JPS5911548A - Optical pickup device - Google Patents

Optical pickup device

Info

Publication number
JPS5911548A
JPS5911548A JP57119772A JP11977282A JPS5911548A JP S5911548 A JPS5911548 A JP S5911548A JP 57119772 A JP57119772 A JP 57119772A JP 11977282 A JP11977282 A JP 11977282A JP S5911548 A JPS5911548 A JP S5911548A
Authority
JP
Japan
Prior art keywords
light
semiconductor laser
light emitting
laser
emitting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57119772A
Other languages
Japanese (ja)
Inventor
Toshiaki Tsuyoshi
敏明 津吉
Seiji Yonezawa
米沢 成二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57119772A priority Critical patent/JPS5911548A/en
Publication of JPS5911548A publication Critical patent/JPS5911548A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0656Seeding, i.e. an additional light input is provided for controlling the laser modes, for example by back-reflecting light from an external optical component

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a signal with high SN ratio, by inputting a laser light irradiated from one or both spots of a semiconductor laser being a light source to other spot different from the irradiated laser light spot, for decreasing the coherence of the semiconductor laser, and suppressing the optical noise of the semiconductor laser. CONSTITUTION:A laser light irradiated from a spot 8a of the semiconductor laser 1 is divided into a luminous flux going to a disc reflecting plane 6 and that going to a reflecting mirror 13c. The light going to the disc forms an optical spot 9 on a disc 6, the reflecting light passes through again a 1/4 wavelength plate and is directed in the direction of a main optical detector 7 with the direction of polarization of light changed by 90 deg. from the beginning, and the information of the disc is converted into an electric signal. On the other hand, the luminous flux reflected in the direction of the reflecting mirror 13c is focused with a lens 2b and given to the other irradiating spot 8b of the semiconductor laser. Further, the laser light irradiated from the spot 8b is separated into the luminous flux in the direction of a lens 2a and of a monitor optical detector 12 at a semi-transmitting mirror 11a, and the laser light irradiated in the lens 2a is stopped and given to the spot 8a.

Description

【発明の詳細な説明】 本発明は単−縦モード半導体レーザを用いた光ピツクア
ップ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical pickup device using a single-longitudinal mode semiconductor laser.

従来から、単−縦モード半導体レーザでは、素子端面か
ら放射でれた光が外部の反射面で反射して出射端面へ帰
還すると、一定電流でレーザ素子を駆動しても光出力が
変動し、信号再生などの場合にはこれが光雑音となって
良好な信号を検出することが困難となることが知られて
いる。
Conventionally, in single-longitudinal mode semiconductor lasers, when the light emitted from the element end face is reflected by an external reflective surface and returned to the emission end face, the optical output fluctuates even if the laser element is driven with a constant current. It is known that in the case of signal reproduction, etc., this becomes optical noise, making it difficult to detect a good signal.

このため、光通信や光デイスク再生装置など半纏体レー
ザを光学情報処理に利用する場合には、帰還光による半
導体レーザ雑音の発生を防ぐために偏光分離などの手段
によって半導体レーザ素子へ極力光が戻らないようにし
ていた。しかし、帰還光量を完全に零にすることは実際
には不可能であり、また光学部品の精度、組立精度など
のばらつきによって半導体レーザへの帰還光量が出射光
量の0.1%程度になると、光雑音が急激に増加してし
まう。したがって半導体レーザへの帰還光量を極力少な
くして半導体レーザの光雑音を抑制する使用法は、部品
精度や組立精度が非常に厳しく々るという欠点があった
For this reason, when semi-integrated lasers are used for optical information processing, such as in optical communication or optical disk playback devices, in order to prevent the generation of semiconductor laser noise due to feedback light, the light returns to the semiconductor laser element as much as possible by means such as polarization separation. I tried not to. However, it is actually impossible to reduce the amount of feedback light to completely zero, and if the amount of feedback light to the semiconductor laser becomes about 0.1% of the output light amount due to variations in the precision of optical components, assembly precision, etc. Optical noise increases rapidly. Therefore, the method of suppressing the optical noise of the semiconductor laser by minimizing the amount of feedback light to the semiconductor laser has the disadvantage that component precision and assembly precision are extremely critical.

