applying a high frequency current close to the laser's relaxation oscillation period (resonance frequency) and with a sufficient amplitude to the laser, and modulating the laser on and off at high speed, the laser beam is made into a multi-mode. Furthermore, the above-mentioned objective of reducing noise is achieved by apparently widening the spectral width of each multimode mode and reducing the coherence of laser light.

〔実施例〕〔Example〕

本発明の大きな特徴は、レーザー光のスペクトル幅を見
かけ上太くすること、いいかえれば、レーザー光の波長
λの時間に対する変化分を大きくすることにあシ、その
結果レーザーの可干渉性を低化させ、ノイズ発生を低減
することにある。上周期をレーザーの緩和振動周期(共
振周期)と呼ばれるレーザー固有の振動周期に近づけ、
レーザーを高速変調するという手法をとる。以下上述し
た本発ツ」のM理をバエ1図および第2図を用いて説明
する。第1図、第2図には、レーザー変調の過渡特性お
よびレーザー光のスペクトル波形が示される。バイアス
電流■。をレーザーのしきい値電流(Itb)近傍に保
っておき、第1図(3)に示すようなパルス電流を印加
すると、レーザー出力光の立ちあがり部分にレーザーの
共振周波数frで繰9返される光のゆらぎ″が発生する
。この光のゆらぎは緩和振動とよばれるそのレーザーダ
イオード固有の派衰振動であシ、一定時間経過後、光出
力Pは一定出力P、に保たれるようになる。(第1図0
〕))緩和振動部分では光出力P(すなわち活性層内の
キャリア密度)が時間とともに大きく変化しており、こ
れは、とりもなおさず活性層の屈折率の変化、およびマ
ルチモード化されたレーザー光の波長λの時間に対する
変化分△λが大きくなっていることを意味する。印加パ
ルスの周期T。
A major feature of the present invention is to apparently widen the spectral width of the laser beam, or in other words, to increase the amount of change in the wavelength λ of the laser beam over time, thereby reducing the coherence of the laser beam. The objective is to reduce noise generation. The upper period is brought closer to the laser's unique vibration period called the laser's relaxation vibration period (resonance period),
The method is to modulate the laser at high speed. The M principle of the above-mentioned present invention will be explained below using Figures 1 and 2. 1 and 2 show the transient characteristics of laser modulation and the spectral waveform of laser light. Bias current■. When the pulse current shown in Fig. 1 (3) is maintained near the threshold current (Itb) of the laser and a pulse current as shown in Fig. 1 (3) is applied, light that is repeated nine times at the laser's resonant frequency fr is generated in the rising portion of the laser output light. This light fluctuation is called relaxation vibration, which is a damped vibration unique to the laser diode, and after a certain period of time, the optical output P is maintained at a constant output P. (Figure 1 0
])) In the relaxation oscillation part, the optical output P (that is, the carrier density in the active layer) changes greatly over time, and this is due to changes in the refractive index of the active layer and the multimode laser. This means that the amount of change Δλ in the wavelength λ of light with respect to time is increasing. Period T of applied pulse.

が緩和振動周期T2よシ充分大きいと緩和振動による光
のゆらぎ分は無視でき、レーザー光の変調出力は一定出
力Po と見なすことができる。このようなl1lIが
′1゛、に比べ充分大きいパルス波(高周波交流波でも
よい)駆動された場合のマルチモード化されたレーザー
出力光のスペクトル波形は第1図(C)のようになり、
スペクトル^(各スペクトルエネルギーPsの半値幅)
△λは小さい。
If is sufficiently larger than the relaxation oscillation period T2, the light fluctuation due to relaxation oscillation can be ignored, and the modulated output of the laser beam can be regarded as a constant output Po. The spectral waveform of the multimode laser output light when driven by a pulse wave (a high frequency alternating current wave may also be used) that is sufficiently large compared to 11 is as shown in Fig. 1 (C),
Spectrum ^ (half width of each spectrum energy Ps)
Δλ is small.

