JPS60192377A - Driving method for semiconductor laser element - Google Patents

Driving method for semiconductor laser element

Info

Publication number
JPS60192377A
JPS60192377A JP59049672A JP4967284A JPS60192377A JP S60192377 A JPS60192377 A JP S60192377A JP 59049672 A JP59049672 A JP 59049672A JP 4967284 A JP4967284 A JP 4967284A JP S60192377 A JPS60192377 A JP S60192377A
Authority
JP
Japan
Prior art keywords
semiconductor laser
light
current
laser
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59049672A
Other languages
Japanese (ja)
Inventor
Haruhisa Takiguchi
治久 瀧口
Sadamasu Matsui
松井 定益
Shinji Kaneiwa
進治 兼岩
Mototaka Tanetani
元隆 種谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59049672A priority Critical patent/JPS60192377A/en
Publication of JPS60192377A publication Critical patent/JPS60192377A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06835Stabilising during pulse modulation or generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06817Noise reduction

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce noise attributable to laser energy fed back to the emitting element by a method wherein the intensity of the energy emitted by a semiconductor laser element is detected and the direct current value is regulated according to the intensity of the detected value. CONSTITUTION:A direct current smaller than the threshold current of a semiconductor laser 1 is yielded by a constant output circuit 11. The yield is joined by a pulsating current outputted by a pulse generator 8 to pulse-drive the semiconductor laser 1. In this way, fluctuations caused by the feedback of reflected energy may be suppressed. The pulse generator 8 is connected to the semiconductor laser 1 with the intermediary of a capacitor. A light-receiving diode 9 is connected to the driving circuit for the semiconductor laser 1, and to the constant output circuit 11 through the intermediary of a low-pass filter 10. Accordingly, the direct current, supplied by the constant output circuit 11 through a coil to the semiconductor laser 1 on the basis of the signals transmitted by the light-receiving diode 9, is regulated. The regulated direct current is joined by a pulsating current, originating inth pulse generator 8, to drive the semiconductor laser 1 to yield constant-intensity pulses.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、光学的に情報を書き込み再生する光ディヌク
情報処理装置用ピックアップ装置等の光源手段として有
効となる半導体レーザ素子の駆動方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for driving a semiconductor laser element that is effective as a light source means for a pickup device for an optical information processing device that optically writes and reproduces information.

〈従来技術〉 光ディスクに情報を書き込む又は光ディスクの蓄積情報
を再生する手段として光学式ピックアップ装置が用いら
れ、その光源として半導体レーザが実用化されている。
<Prior Art> An optical pickup device is used as a means for writing information on an optical disk or reproducing information stored on an optical disk, and a semiconductor laser has been put into practical use as its light source.