第1図(a)は従来の光デイスク再生用ピックアップ光
学系の基本構成を示したものである。半導体レーザ1の
発光点8から放射されたレーザ光をカップリング2で平
行光として、開光プリズム3および1/4波長板4を通
過させた後、絞りこみレンズ5によりディスク上の反射
面6上で光ス、jfット9に絞りこむ。この反射面から
の反射光は再び絞りこみレンズ5および1/4e長板4
を通過し、偏光プリズム3によって横にけりだされて光
検出器7に達して電気信号に変換される。
FIG. 1(a) shows the basic configuration of a conventional pickup optical system for reproducing optical discs. The laser light emitted from the light emitting point 8 of the semiconductor laser 1 is converted into parallel light by the coupling 2, and after passing through the light-opening prism 3 and the quarter-wave plate 4, it is collimated by the focusing lens 5 onto the reflective surface 6 on the disk. Narrow it down to light and jft 9. The reflected light from this reflective surface is again narrowed down by a lens 5 and a 1/4e long plate 4.
The light passes through the polarizing prism 3, is kicked out laterally, reaches the photodetector 7, and is converted into an electrical signal.

従来、この揮の光ピツクアップ装置では1/4波長板4
と偏光プリズム3の組みあわせによって、原理上はディ
スクからの反射光が半導体レーザへは戻らないようにし
ている。すなわち、第1図(b)に示す如く、直線偏光
している半導体レーザからの出射光は偏波面を1/4波
長板の結晶軸に対して45°の角度をなして入射させる
ことによシ、1/4波長板通過後のレーザ光は円偏光に
なる。
Conventionally, this type of optical pickup device uses a 1/4 wavelength plate 4.
The combination of the polarizing prism 3 and the polarizing prism 3 prevents reflected light from the disk from returning to the semiconductor laser in principle. That is, as shown in Figure 1(b), the linearly polarized light emitted from the semiconductor laser is incident by making the plane of polarization at a 45° angle to the crystal axis of the quarter-wave plate. After passing through the quarter-wave plate, the laser light becomes circularly polarized light.

このレーザ光が反射面で反射し、再び1/4波長板を通
過すると、最初の偏光方向とは偏波面が90°回転した
直7腺lVなる。90°偏光方向が異なる光は偏光プリ
ズムを透過せずに反射するために、半導体レーザへは戻
らなくなる。しかし、光学部品の精度、組立精度または
光学的異方性(複屈折)などにより微少ではあるが発光
点8にレーザ光が帰還することは避けられない。たとえ
ば第1図(a)でディスクの反射面6からの反射光が偏
光プリズム3で光検出器7へ最大に導かれるように調整
したとき、光検出器側と半導体レーザへ分配でれる比率
を200対1、半導体レーザ1とカップリングレンズ2
の結合効率η、すなわち半導体レーザの前方に出射はれ
た全光量に対するカップリングレンズ通過後の光量比を
25%、反射面の反射率を80%そして、光ビームが絞
り込みレンズを往復する際の光効率を80%とすると、
半導体レーザの前方への出射光の0.08〜0.1%程
度の光が発光点8aへ戻ることになる。この程度の戻υ
光量によっても単−縦モード半導体レーザは光雑音を発
生して信号再生を妨害する。
When this laser beam is reflected by the reflecting surface and passes through the quarter-wave plate again, the polarization direction is changed to the inclination angle 1V with the polarization plane rotated by 90 degrees from the initial polarization direction. Light with polarization directions different by 90° is reflected without passing through the polarizing prism, and therefore does not return to the semiconductor laser. However, it is unavoidable that the laser beam returns to the light emitting point 8, albeit slightly, due to the accuracy of optical components, assembly accuracy, optical anisotropy (birefringence), etc. For example, when the polarizing prism 3 is adjusted so that the reflected light from the reflective surface 6 of the disk is guided to the photodetector 7 to the maximum in FIG. 200:1, semiconductor laser 1 and coupling lens 2
The coupling efficiency η, that is, the ratio of the amount of light after passing through the coupling lens to the total amount of light emitted in front of the semiconductor laser is 25%, the reflectance of the reflective surface is 80%, and the ratio of the amount of light that passes through the coupling lens to the total amount of light emitted in front of the semiconductor laser is 25%, the reflectance of the reflective surface is 80%, and the ratio of the amount of light that passes through the coupling lens is 80%. If the light efficiency is 80%,
Approximately 0.08 to 0.1% of the forward emitted light from the semiconductor laser returns to the light emitting point 8a. This degree of return υ
Depending on the amount of light, a single-longitudinal mode semiconductor laser generates optical noise that interferes with signal reproduction.