ここで第21佛に示すように印加パルス電流の周ツリー
IT1を緩和振動周期T2と同期さぜると、同<b> 図□□□に示すように緩和振動部分のみの光出力が得ら
れる。この場合のレーザー光出力光のスペクトル波形は
、第2図俳に示すようになる。すなわちマルチモード化
されたレーザー光の波長λの時間に対する変化分△λ 
(スペクトル幅)は大きくなり、レーザー出力光の可干
渉性は低下する。レーザー光の可干渉性が低下すれば、
光学系で反射された光がレーザーチップに帰還してもノ
イズが発生しにくくなる。また、光学系で反射した光同
志の干渉もおこりにくくなり、情f!1′r5生時のノ
イズも低減できるのである。このように本発明はレーザ
ー光の光のゆらぎ部分のみを連続光パルスとしてとシだ
すことを特徴とするものである。
Here, if the circumferential tree IT1 of the applied pulse current is synchronized with the relaxation oscillation period T2 as shown in the 21st Buddha, the optical output of only the relaxation oscillation part can be obtained as shown in Figure □□□. . The spectral waveform of the laser output light in this case is as shown in Figure 2. In other words, the change in wavelength λ of multimode laser light over time △λ
(spectral width) increases, and the coherence of the laser output light decreases. If the coherence of laser light decreases,
Noise is less likely to occur even when the light reflected by the optical system returns to the laser chip. In addition, interference between light beams reflected by the optical system is less likely to occur, making it easier to avoid interference between light beams reflected by the optical system. It is also possible to reduce noise when 1'r5 is generated. As described above, the present invention is characterized in that only the fluctuation portion of the laser light is emitted as a continuous light pulse.

第3図は、本発明を実施するための基本的回路イ昔成を
示す図である。半導体レーザーダイオードlは、直流電
源2と高周波電汀3との遇”畳電流で、小町される。同
図におけるり、Cは、各コイル、コンデンサであり、2
つの電流源が独立に半導体レーザーを駆動できるように
するために挿入されている。
FIG. 3 is a diagram showing the basic circuit configuration for implementing the present invention. The semiconductor laser diode 1 is connected to the DC power supply 2 and the high frequency power supply 3 by a tatami current.
Two current sources are inserted to enable independent driving of the semiconductor laser.

第4図(a)は、半導体レーザーの電流(Io)−光出
力Φ)0性を示す図である。レーザーを直流I。
FIG. 4(a) is a diagram showing the current (Io)-optical output Φ)0 characteristic of a semiconductor laser. Direct current laser.

に、高周波電流△Icos (2πft ) (f :
周波数。
, the high-frequency current △Icos (2πft) (f:
frequency.

t:時間)を重畳した電流、 I=I。十△I−cos (2yrf t ) =−=
−(1)で駆動する。第4図の)にレーザー、弊す電流
の時間変化を示す。この時レーザー出方の時間(1)の
変化は、第4図(C)に示したようになる。すなわち、
L=Lo十△Lcos(2yrft) 、 I(t)>
Ith□−6□。)<□、、H2) となる。ここでIthは、発振しきい値電流、IJOr
△Lは各々IO+△工に対応する直流光出力、交流光振
幅である。レーザー駆動電流■が、Ithを越える時に
のみレーザー発振するので、レーザー光出力りは、連続
光パルス発振となる。(このように半導体レーザーをオ
ン、オフ変調するコトハ、レーザー光をマルチモード化
するための必須色性である。)さらに本発明では、前記
した如く、レーザー、駆動直流電流に重畳する高周波交
流電流の周期fは、駆動されるレーザーの緩和振動周波
数(共振周波数)frに近い値となっている。例えば本
発明者の実験によれば、半導体レーザーとして、波長7
80nm 、 Ith 50mAのM CS P (M
odifiedCbanneled 5ubstrat
e Planar) 47’J造の半導体レーザーを用
いた場合、この緩和振動周波ifrは、約1.8 GH
2であり、前記した高周波電流の周波数■ をfrの7〜2倍、すなわち900ΔfH2以上、3.
6GH□以下にすると、ノイズ低減効果が高いことが確
認さノした。またB H(Buried−Hetcro
) 枯造の半導体レーザーの場合は、緩和振動周波数f
rは、約2 GH□であり、同じく重畳する高周波の周
期をfrの7〜2倍に保つとノイズ低減効果が高いこと
が確認された8なお重畳する高周波電流の周波数は、使
用するレーザーの緩fl+振動周期、および、要求さi
するノイズ低減率に応じ、随時決定さiLる。
t: current with superimposed time), I=I. 10△I-cos (2yrft) =-=
- Drive with (1). Figure 4) shows the time variation of the current generated by the laser. At this time, the change in time (1) of the laser emission direction is as shown in FIG. 4(C). That is,
L=Lo △Lcos(2yrft), I(t)>
Ith□−6□. )<□,,H2). Here Ith is the oscillation threshold current, IJOr
ΔL is the DC optical output and AC optical amplitude corresponding to IO + ΔL, respectively. Since the laser oscillates only when the laser drive current (2) exceeds Ith, the laser light output becomes continuous light pulse oscillation. (The ability to modulate the semiconductor laser on and off in this way is an essential chromatic property for making laser light into multiple modes.) Furthermore, in the present invention, as described above, a high-frequency alternating current is superimposed on the laser and drive direct current. The period f has a value close to the relaxation oscillation frequency (resonance frequency) fr of the driven laser. For example, according to the inventor's experiments, a semiconductor laser with a wavelength of 7
80nm, Ith 50mA MCSP (M
odifiedCbanneled 5ubstrat
e Planar) When a 47'J semiconductor laser is used, this relaxation oscillation frequency ifr is approximately 1.8 GH
2, and the frequency (1) of the high frequency current mentioned above is 7 to 2 times fr, that is, 900ΔfH2 or more, 3.
It was confirmed that a noise reduction effect of 6 GH□ or less is highly effective. Also, B H (Buried-Hetcro
) In the case of a dry semiconductor laser, the relaxation oscillation frequency f
r is approximately 2 GH□, and it was also confirmed that the noise reduction effect is high when the period of the superimposed high frequency wave is kept at 7 to 2 times fr.8The frequency of the superimposed high frequency current depends on the laser used. slow fl + vibration period and required i
It is determined at any time according to the noise reduction rate to be used.