半導体レーザを利用した光学式ピックアップ装置の基本
的構成の1例を第1図に示す。半導体レーザ1を出た光
はコリメートレンズ2によって平行光となり、順次ビー
ムスプリンタ3、偏光プリズム4.1/4波長板5、集
光レンズ6を通してデ、fヌク7に照射される。ディス
ク7に情報を書き込む場合は、信号に応じた周波数で半
導体レーザ1をパルス駆動する。ディヌク7から情報を
読み取る場合は半導体レーザ1を直流電流で駆動し、デ
ィスク7」二のピットの有無に応じて変調された反則光
の光量を検出器8で検出する。以上の如き光学式ピック
アップにおいては、半導体レーザの像がディスク7上に
結像される構成となっているので、ディヌク7からの反
則光の一部が半導体レーザ1に帰還される。一般に半導
体レーザにおいては、その出射光の一部が帰還されると
レーザの雑音レベルが増加することが知られており、例
えば、出射光量の0.1 %程度の帰JW光量があって
も、レーザの相対雑音強度は1000倍以上も増加し、
光デイスク情報処理装置の性能を悪化させる。このため
に、第1図に示す如< ”A波長板5と偏光プリズム4
を挿入し、ディスク7からの反射光が半導体レーザ1に
帰還し々いよう々機構が具備されている。しかしながら
、このように帰還防止機構を相加しても、反射光の帰還
を完全に阻止することはできない。光デイスク装置に用
いられるディヌク基板は一般的に高分子樹脂材料が用い
られる。この高分子樹脂板はわずかな複屈折性を有して
おり、帰還防止用の1/4波長板5と偏光プリズム4を
付設してもこの複屈折性のためにディヌク7からの反射
光の一部が半導体レーザ1に帰還される。また図波長板
5や偏光プリズム4の光学調整ずれによっても反射光が
帰還きれる。従ってこれらの原因でディスク7からの反
則光の数%は半導体レーザ1に帰還され、レーザ出力光
の雑音レベルを高くしてし捷う。レーザの雑音レベルの
増加は信号再生時に大きな問題となる。
An example of the basic configuration of an optical pickup device using a semiconductor laser is shown in FIG. The light emitted from the semiconductor laser 1 is turned into parallel light by a collimating lens 2, and is irradiated onto a beam splitter 3, a polarizing prism 4, a quarter wavelength plate 5, and a condensing lens 6 in order. When writing information on the disk 7, the semiconductor laser 1 is pulse-driven at a frequency according to the signal. When reading information from the disc 7, the semiconductor laser 1 is driven with a direct current, and the detector 8 detects the amount of repulsive light that is modulated depending on the presence or absence of pits on the disc 7'. In the optical pickup as described above, since the image of the semiconductor laser is formed on the disk 7, a part of the repulsive light from the Dinuk 7 is fed back to the semiconductor laser 1. It is generally known that in a semiconductor laser, the noise level of the laser increases when a part of the emitted light is fed back.For example, even if the amount of returned JW light is about 0.1% of the amount of emitted light, The relative noise intensity of the laser increases by more than 1000 times,
Deteriorates the performance of the optical disk information processing device. For this purpose, as shown in FIG.
A mechanism is provided to allow the reflected light from the disk 7 to return to the semiconductor laser 1. However, even if such a feedback prevention mechanism is added, it is not possible to completely prevent the reflected light from returning. A DINUK substrate used in an optical disk device is generally made of a polymer resin material. This polymer resin plate has a slight birefringence, and even if a 1/4 wavelength plate 5 and a polarizing prism 4 are attached to prevent feedback, the reflected light from the Dinuk 7 will not be reflected due to this birefringence. A portion is fed back to the semiconductor laser 1. Further, the reflected light can also be returned due to optical adjustment deviation of the wavelength plate 5 or the polarizing prism 4. Therefore, due to these reasons, several percent of the reflected light from the disk 7 is fed back to the semiconductor laser 1, increasing the noise level of the laser output light. The increase in laser noise level poses a major problem during signal reproduction.

ところで、光ディヌク装置のピックアップ装置用光源と
しての半導体レーザに要求される仕様としては、低雑音
であること以外に情報を高速で書き込む必要から、40
?7LW程度の高出力発振が可能であることが不可欠と
なる。このような高出力を得るために、半導体レーザは
、ファブリペロ−共振器を構成する出力取出用共振面の
反則率を10%以下とし、これに対向する共振面の反射
率を90%以」二として取り出し効率を上げる手段が具
設されている。このため、通常の端面反射率が32伽の
半導体レーザに比べて帰還光の影響は一層大きくなる。
By the way, the specifications required for a semiconductor laser as a light source for a pickup device of an optical Dinuk device include low noise and the need to write information at high speed.
? It is essential that high output oscillation of about 7LW is possible. In order to obtain such high output, semiconductor lasers must have a resonant surface for output extraction that constitutes a Fabry-Perot resonator with a deflection rate of 10% or less, and a resonant surface that opposes this with a reflectance of 90% or more. A means for increasing the extraction efficiency is provided. Therefore, the influence of the feedback light becomes even greater than in a normal semiconductor laser whose end face reflectance is 32°.