本発明の目的は単−縦モード半導体レーザの光雑音の発
生を抑制し、良好なS/Nを有する光ピツクアップ装置
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical pickup device that suppresses the generation of optical noise in a single-longitudinal mode semiconductor laser and has a good S/N ratio.

前述のとおシ、屈折率導波型の半導体レーザにおいては
、素子への帰還光量が光雑音レベルに密接に関係してい
る。
As mentioned above, in the index-guided semiconductor laser, the amount of light returned to the element is closely related to the optical noise level.

出願人がいろいろな半導体レーザで帰還光量と光雑音の
関係を詳しく測定したところ、雑音レベルは帰還光量に
対して単調増加ではなく、ある帰還光量においてピーク
をもつという事実を発見した。この−例を第2図に示す
。横軸は帰還光量率すなわち半導体レーザの端面あたり
の全出射光量に対する素子発光点への帰還光量の割合を
示す。
When the applicant made detailed measurements of the relationship between the amount of feedback light and optical noise in various semiconductor lasers, he discovered that the noise level does not increase monotonically with respect to the amount of feedback light, but has a peak at a certain amount of feedback light. An example of this is shown in FIG. The horizontal axis indicates the feedback light amount rate, that is, the ratio of the amount of feedback light to the device light emitting point to the total amount of light emitted per end face of the semiconductor laser.

縦軸はレーザ光を光検出器で観測した場合、直流出力を
1とした時の帯域幅IHzあたりの相対雑音強度を表わ
す。言い換えれば相対雑音強度1o−1mとは10KH
2帯域幅で測定した場合のS/N90dBに相当する。
The vertical axis represents the relative noise intensity per bandwidth IHz when the DC output is set to 1 when the laser beam is observed with a photodetector. In other words, relative noise intensity 1o-1m is 10KH
This corresponds to an S/N of 90 dB when measured with two bandwidths.

測定は500KJ4Zの帯域で、屈折率導波型の単−縦
モード半導体レーザを光出力3mW一定の1ま素子温度
を20C〜60Cまで変化させて行ない、第2図はその
時の最大雑音レベルをプロットしたものである。
Measurements were made in the 500 KJ4Z band using a refractive index guided single-longitudinal mode semiconductor laser with a constant optical output of 3 mW while changing the element temperature from 20 C to 60 C. Figure 2 plots the maximum noise level at that time. This is what I did.

この結果によれば、雑音のピークは帰還光量率が0.1
%付近にあり、これ以上帰還光量率を増加させると雑音
は逆に減少する。このため、帰還光量率を少々くするの
ではなく、1%以上まで増加させ、ピークの右側で半導
体レーザを使用することにより、雑音の発生を小さくす
ることができる。
According to this result, the peak of the noise is at a feedback light rate of 0.1.
%, and if the feedback light amount rate is increased beyond this level, the noise will decrease. Therefore, the generation of noise can be reduced by increasing the feedback light amount rate to 1% or more, rather than decreasing it a little, and by using a semiconductor laser on the right side of the peak.