次に第3図に示す本発明の基本的回路室底を具体化した
発光装置(半導体レーザーモジュール装置)の−例を第
5図、および第6図に示す。第5図は、発光装置の斜視
図、第6図は、第5図に示す発光装置のx−x’に沿う
断面図である。発光装9i4はレーザーダイオード装部
、5、パッケージ10゜外部接続用端子6,7,8.9
等から外っている。
Next, an example of a light emitting device (semiconductor laser module device) embodying the basic circuit chamber bottom of the present invention shown in FIG. 3 is shown in FIGS. 5 and 6. FIG. 5 is a perspective view of the light emitting device, and FIG. 6 is a sectional view taken along line xx' of the light emitting device shown in FIG. The light emitting device 9i4 is a laser diode mounting section, 5, package 10° external connection terminals 6, 7, 8.9
etc. is out of the range.

パッケージ10の内側には、コイル14.トランジスタ
15.16等が実装されたセラミック基板17が、接着
材18によって固定されている。レーザーダイオード装
置の端子13はスルーホール(図示せず)を通して、パ
ッケージ10.セラミック基板17を貫辿し、ノ・ンダ
19によって固定されている。捷た、図示はしないがセ
ラミック基板17上には、アルミニウム(At) 配線
カパターニングされておυ、コイル14、トランジスタ
15゜16、レーザーダイオード装置5@を個々に接続
する。このようにしてセラミック:ji5板1板上7上
所望のレーザー発振回路が育成され、アルミニウム配線
は、ポンディングパッド(図示せず)部においてスズメ
ッキ銅綜12を介して例えば外部接続用端子8に接続さ
れる。外部接続用端子6,7゜8.9は、そhぞれ高周
波発生回路の電池端子、レーザー直流電源端子、グラン
ド(接地)端子、レーザー光のモニタ出力端子であシ、
それぞノ1に所望の電源が印加されるとレーザーダイオ
ード装置5よりレーザー光11が出射されるととになる
Inside the package 10 is a coil 14. A ceramic substrate 17 on which transistors 15, 16, etc. are mounted is fixed with an adhesive 18. The terminal 13 of the laser diode device is connected to the package 10 through a through hole (not shown). It penetrates the ceramic substrate 17 and is fixed by a solder 19. Aluminum (At) wiring patterns are formed on the ceramic substrate 17 (not shown), and the coil 14, the transistors 15 and 16, and the laser diode device 5 are individually connected thereto. In this way, a desired laser oscillation circuit is grown on the ceramic: ji5 board 1 board 7, and the aluminum wiring is connected to, for example, the external connection terminal 8 via the tin-plated copper heel 12 at the bonding pad (not shown). Connected. The external connection terminals 6, 7゜8.9 are the battery terminal of the high frequency generation circuit, the laser DC power supply terminal, the ground (ground) terminal, and the laser light monitor output terminal, respectively.
When a desired power source is applied to each node 1, a laser beam 11 is emitted from the laser diode device 5.