次に、帰還光と雑音発生との関係について詳述する。第
2図は帰還がない場合の出射端面の反射率を10%以下
とした半導体レーザの電流に列する光出力、相対雑音強
度及びスペクトルを示す特性図である。使用した半導体
レーザは基板にV溝加工した内部ストライブ構造のVS
 I S (V−channel 5ubstrate
 Inner 5tripe)型レーザ素子で出射端面
反射率2%、裏面反則率95%に設定している。第2図
に示すように横モードが制御された屈折率導波型のVS
ISレーザにおいても、ARココ−〜(誘電膜による共
振端面被覆)を施すと出力3?7LW程度までは多重縦
モード全損と々る。第3図及び第4図は相対帰還量(帰
還光量÷端面出射光量)F−3影、0.001影とした
ときの光出力、相対雑音強度及びスペクトルを各々示し
たものである。第3図に示したF=3%と比較的帰還光
量が大きい場合において、相対雑音強度は出力4m、W
程度壕でに大きなピークを持つ。
Next, the relationship between feedback light and noise generation will be explained in detail. FIG. 2 is a characteristic diagram showing the optical output, relative noise intensity, and spectrum according to the current of a semiconductor laser in which the reflectance of the emission end face is 10% or less in the case of no feedback. The semiconductor laser used is a VS with an internal stripe structure with a V-groove cut into the substrate.
IS (V-channel 5ubstrate
The laser element is of the inner 5tripe type laser element, and the output end face reflectance is set to 2% and the back face reflection rate is set to 95%. Refractive index guided type VS with controlled transverse mode as shown in Figure 2
Even in IS lasers, if AR coating (resonant end face covering with a dielectric film) is applied, there will be a total loss of multiple longitudinal modes up to an output of about 3 to 7 LW. FIGS. 3 and 4 show the optical output, relative noise intensity, and spectrum when the relative feedback amount (feedback light amount/end face emitted light amount) is F-3 shadow and 0.001 shadow, respectively. In the case where the amount of feedback light is relatively large (F = 3% as shown in Figure 3), the relative noise intensity is 4 m at the output, W
It has a large peak in the middle.

またスペクl−)Vは全出力領域で多重縦モードとなる
。この帰還光による雑音の増大は、帰還光による量子雑
音のためであって、出射端面反射率が小さいほど大きく
なる。一方、第4図に示したようにF = 0. OO
]、 %と帰還光量が比較的小さい時は、出力3 m 
W 捷では多重縦モードとなって雑音の増大は顕著でば
々い。しかし3mW以上では光ディスクと半導体レーザ
の距離がレーザ発振光波長の半分(λ/2〜04μm、
)の周期で雑音が大きくなったり小さくなったりする。
Moreover, the spectrum 1-)V becomes multiple longitudinal modes in the entire output region. This increase in noise due to the feedback light is due to quantum noise due to the feedback light, and increases as the output end face reflectance decreases. On the other hand, as shown in FIG. 4, F = 0. OO
], % and when the amount of feedback light is relatively small, the output is 3 m.
In the W mode, there are multiple longitudinal modes, and the increase in noise is significant. However, at 3 mW or more, the distance between the optical disk and the semiconductor laser is half the laser oscillation light wavelength (λ/2 to 04 μm,
) The noise increases or decreases in cycles.

それにつれて、スペクトルも図示する如く単−縦モード
(雑音が小さいと@)とモード競合(雑音が大きいとき
)の二つの状態を繰り返す。このモード競合は、レーザ
縦モード間の競合だけではなく、レーザとディスクより
構成される外部共振器の縦モード間の競合も含まれる。
Accordingly, the spectrum also repeats two states, as shown in the figure: single-longitudinal mode (@ when the noise is small) and mode competition (when the noise is large). This mode competition includes not only competition between laser longitudinal modes but also competition between longitudinal modes of an external resonator constituted by a laser and a disk.