第3図(a)および(b)に0.1%帰還および2%帰
還時に、横軸に温度をとった場合の相対雑音強度の変化
のようすを示す。2%程度の光帰還により雑音強度の変
動が0.1%帰還時に比べ10dB以上小さく彦9、雑
音低減に効果のあることがわかる。
FIGS. 3(a) and 3(b) show how the relative noise intensity changes when the horizontal axis represents temperature at 0.1% feedback and 2% feedback. It can be seen that with optical feedback of about 2%, the fluctuation in noise intensity is reduced by more than 10 dB compared to when feedback is 0.1%, which is effective in reducing noise.

この雑音の低減効果はレーザへ光帰還によってレーザ光
のコヒーレンシイが低下することによるものと考えられ
る。
This noise reduction effect is thought to be due to a decrease in the coherency of the laser beam due to the optical feedback to the laser.

以上のような光帰還によシ半導体レーザの光雑音を低減
させることを目的として、以前出願人はレーザ光を射出
された点と同一の発光点に戻す構造をもった光ピツクア
ップ装置を提案した。
In order to reduce the optical noise of semiconductor lasers through optical feedback as described above, the applicant previously proposed an optical pickup device having a structure that returns laser light to the same light emitting point from which it was emitted. .

本発明は、これに対し、通常2つの発光点をもつ半導体
レーザにおいて射出された発光点とは異なるもう一方の
発光点ヘビーザ光を注入することをt¥j徴としている
。なお注入光量は単一発光点あたりの全射出光量に対し
て1%相当以上が適当である。
In contrast, the present invention is characterized by injecting heavy laser light from another light emitting point different from the light emitting point emitted in a semiconductor laser which normally has two light emitting points. Note that the amount of injected light is suitably equivalent to 1% or more of the total amount of emitted light per single light emitting point.

以下、本発明の実施例を図面を用いて説明する。Embodiments of the present invention will be described below with reference to the drawings.

第4図はレーザ光の発光点への注入を半透過鏡11aお
よび反射鏡13a、13b、および13cを用いて行な
っている実施例である。半導体レーザ1の一方の発光点
8aから射出されたレーザ光はコリメートレンズ2aに
より平行光となシ、半透過鏡11aに入射し、ディスク
の反射面6方向へ向かう光束と反射鏡13cへ向かう光
束に分けられる。ディスクの方向へ向かった光は、第1
図の従来のピックアップと同様に偏光プリズム3および
1/4波長板4を通過後、絞シこみレンズ5によりディ
スク6上で光スポット9を形成する。
FIG. 4 shows an embodiment in which laser light is injected into a light emitting point using a semi-transmissive mirror 11a and reflecting mirrors 13a, 13b, and 13c. The laser light emitted from one light emitting point 8a of the semiconductor laser 1 is collimated by the collimating lens 2a, and enters the semi-transparent mirror 11a, where it is divided into a beam of light directed toward the reflective surface 6 of the disk and a beam directed toward the reflecting mirror 13c. It can be divided into The light directed toward the disk is the first
Similar to the conventional pickup shown in the figure, after passing through a polarizing prism 3 and a quarter-wave plate 4, a light spot 9 is formed on a disk 6 by an aperture indentation lens 5.

ディスクからの反射光は再び1/4波長板を通過するこ
とによシ光の偏光方向が最初とは90’変化して主光検
出器7の方向へけりだされ、主光検出器によシディスク
上の情報が電気信号に変換される。一方、半透過鏡11
aにより反射鏡13cの方向へ反射てれた光束は、反射
鏡13c、13b。
The reflected light from the disk passes through the 1/4 wavelength plate again, so that the polarization direction of the light changes by 90' from the initial direction and is emitted toward the main photodetector 7. The information on the sidisk is converted into electrical signals. On the other hand, the semi-transparent mirror 11
The light beam reflected by a toward the reflecting mirror 13c is reflected by the reflecting mirrors 13c and 13b.