このレーザー光は、レンズ等の光学手段により記録媒体
へと導かれ記録した信号を読みだすことになる。このよ
うすを第7図に示す。第7図は、ピックアップ装置の概
要を説明するためのゼさ式図でちる。まずレーザーダイ
オード装置5の′4)成にっきfl’d単に欣1明する
。銅等の熱伝導性良好な金ハからなるフランジ35の上
面中央には、鏑からなるステム21が垂設されている。
This laser light is guided to the recording medium by optical means such as a lens, and the recorded signal is read out. This situation is shown in FIG. FIG. 7 is a horizontal diagram for explaining the outline of the pickup device. First, the structure of the laser diode device 5 will be simply described. At the center of the upper surface of the flange 35 made of gold plated with good thermal conductivity such as copper, a stem 21 made of a chisel is vertically provided.

ステム21(7)−側面にシリコンザブマウント22を
介して半導体レーザー南子(チップ)23が固定されて
いる。チップ23のレーザー光11の出射面は上面、下
面と2つあり、下面の出射面の下方には、レーザー光1
1を受光する出力モニター用受光素子(フォー・ダイオ
ード)25が設けられている。チップ23゜受ブ0禦子
25iよ、金(Au)ワイヤー24を介して端子13に
それぞれ接続されている。レーザー光は、レーザーパッ
ケージ20の一部に設けられた透明窓34を通過して出
射されることになる。
A semiconductor laser chip 23 is fixed to the side surface of the stem 21 (7) via a silicon submount 22. There are two emission surfaces of the laser beam 11 of the chip 23, an upper surface and a lower surface.
An output monitoring light-receiving element (four diode) 25 for receiving light of 1 is provided. The chips 23, 25i, and the receiver 25i are connected to the terminals 13 via gold (Au) wires 24, respectively. The laser light passes through a transparent window 34 provided in a part of the laser package 20 and is emitted.

次に光ピックアップ装の(光学的信号処理装置)の概要
を説明する。レーザーチップ23より出射さJまたレー
ザー光11はコリメーターレンズ26により平行光とな
り、そのまま偏光プリズム27に入り、7波長板を通過
して円偏光となる。この円偏光の光が対物レンズ29に
よって数ミクロンに絞られ、例えば仏号記録媒体である
ディスク30の情報ビット31に入射する。ディスクか
ら反射してくる光は、ビット有無の情報をもっている。
Next, an overview of the optical pickup device (optical signal processing device) will be explained. The laser beam 11 emitted from the laser chip 23 is turned into parallel light by the collimator lens 26, enters the polarizing prism 27 as it is, passes through a 7-wavelength plate, and becomes circularly polarized light. This circularly polarized light is condensed to several microns by an objective lens 29, and is incident on an information bit 31 of a disk 30, which is a recording medium for example. The light reflected from the disk carries information about the presence or absence of bits.

この反射光は7波長板を通過し、再び直線偏光に変換さ
れて、偏光プリズム内で反射し、シリンドリカルレンズ
32によって祭光されてフォトダイオード(ディテクタ
)33上に入射する。ここで光信号は電気信号VC変換
されて再生信号が得られる。光源として、本発明の、発
光装置を用いればレーザー出力光の可干渉性はある程度
低下しており、光学系での反射光がレーザーチップに帰
還しても、レーザー共振器内での干渉がおこりにくく、
その結果ノイズが発生しeこくい。また光学部品で反射
した光同志の干渉も低減できるため、フォトダイオード
33の受光面に、ノイズ発生の原因となる干渉しまがで
きることがなく、ディスクに記(六された信号のみを正
確に再生することが可能となる。
This reflected light passes through a seven-wavelength plate, is converted into linearly polarized light again, is reflected within a polarizing prism, is concentrated by a cylindrical lens 32, and is incident on a photodiode (detector) 33. Here, the optical signal is converted into an electric signal VC to obtain a reproduced signal. If the light emitting device of the present invention is used as a light source, the coherence of the laser output light will be reduced to some extent, and even if the reflected light from the optical system returns to the laser chip, interference will occur within the laser resonator. difficult,
As a result, noise is generated and the noise is high. In addition, since interference between light beams reflected by optical components can be reduced, there will be no interference stripes on the light receiving surface of the photodiode 33 that can cause noise, and only the signals recorded on the disk can be accurately reproduced. becomes possible.

〔効果〕〔effect〕

(1) レーザー駆動電流(直流)に高周波交流電流を
重畳しレーザーをオン、オフ変調することにより、発振
Fくモードをマルチ化するため、レーザーの周囲温度、
駆III電流等の変化に伴うモードホッピングノイズを
低減できる。
(1) By superimposing a high-frequency alternating current on the laser drive current (direct current) and modulating the laser on and off, the oscillation mode is multiplied, so the ambient temperature of the laser,
Mode hopping noise caused by changes in the drive III current etc. can be reduced.