ところで通常のλカ厚の端面コー1−を施した反射率3
2%のレーザに高周波の正弦波を重畳することによって
多モード発振させモード競合雑音を抑制することが提案
されている(特願昭55−113515号)。しかし、
単に多モード発振させるだけでは、外部共振器モード間
の競合による雑音は抑制でき々い。そこで実際は、コヒ
ーレンス長が外部共振器よりも短くなるように、充分に
大きい周波数(〜600MHz)の信号を重畳する必要
がある。
By the way, the reflectance is 3 when the end face is coated with a normal λ thickness.
It has been proposed to suppress mode competition noise by superimposing a high frequency sine wave on a 2% laser to generate multimode oscillation (Japanese Patent Application No. 113515/1982). but,
Noise caused by competition between external resonator modes cannot be suppressed simply by causing multimode oscillation. Therefore, in reality, it is necessary to superimpose a signal with a sufficiently large frequency (~600 MHz) so that the coherence length is shorter than that of the external resonator.

また、端面低反射率コートのレーザに顕著な、帰還光量
の大きい場合に現われる量子雑音は、コヒーレンス長を
短くしただけでは、低減することができない。従って、
高出力のために端面反射率を低くしたレーザでは、単に
高周波の正弦波を重畳するのみでは、光帰還雑音を低減
することは不可能である。
In addition, quantum noise that appears when the amount of feedback light is large, which is noticeable in lasers with low reflectance coating on the end face, cannot be reduced simply by shortening the coherence length. Therefore,
In a laser with low end face reflectance due to high output, it is impossible to reduce optical feedback noise simply by superimposing a high frequency sine wave.

光学式ピックアップ装置の光源として半導体レーザを適
用する場合、レーザの雑音は主に、信号町生時に問題と
なることは既に記したが、再生時のレーザ出力は可能な
限り小さいことが望ましい。
When a semiconductor laser is used as a light source for an optical pickup device, it has already been mentioned that laser noise is a problem mainly during signal processing, but it is desirable that the laser output during reproduction be as small as possible.

これは光ディスクの劣化を防ぐためであって、通常、再
生時のレーザ出力は1〜5 m、 Wに設定されている
。レーザ出力が直流駆動で3rn、Wと57rLWのと
きの帰還光量に対する相対雑音強度の依存性を第5図及
び第6図に各々実線で示す。図から明らかなように、帰
還光量が大きく々るに従って相対雑音強度が漸増してい
る。帰呟光量の小さい領域では5771Wの場合はモー
ド競合が生じ雑音が増大している。
This is to prevent deterioration of the optical disc, and the laser output during reproduction is usually set at 1 to 5 m, W. The dependence of the relative noise intensity on the amount of feedback light when the laser output is 3rn, W and 57rLW in DC driving is shown by solid lines in FIGS. 5 and 6, respectively. As is clear from the figure, as the amount of feedback light increases, the relative noise intensity gradually increases. In the region where the amount of reflected light is small, mode competition occurs in the case of 5771 W, and noise increases.

このような雑音の増大は、システムの機能を低下させる
ので低減化が不可欠である。
Such an increase in noise degrades the functionality of the system, so it is essential to reduce it.

〈発明の目的〉 本発明は、半導体レーザをピックアップ装置等の信号光
源として用いた場合に非常に有効となるレーザ出力光の
帰還による雑音を低減化した新規有用々半導体レーザ索
子の駆動方法を提供することを目的とする。
<Objective of the Invention> The present invention provides a novel and useful method for driving a semiconductor laser probe that reduces noise caused by feedback of laser output light, which is extremely effective when a semiconductor laser is used as a signal light source for a pickup device or the like. The purpose is to provide.

〈実施例〉 第7図は本発明の一実施例の説明に供する半導体レーザ
を用いた光学式ピックアップ装置の構成図である。図中
第1図と同一符号(1乃至7)は同一内容を示す。
<Embodiment> FIG. 7 is a configuration diagram of an optical pickup device using a semiconductor laser to explain an embodiment of the present invention. In the figure, the same symbols (1 to 7) as in FIG. 1 indicate the same contents.