13aの順にリレーされ、レンズ2bにより絞りこ°ま
れて、半導体レーザのもう一方の発光点8bに注入され
る。一方、発光点8bから射出されたレーザ光は、レン
ズ2bにより平行光となり、反射鏡13a、13b、1
3cによるリレーによって半透過鏡11aにより、レン
ズ2a方向とモニタ用光検出器12の方向への光束に分
離される。
13a, and is focused by the lens 2b and injected into the other light emitting point 8b of the semiconductor laser. On the other hand, the laser light emitted from the light emitting point 8b becomes parallel light by the lens 2b, and the reflecting mirrors 13a, 13b, 1
3c, the semi-transmissive mirror 11a separates the light beam into light beams directed toward the lens 2a and toward the monitoring photodetector 12.

レンズ2aに入射したレーザ光は絞りこまれて、発光点
8aに注入てれる。以上のように光学系を構成すること
により、発光点8aからのレーザ光を8bに、発光点8
bからのレーザ光を83に各各注入でき、レーザ雑音の
低減効果を得ることができる。ここで例えばレンズ2a
および2bと半導体レーザ1との結合効率が双方とも2
5%、半透過鏡の反射率と透過率が各々共に50%であ
る場合には、発光点8aおよび8bには各発光点の発光
光量に対して約12%程度の光が注入されることになる
。半透過鏡11aおよび反射鏡13a。
The laser light incident on the lens 2a is focused and injected into the light emitting point 8a. By configuring the optical system as described above, the laser beam from the light emitting point 8a is directed to the light emitting point 8b.
The laser beams from b can be injected into each 83, and the effect of reducing laser noise can be obtained. For example, lens 2a
and the coupling efficiency between 2b and semiconductor laser 1 is both 2
5%, and when the reflectance and transmittance of the semi-transmissive mirror are both 50%, approximately 12% of the amount of light emitted from each light emitting point is injected into the light emitting points 8a and 8b. become. A semi-transparent mirror 11a and a reflecting mirror 13a.

13b、13cの反射率を変化させることにより、注入
光量を変化させ、また、ディスクへの信号光量を増加さ
せることも可能であるが、注入光量は1%以上とするこ
とが必要である。
By changing the reflectance of 13b and 13c, it is possible to change the amount of injected light and increase the amount of signal light to the disk, but it is necessary that the amount of injected light be 1% or more.

なおモニタ用光検出器12はレーザ1の発光量をモニタ
して光出力を一定に保つための自動出力制御(ADC)
用に用いるものである。
The monitoring photodetector 12 is an automatic output control (ADC) that monitors the amount of light emitted from the laser 1 and keeps the optical output constant.
It is used for various purposes.

本実施例では比較的少ない部品構成によって実現でき、
かつ光の利用効率も比較的高くできるという利点がある
This example can be realized with a relatively small number of parts.
It also has the advantage of relatively high light utilization efficiency.

第5図は光学系を2枚の反射鏡13a、13b。FIG. 5 shows an optical system consisting of two reflecting mirrors 13a and 13b.

および半透過鏡11bおよび1/2波長板10などによ
って構成している実施例である。
This is an embodiment in which a semi-transmissive mirror 11b, a half-wave plate 10, and the like are used.