(2)さらに直流に重畳する高周波交流電流の周波θを
レーザーの共振周波数(綬和振動周波a)に近づけるこ
とによって、マルチモード化されたレーザー光の一本一
木のスペクトル幅(波長λの時開に対する変化分)△λ
を大きくし、可干渉性を低下させる。そのため、光学系
とレーザーとの光路長およびレーザー発振周波数との関
係をなんら考慮しなくても、光学系からの戻υ光に起因
するスクープノイズを低減できる。
(2) Furthermore, by bringing the frequency θ of the high-frequency alternating current superimposed on the direct current closer to the laser resonance frequency (combination vibration frequency a), the spectral width (wavelength λ Change in time) △λ
increases and reduces coherence. Therefore, the scoop noise caused by the return υ light from the optical system can be reduced without any consideration of the relationship between the optical path length of the optical system and the laser and the laser oscillation frequency.

(3)光学部品での反射光同志が干渉して起るスペック
ルノイズを低減できる。このため1つ1つの光学部品に
つき、特別な迷光対策を行なう必要がなくなる。
(3) Speckle noise caused by interference between reflected lights from optical components can be reduced. Therefore, there is no need to take special measures against stray light for each optical component.

(4)前記(1,)〜(3)により、光学式ビデオディ
スクに代表される光ピックアップ装器(光学的信号処理
装置)の性能向上が図れる。
(4) According to (1,) to (3) above, the performance of an optical pickup device (optical signal processing device) typified by an optical video disc can be improved.

以上本発明者によってなされた発明を、実施例にもとづ
き具体的に説明したが、この発明は、上記実施例に限定
されるものではなく、その要旨を逸脱しない範囲で種々
変更可能であることはいりまでもない。例えば、レーザ
ーに重畳する高周波交流電流は、方形パルス波電流であ
ってもよい。
Although the invention made by the present inventor has been specifically explained above based on Examples, this invention is not limited to the above Examples, and may be modified in various ways without departing from the gist thereof. Not even. For example, the high frequency alternating current superimposed on the laser may be a square pulse wave current.

〔オリ用分野〕[Original field]

以上の説明では、主として本発明者によってなされた発
明を、その背景となった利用分野である発光装置および
光ピツクアップ装置に適用した場合について説明したが
、それに限定されるものではなく、例えば、発光素子と
光ファイバーとを有する光伝播装置に本発明を適用し、
光ファイバーと半導体レーザーの接続端や、ファイバー
とファイバー又は他の光学部品とファイバーの接続端で
の干渉ノイズを防止することもできる。本発明は、少な
くとも、半導体レーザー発光素子を有するデバイスすべ
てに適用できるものである。
In the above description, the invention made by the present inventor was mainly applied to a light emitting device and an optical pickup device, which are the background fields of application, but the invention is not limited thereto. Applying the present invention to a light propagation device having an element and an optical fiber,
It is also possible to prevent interference noise at the connection end between an optical fiber and a semiconductor laser, between fibers, or between another optical component and a fiber. The present invention is applicable to at least all devices having a semiconductor laser light emitting element.

るためのレーザー変調の過渡特性とレーザー光のスペク
トル波形を示す図である。
FIG. 3 is a diagram showing the transient characteristics of laser modulation and the spectral waveform of laser light.

動じた時の、レーザー出力の時間変化を説明するための
図、 第5図は、本発明の一実施例でおる発光装置の斜視図、 第6図は、第5図に示す発光装置のX−Xに沿う模式的
断面図、 第7図は、第5図に示す発光装置を用いた光ピツクアッ
プ装置の概要を模式的に示す図である。
FIG. 5 is a perspective view of a light emitting device according to an embodiment of the present invention. FIG. 6 is a perspective view of the light emitting device shown in FIG. 5. 7 is a diagram schematically showing an outline of an optical pickup device using the light emitting device shown in FIG. 5. FIG.