半導体レーザ1の駆動回路は、パルス発生器8、ご1″
導体レーザ1の出力光の一部が受光される受光ダイオー
ド9、受光ダイオード9の出力の低周波数分を取り出す
低減沖波器10及びこの低域沖波器10の出力が一定と
なるように半導体レーザ1に直流電流を供給する定出力
回路11より構成されている。半導体レーザ1の駆動に
際しては半導体レーザ1の閾値電流以下の電流値の直流
電流が定出力回路11より出力され、これにパルス発生
器8より出力されるパルス電fMk重畳することによっ
て半導体レーザ1がパルス駆動される。このようなパル
ス駆動とすれば反射光帰還による半導体レーザの光出力
の変動を抑止することができる。
The drive circuit for the semiconductor laser 1 includes a pulse generator 8 and a pulse generator 1''.
A light receiving diode 9 receives a part of the output light of the conductive laser 1, a reducing OIS device 10 extracts the low frequency component of the output of the light receiving diode 9, and a semiconductor laser 1 so that the output of the low frequency OIS device 10 is constant. It is composed of a constant output circuit 11 that supplies a direct current to. When driving the semiconductor laser 1, a DC current with a current value below the threshold current of the semiconductor laser 1 is output from the constant output circuit 11, and by superimposing the pulsed electric current fMk output from the pulse generator 8 on this, the semiconductor laser 1 is driven. Pulsed. Such pulse driving can suppress fluctuations in the optical output of the semiconductor laser due to feedback of reflected light.

パルス発生器8は等量を介して半導体レーザ1に接続さ
れ、また受光ダイオード9は半導体レーザ1の駆動回路
に分岐接続されかつ低域沖波器10を介して定出力回路
11に接続されている。従って、受光ダイオード9から
の信号に応じて半導体レーザ1にコイルを介して定出力
回路11より供給される直流電流が制御され、これにパ
ルス発生器8からのパルス電流が重畳されて半導体レー
ザ1が一定パルス出力強度で駆動される。
The pulse generator 8 is connected to the semiconductor laser 1 via an equalizer, and the light receiving diode 9 is branch-connected to the drive circuit of the semiconductor laser 1 and is connected to a constant output circuit 11 via a low frequency transducer 10. . Therefore, the DC current supplied from the constant output circuit 11 to the semiconductor laser 1 via the coil is controlled in accordance with the signal from the light receiving diode 9, and the pulse current from the pulse generator 8 is superimposed on this to control the DC current supplied to the semiconductor laser 1 via the coil. is driven with a constant pulse output intensity.

第8図は、相対帰還光量を3%とし、直流電流を加える
と同時にパルス電流を重畳した場合の平均光出力及び平
均雑音強度を示している。第8図より光出力の最大値は
6 rr+、 Wであるが、平均値は3mWとなってい
る。一方、雑音に関しては、図中実線で示しだ直流電流
のみで駆動した場合には3mWの出力でlXl0 Hz
となるが、破線で示したパルス駆動の場合には光出力の
最大値が平均値の2倍となっていることと、雑音の発生
がパルスの印加によりレーザの発振している間のみであ
って、デユーティ比50%のパルスで駆動シている場合
に雑音電力が半分になることから、光出力の最大値6m
Wに対応する相対雑音強度5 X 10 ”’1 Hz の半分の2.5X10 Hz が平均出力3m、
Wの雑音強度となる。即ちこの場合、パルス駆動によっ
て16dBの雑音の改善が実現される。
FIG. 8 shows the average optical output and average noise intensity when the relative amount of feedback light is 3% and when a DC current is applied and a pulse current is simultaneously superimposed. From FIG. 8, the maximum value of the optical output is 6 rr+, W, but the average value is 3 mW. On the other hand, regarding noise, as shown by the solid line in the figure, when driven only by DC current, the output is 3 mW and the frequency is 1X10 Hz.
However, in the case of pulse drive shown by the broken line, the maximum value of the optical output is twice the average value, and the noise is generated only while the laser is oscillating due to the application of pulses. Therefore, when driving with a pulse with a duty ratio of 50%, the noise power is halved, so the maximum optical output is 6m.
The relative noise intensity corresponding to W is 2.5 x 10 Hz, which is half of 1 Hz, and the average output is 3 m,
The noise intensity is W. That is, in this case, pulse driving achieves a 16 dB noise improvement.