1・・・レーザーチップ、2・・・m流電源、3・・・
交流電源、4・・・発光装置(半導体レーザーモジ−1
−ル装置)、5・・・レーザーダイオード装置、6,7
,8゜9・・・端子、10・・・発光装置のパッケージ
、11・・・L/ −サ−−)’e、12・・・スズメ
ッキ銅線、13・・・レーザーパッケージの端子、14
・・・コイル、15 、16・・・トランジスタ、17
・・・セラミック基板、18・・・Wffi材、19・
・・ハンダ、20・・・レーザーノくノケージ、21・
・・ステム、22・・・シリコンサブマウント、23・
・・レーザーチップ、24・・・金ワイヤ、25・・・
フォトダイオード、26・・・コリメーターレンズ、2
7・・・偏光プリズム、28・・・人波長板、29・・
・対物レンズ、30・・・ディスク、31・・・情報ピ
ット、32・・・シリンドリカルレンズ、33・・・フ
ォトダイオード、34・・・透明窓、35・・・フラン
ジ。
1...Laser chip, 2...m current power supply, 3...
AC power supply, 4... light emitting device (semiconductor laser module 1)
- laser device), 5... laser diode device, 6, 7
,8゜9...Terminal, 10...Light emitting device package, 11...L/-Ser--)'e, 12...Tin plated copper wire, 13...Laser package terminal, 14
...Coil, 15, 16...Transistor, 17
...Ceramic substrate, 18...Wffi material, 19.
...Solder, 20...Laser cage, 21.
...Stem, 22...Silicon submount, 23.
...Laser chip, 24...Gold wire, 25...
Photodiode, 26...Collimator lens, 2
7...Polarizing prism, 28...Human wave plate, 29...
- Objective lens, 30... Disc, 31... Information pit, 32... Cylindrical lens, 33... Photodiode, 34... Transparent window, 35... Flange.

第 1 図 第 2 図 第 3 図 「 第 4 図 第 5 図 第 6 図Figure 1 Figure 2 Figure 3 " Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、 直流電流に高周波変流電流又は高周波パルス電流
を重畳することによって駆動されるレーザー素子を具備
する発光装置であって、前記高周波交流電流又はパルス
電流の周波数は、前記レーザー素子の緩和振動周波数に
近い値となっていることを特徴とする発光装置。 2、 直流電流発生手段と高周波交流電流発生手段又は
パルス電流発生手段と、前記直流電流発生手段から発生
ずる直流電流に、前記高周波変流電流発生手段又はパル
ス電流発生手段から発生する高周波交流電流又はパルス
電流を重畳する手段と、niI記直流電流に前記高周波
’I:5If、電流又はパルス電流が重畳された電流に
よって駆動されるレーザー素子と、を具備し、前記高周
波交流電流発生手段又はパルス電流発生手段は、前記レ
ーザー素子の緩オ[1振動周波数に近い周波数をもつ高
周波交流電流又はパルス電流を発生ずるようにn成され
ていることを特徴とする発ブC装「。 3、緩和振動周波数に近い周波数をもつ高周波交流電流
又はパルス電流を直流室1流に重畳することにより駆動
されるレーザー素子と、信号を記すした信号記録ρ■体
と、前記レーザー素子から出射されるレーザー光を用い
て、前記信号記録媒体に記録された信号を光学的に読み
だす手段と、を具()11することを特徴とする光学的
信号処理装置。
[Claims] 1. A light-emitting device comprising a laser element driven by superimposing a high-frequency variable current or high-frequency pulsed current on a direct current, wherein the frequency of the high-frequency alternating current or pulsed current is equal to the frequency of the high-frequency alternating current or pulsed current. A light emitting device characterized by having a value close to the relaxation oscillation frequency of a laser element. 2. A direct current generating means, a high frequency alternating current generating means or a pulse current generating means, and a high frequency alternating current generated from the high frequency variable current generating means or pulse current generating means, or a means for superimposing a pulse current, and a laser element driven by a current in which the high frequency 'I:5If, current or pulse current is superimposed on the niI direct current, and the high frequency alternating current generating means or the pulse current The generating means is configured to generate a high frequency alternating current or pulse current having a frequency close to the slow vibration frequency of the laser element. 3. Relaxation vibration. A laser element driven by superimposing a high-frequency alternating current or pulsed current with a frequency close to that of the DC chamber, a signal recording body recording a signal, and a laser beam emitted from the laser element. 11. An optical signal processing device comprising: a means for optically reading out a signal recorded on the signal recording medium using the signal recording medium.
JP58143879A 1983-08-08 1983-08-08 Light emitting device and optical signal processor using light emitting device Pending JPS6035344A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP58143879A JPS6035344A (en) 1983-08-08 1983-08-08 Light emitting device and optical signal processor using light emitting device
FR8410207A FR2550645A1 (en) 1983-08-08 1984-06-28 ELECTROLUMINESCENT DEVICE AND OPTICAL SIGNAL PROCESSING SYSTEM USING SUCH A DEVICE
KR1019840004527A KR850002707A (en) 1983-08-08 1984-07-30 Light emitting device and optical signal processing device using the same
IT22244/84A IT1176571B (en) 1983-08-08 1984-08-07 LIGHT EMITTER AND OPTICAL SIGNAL TREATMENT PLANT USING THE SAME
GB08420060A GB2144912B (en) 1983-08-08 1984-08-07 Light emitting device and optical signal processing system employing the same
DE19843429255 DE3429255A1 (en) 1983-08-08 1984-08-08 LIGHT-EMITTING DEVICE AND AN OPTICAL SIGNAL PROCESSING SYSTEM USING IT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58143879A JPS6035344A (en) 1983-08-08 1983-08-08 Light emitting device and optical signal processor using light emitting device

Publications (1)

Publication Number Publication Date
JPS6035344A true JPS6035344A (en) 1985-02-23

Family

ID=15349136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58143879A Pending JPS6035344A (en) 1983-08-08 1983-08-08 Light emitting device and optical signal processor using light emitting device

Country Status (6)

Country Link
JP (1) JPS6035344A (en)
KR (1) KR850002707A (en)
DE (1) DE3429255A1 (en)
FR (1) FR2550645A1 (en)
GB (1) GB2144912B (en)
IT (1) IT1176571B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310333A (en) * 1986-06-30 1988-01-16 Pioneer Electronic Corp Optical information reader
JPS6326846A (en) * 1986-07-21 1988-02-04 Hitachi Ltd Optical head
US4799069A (en) * 1986-04-18 1989-01-17 Minolta Camera Kabushiki Kaisha Laser recording apparatus
JPS6464139A (en) * 1987-09-04 1989-03-10 Hitachi Ltd Thin film optical pickup
WO2007097290A1 (en) * 2006-02-22 2007-08-30 Nichia Corporation Optical device
CN100365717C (en) * 1997-08-05 2008-01-30 索尼株式会社 Semiconductor laser driving method and optical disc apparatus
US7515624B2 (en) 2002-11-11 2009-04-07 Sharp Kabushiki Kaisha Semiconductor laser, semiconductor laser driver and method of driving semiconductor laser reducing feedback-induced noise by modulated optical output