ところで、半導体レーザ1にパルス等で閾値電流以下の
深い変調を加えると、キャリア分布の変動によってFM
変調され、ヌベクトルライン幅カ広がることは前述の正
弦波を重畳した場合と同じであり、コヒーレンス長が短
くなると期待される。
By the way, when deep modulation below the threshold current is applied to the semiconductor laser 1 using pulses or the like, the FM
The modulation and expansion of the vector line width is the same as in the case of superimposing a sine wave as described above, and it is expected that the coherence length will become shorter.

実際にVSIS型レーザ素子の閾値電流40mAの素子
において、変調周波数50MI−Iz、変調電流167
1LA、直流電流3571LAで駆動したところ、コヒ
ーレンス長は1朋以下となった。
Actually, in a VSIS type laser device with a threshold current of 40 mA, the modulation frequency is 50 MI-Iz and the modulation current is 167
When driven with 1 LA and a DC current of 3571 LA, the coherence length was less than 1 LA.

第4図に示したような相対帰還光重の小さい場合に生じ
るモード競合雑音は出射光と帰還光のコヒーレントな相
互作用によって発生するので、パルス駆動によりコヒー
レンス長を短くした半導体レーザでは全く発生しない。
The mode competition noise that occurs when the relative feedback light weight is small as shown in Figure 4 is generated by coherent interaction between the emitted light and the feedback light, so it does not occur at all in a semiconductor laser whose coherence length is shortened by pulse driving. .

変調周波数が50MHzと前述の600MHzに比べ一
桁以」二車さい値でも充分にコヒーレンス畏が短くなる
理由は以下の2点にある。(1)本発明に用いる半導体
レーザは出躬面反則率が例えば2%程度と小さく、従っ
て光子の寿命が短く通常の反射率32形のレーザ索子に
比べて元来コヒーレンス長が1桁程度小さくなること、
(2+パルス駆動であるため、パルスの繰り返し周波数
が小さくてもパルスの高調波成分による変調があり、単
一周波数のIF弦波変調に比べてFM変調によるライン
幅の広がりが大きくなることである。
There are two reasons why the coherence ratio is sufficiently short when the modulation frequency is 50 MHz, which is one order of magnitude smaller than the above-mentioned 600 MHz. (1) The semiconductor laser used in the present invention has a low emission surface deflection rate of, for example, about 2%, and therefore has a short photon lifetime and a coherence length of about one order of magnitude compared to a normal laser beam with a reflectance of 32. to become smaller,
(Since it is a 2+ pulse drive, even if the pulse repetition frequency is small, there is modulation due to the harmonic components of the pulse, and the line width broadening due to FM modulation is larger than with single frequency IF string wave modulation.) .

パルスの繰り返し周波数は、中央極限定理から丙生伯号
の周波数成分における」−限局波数の2倍以上の周波数
でなければならず、実用的には5倍程度が必要である。
From the central limit theorem, the repetition frequency of the pulse must be twice or more the localized wave number in the frequency component of the Hio Hakugo, and practically, it needs to be about five times the frequency.

しかし、この値は前述の600M Hzに比べ充分に小
さく、本発明を記録再生用光デイスク装置に適用した場
合に記録用のパルス駆動回路がそのま1利用できるとい
う利点もある。
However, this value is sufficiently smaller than the above-mentioned 600 MHz, and there is an advantage that when the present invention is applied to an optical disk device for recording and reproducing, the pulse drive circuit for recording can be used as is.