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623534A (en) * 1985-06-28 1987-01-09 Sharp Corp Optical modulator
JPS62150732U (en) * 1986-03-17 1987-09-24
DE3870651D1 (en) * 1987-02-20 1992-06-11 Siemens Ag LASER TRANSMITTER ARRANGEMENT.
JPH0691296B2 (en) * 1987-03-31 1994-11-14 三菱電機株式会社 Assembling method of semiconductor laser
DE3814583C1 (en) * 1988-04-27 1989-11-23 Krone Ag, 1000 Berlin, De
US5233580A (en) * 1988-12-19 1993-08-03 Rohm Co., Ltd. Laser diode unit welded to a mounting member by laser light
JPH0724112B2 (en) * 1988-12-19 1995-03-15 ローム株式会社 How to install the laser diode unit
JPH04186535A (en) * 1990-11-20 1992-07-03 Mitsubishi Electric Corp Optical information replay unit
DE4127859A1 (en) * 1991-08-22 1993-07-08 Teldix Gmbh DEVICE FOR MEASURING THE SPEED
DE69220648T2 (en) * 1991-11-08 1997-12-18 Mitsubishi Electric Corp Fiber optic amplifier
US5455704A (en) * 1991-11-08 1995-10-03 Mitsubishi Denki Kabushiki Kaisha Optical-fiber light amplifier
JPH06349098A (en) * 1993-06-07 1994-12-22 Canon Inc Optical information recording/reproducing device
JP3247919B2 (en) * 1993-07-19 2002-01-21 三菱電機株式会社 Optical amplifier
US6151290A (en) * 1998-02-05 2000-11-21 Sony Corporation Inexpensive safe light beam recorder
AU2673899A (en) * 1999-02-11 2000-08-29 Sony Electronics Inc. Inexpensive safe light beam recorder
JP2009104753A (en) * 2007-10-25 2009-05-14 Toshiba Corp Optical head device and information recording/reproducing apparatus using the same
US8750341B2 (en) * 2008-01-04 2014-06-10 Mindspeed Technologies, Inc. Method and apparatus for reducing optical signal speckle
GB2468716A (en) * 2009-03-20 2010-09-22 Univ Dublin City An optical wavelength comb generator device
EP2426545A4 (en) * 2009-04-27 2014-09-03 Konica Minolta Opto Inc Image display apparatus and laser projection apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3641459A (en) * 1969-06-16 1972-02-08 Bell Telephone Labor Inc Apparatus and method for narrowing the pulse width and stabilizing the repetition rate in semiconductor lasers exhibiting self-induced pulsing
US3723903A (en) * 1971-05-13 1973-03-27 Bell Telephone Labor Inc Dynamic fm control of the transverse modes of a self-pulsing semiconductor laser
NL7312139A (en) * 1972-09-08 1974-03-12
DE2330310A1 (en) * 1973-06-14 1975-01-16 Siemens Ag METHOD FOR PULSE MODULATION OF SEMI-CONDUCTOR LASERS
US4079339A (en) * 1975-05-17 1978-03-14 Nippon Electric Company, Ltd. Light self-injecting semiconductor laser device
DE2534889C2 (en) * 1975-08-05 1981-09-24 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Method for amplifying the modulation depth of the optical output signal or the electrical output signal of a semiconductor injection laser generated by coupling in an optical signal, and an arrangement for carrying out the method
DE3027318C2 (en) * 1979-08-03 1983-05-05 Hitachi, Ltd., Tokyo Optical scanning system
JPS5647933A (en) * 1979-09-25 1981-04-30 Sony Corp Optical signal head
US4317236A (en) * 1980-02-25 1982-02-23 Bell Telephone Laboratories, Incorporated Laser digital transmitter
JPS57200912A (en) * 1981-06-04 1982-12-09 Pioneer Electronic Corp Information recording system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4799069A (en) * 1986-04-18 1989-01-17 Minolta Camera Kabushiki Kaisha Laser recording apparatus
JPS6310333A (en) * 1986-06-30 1988-01-16 Pioneer Electronic Corp Optical information reader
JPS6326846A (en) * 1986-07-21 1988-02-04 Hitachi Ltd Optical head
JPS6464139A (en) * 1987-09-04 1989-03-10 Hitachi Ltd Thin film optical pickup
CN100365717C (en) * 1997-08-05 2008-01-30 索尼株式会社 Semiconductor laser driving method and optical disc apparatus
US7515624B2 (en) 2002-11-11 2009-04-07 Sharp Kabushiki Kaisha Semiconductor laser, semiconductor laser driver and method of driving semiconductor laser reducing feedback-induced noise by modulated optical output
WO2007097290A1 (en) * 2006-02-22 2007-08-30 Nichia Corporation Optical device
JP2007257674A (en) * 2006-02-22 2007-10-04 Nichia Chem Ind Ltd Optical device
US8054735B2 (en) 2006-02-22 2011-11-08 Nichia Corporation Optical device

Also Published As

Publication number Publication date
GB2144912B (en) 1987-12-31
IT1176571B (en) 1987-08-18
GB8420060D0 (en) 1984-09-12
FR2550645A1 (en) 1985-02-15
KR850002707A (en) 1985-05-15
DE3429255A1 (en) 1985-02-28
IT8422244A0 (en) 1984-08-07
GB2144912A (en) 1985-03-13

Similar Documents

Publication Publication Date Title
JPS6035344A (en) Light emitting device and optical signal processor using light emitting device
US5448548A (en) Optical information reading method for reducing laser noise using a semiconductor laser and a driving device for the semiconductor laser
US3941945A (en) Signal playback system transducer with optical resonance cavity
JPH0578093B2 (en)
US8902947B2 (en) Optical module
US5036278A (en) Radiation source for helium magnetometers
JP2004119493A (en) Optical module
JPS61163685A (en) Direct frequency modulating method of laser light
JPH0342025B2 (en)
JPH06101133B2 (en) Light emitting device
US5193083A (en) Optical pick-up device
JPS60192377A (en) Driving method for semiconductor laser element
JPS6384184A (en) Semiconductor laser device
JP2000165329A (en) Optical transmitter
JPS60170041A (en) Optical pickup device
JP2000228559A (en) Optical device
JPS6139245A (en) Optical pickup device
JPH02118927A (en) Method and device for driving semiconductor laser
JP2683276B2 (en) Optical memory reading device
JPS6136298B2 (en)
JPS60103529A (en) Optical signal processing unit
JPH0318779B2 (en)
JPS6120180B2 (en)
JPS61127191A (en) Semiconductor laser
JPH11186669A (en) Semiconductor laser device