第5図及び第6図に閾値電流以下の深いパルスで変調し
たvsrs型レーザ素子の帰還光量に対する相対着1音
強度の依存性を破線で示す。同図に実線で示す曲流電流
駆動の場合の特性に比べ、全領域にわたって雑音の低減
化が実現されている。
In FIGS. 5 and 6, the dependence of the relative incoming sound intensity on the amount of feedback light of a vsrs type laser element modulated with a deep pulse below the threshold current is shown by a broken line. Compared to the characteristics in the case of curved current drive shown by the solid line in the figure, noise reduction has been achieved over the entire range.

〈発明の効果〉 以上詳述した如く本発明によれば閾値電流以下の深いパ
ルス変調を出則端面の反射率を小さくした半導体レーザ
に加えるパルス印加手段を付設することによって、帰還
光量の大きい場合に問題となる量子雑音と帰還光量が小
さい場合に現われるモート′競合雑音の双方の雑音を低
減することができ、光デイスク情報処理装置用の光学式
ピックアップ装置等の信号光源として特性及び信頼性の
高い光源装置が得られる。
<Effects of the Invention> As detailed above, according to the present invention, by providing a pulse application means for applying deep pulse modulation below the threshold current to a semiconductor laser whose output facet has a low reflectance, it is possible to improve the effect when the amount of feedback light is large. It is possible to reduce both quantum noise, which is a problem when the feedback light intensity is small, and moat competitive noise, which appears when the amount of feedback light is small. A high quality light source device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は半導体レーザを用いた光学式ピックアップの基
本]苗取を示す構成図である。 第2図は光帰還がない場合のレーザ出射端面反則率を1
0Φ以下とした半導体レーザの駆動電流に対する光出力
、相対雑音強度及びヌベクトルを示す特性図である。 第3図、第41¥1はそれぞれ相対帰還量を3形、0、
001%とした場合の光出力、相対雑音強度及びスペク
トルの駆動電流依存性を示す特性図である。第5図、第
6図はそれぞれ光出力を3mW。 5?71.Wとした場合の直流電流駆動(実線)、パル
ス駆動(破線)に於ける相対強度雑音の帰還光量依存性
を示す特性図である。 第7図は本発明の1実施例の説明に供する光学的ピック
アップ装置の構成図である。第8図は、本発明の動作原
理を説明する説明図である。 1・・1半導体レーザ、 7・・・デ、fヌク、 8・
・・パルス発生器、 9・・・受光ダイオード、 1o
・・・低域f1波器、 11・・・定出力回路。 代理人 弁理士 福 士 愛 彦(他2名)第 l[2
] 第7r7I &ψカ會麦 (mA) 第2図 ThtoQ i (mA) 第3図
FIG. 1 is a block diagram showing the basics of an optical pickup using a semiconductor laser. Figure 2 shows the laser emission end face fouling rate when there is no optical feedback.
FIG. 3 is a characteristic diagram showing optical output, relative noise intensity, and nuvector with respect to drive current of a semiconductor laser set to 0Φ or less. Figure 3 and No. 41¥1 indicate the relative feedback amount of type 3, 0, and 0, respectively.
FIG. 2 is a characteristic diagram showing the dependence of optical output, relative noise intensity, and spectrum on drive current when set to 001%. In Figures 5 and 6, the optical output is 3 mW. 5?71. FIG. 7 is a characteristic diagram showing the dependence of relative intensity noise on the amount of feedback light in DC current driving (solid line) and pulse driving (broken line) when W is used. FIG. 7 is a configuration diagram of an optical pickup device for explaining one embodiment of the present invention. FIG. 8 is an explanatory diagram illustrating the operating principle of the present invention. 1...1 semiconductor laser, 7...de, f nuku, 8...
...Pulse generator, 9...Photodetector diode, 1o
...Low frequency f1 wave device, 11... Constant output circuit. Agent Patent Attorney Aihiko Fukushi (and 2 others) No. 1[2]
] 7r7I & ψ power (mA) Fig. 2 ThtoQ i (mA) Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 1 半導体レーザ素子の駆動電流を閾値電流値以下の直
流電流ととれに垂畳される高周波パルス電流で構成し、
前記半導体レーザ素子の出力光強度を検出しかつ検出信
号に対応して前記直流電流の電流値を制御することによ
り前記半導体レーザ素子のパルス光強度を一定とするこ
とを特徴とする半導体レーザ素子の駆動方法。
1. The driving current of the semiconductor laser element is composed of a direct current below a threshold current value and a high frequency pulse current that is applied to the gate,
A semiconductor laser device characterized in that the pulsed light intensity of the semiconductor laser device is kept constant by detecting the output light intensity of the semiconductor laser device and controlling the current value of the direct current in response to a detection signal. Driving method.
JP59049672A 1984-03-14 1984-03-14 Driving method for semiconductor laser element Pending JPS60192377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59049672A JPS60192377A (en) 1984-03-14 1984-03-14 Driving method for semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59049672A JPS60192377A (en) 1984-03-14 1984-03-14 Driving method for semiconductor laser element

Publications (1)

Publication Number Publication Date
JPS60192377A true JPS60192377A (en) 1985-09-30

Family

ID=12837659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59049672A Pending JPS60192377A (en) 1984-03-14 1984-03-14 Driving method for semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS60192377A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0235813A2 (en) * 1986-03-04 1987-09-09 Citizen Watch Co. Ltd. Circuit for driving a laser diode
JPS6373239A (en) * 1986-09-17 1988-04-02 Konica Corp Radiographic information reader
US4799069A (en) * 1986-04-18 1989-01-17 Minolta Camera Kabushiki Kaisha Laser recording apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0235813A2 (en) * 1986-03-04 1987-09-09 Citizen Watch Co. Ltd. Circuit for driving a laser diode
EP0235813A3 (en) * 1986-03-04 1988-08-24 Citizen Watch Co. Ltd. Circuit for driving a laser diode
US4799069A (en) * 1986-04-18 1989-01-17 Minolta Camera Kabushiki Kaisha Laser recording apparatus
JPS6373239A (en) * 1986-09-17 1988-04-02 Konica Corp Radiographic information reader
JPH0721620B2 (en) * 1986-09-17 1995-03-08 コニカ株式会社 Radiation image information reader

Similar Documents

Publication Publication Date Title
JP2785921B2 (en) Semiconductor laser drive circuit for optical memory readout device
KR910003217B1 (en) Semiconductor laser driving method and apparatus
GB2144912A (en) Light emitting device and optical signal processing system employing the same
JPS599086B2 (en) optical information reproducing device
EP0532274B1 (en) Noise reduction system for optical record and reproduction apparatus using auto-power controlled semiconductor laser device
JPH05507156A (en) Optical signal regenerator and optical communication system including it
JPS61502842A (en) High speed intensity modulated light source
JPS60192377A (en) Driving method for semiconductor laser element
JPS6242593A (en) Semiconductor light emission device
JPS60170041A (en) Optical pickup device
JPS58153239A (en) Optical pickup device
JPS6318872B2 (en)
JP2000228559A (en) Optical device
JPS6139245A (en) Optical pickup device
JPH0743841B2 (en) Semiconductor laser driving method
US5034942A (en) System having a function of reproducing optical information
JPS6136298B2 (en)
JPS60154337A (en) Optical pickup device
JPH02118927A (en) Method and device for driving semiconductor laser
JPS5911548A (en) Optical pickup device
JPS60242527A (en) Laser light generating device
JPH01191339A (en) Device for driving semiconductor laser
JP2787898B2 (en) Optical clock pulse generation circuit
KR100287756B1 (en) 2 stage optical recorder
JPH0393045A (en) Semiconductor laser light source and optical information recording and reproducing device