発光点8aから射出されたレーザ光は第1図の光学系と
全く同様にディスク6で反射し、1/4波長板4によっ
て偏光方向が変化し、偏光プリズム3によって横にけり
だされる。この光束は半透過@llbに入射し、一部は
そのまま透過して主光検出器7へ導かれ、ディスク上の
情報が電気信号に変換される。一方、半透過鏡11bで
反射された光束は1/2波長板10によって光の偏光方
向を90°変化はせて、半導体レーザ1の偏光方向と同
じ方向に戻している。1/2波長板10を通過後の光束
は反射鏡13b、13aによりリレーされてレンズ2b
により発光点8bに注入される。一方、発光点8bから
の光は、これと全く逆の経路、すなわち、発光点8b→
レンズ2b→反射鏡13 a、13b−=1/2彼長板
10→半透過鏡→偏光プリズム→1/4波長板4→絞り
こみレンズ5→反射面6→絞シこみレンズ5→絞りこみ
レンズ4→偏光プリズム3→レンズ2aを経て発光点8
aへ注入される。
The laser beam emitted from the light emitting point 8a is reflected by the disk 6 in exactly the same way as in the optical system shown in FIG. This light flux enters the semi-transmissive @llb, and a part of it is transmitted as it is and guided to the main photodetector 7, where the information on the disk is converted into an electrical signal. On the other hand, the polarization direction of the light beam reflected by the semi-transmissive mirror 11b is changed by 90 degrees by the half-wave plate 10 and returned to the same direction as the polarization direction of the semiconductor laser 1. The light beam after passing through the 1/2 wavelength plate 10 is relayed by reflecting mirrors 13b and 13a, and then sent to lens 2b.
is injected into the light emitting point 8b. On the other hand, the light from the light emitting point 8b follows the completely opposite path, that is, the light emitting point 8b→
Lens 2b → Reflector 13 a, 13b - = 1/2 length plate 10 → Semi-transmissive mirror → Polarizing prism → 1/4 wavelength plate 4 → Aperture lens 5 → Reflective surface 6 → Aperture recess lens 5 → Aperture Lens 4 → Polarizing prism 3 → Light emitting point 8 via lens 2a
injected into a.

ここでレーザ1とレンズ2aおよび2bの結合効率を2
5%、半透過鏡11bの透過率と反射率のが各々50%
、ディスクの反射率を80%、絞シこみレンズ5を光束
が往復する際の効率を80%とすると、発光点8aおよ
び8bには約8%程度の光が注入きれる。なお、半透過
鏡11bの透過率と反射率の比を変化させることにより
、注入光量と信号光量の比を変化させることも可能であ
る。また1/4波長板4の結晶軸と入射光の偏波面のな
す角を正規の45°からずらすことにより、発光点8a
からの射出光を発光点8aと8b、発光点8bからの射
出光を発光点8bと8aにそれぞれ撮り分けて注入する
ことも可能である。しかしいずれの場合も各発光点への
注入光量は発光点の発光量に対して1%以上とすること
が望ましい。
Here, the coupling efficiency of laser 1 and lenses 2a and 2b is 2
5%, and the transmittance and reflectance of the semi-transmissive mirror 11b are each 50%.
Assuming that the reflectance of the disk is 80% and the efficiency with which the light beam travels back and forth through the aperture lens 5 is 80%, about 8% of the light can be completely injected into the light emitting points 8a and 8b. Note that by changing the ratio between the transmittance and the reflectance of the semi-transmissive mirror 11b, it is also possible to change the ratio between the amount of injected light and the amount of signal light. In addition, by shifting the angle between the crystal axis of the quarter-wave plate 4 and the polarization plane of the incident light from the normal 45°, the light emitting point 8a
It is also possible to separately inject the light emitted from the light emitting point 8a and 8b into the light emitting points 8a and 8b, and the light emitted from the light emitting point 8b into the light emitting points 8b and 8a, respectively. However, in any case, it is desirable that the amount of light injected into each light emitting point be 1% or more of the amount of light emitted from the light emitting point.

本実施例では第4図の実施例に比べて、注入光の通る光
路長を長くとることができるため、注入光量が比較的少
なくてもレーザ光のコヒーレンシイが低下しやすぐなり
、雑音の低減効果がより著しく彦るという利点がある。
In this embodiment, compared to the embodiment shown in FIG. 4, the optical path length through which the injected light passes can be made longer, so even if the amount of injected light is relatively small, the coherency of the laser light decreases quickly and noise is reduced. This has the advantage that the reduction effect is more significant.

第6図は、偏光素子を用いず、2つの半透過プリズムl
la、llbと2つの反射鏡13a。
Figure 6 shows two semi-transparent prisms l without using a polarizing element.
la, llb and two reflecting mirrors 13a.

13bなどにより光学系を構成した実施例を示す。13b and the like is shown.

発光点8aからの光は、発光点8a→レンズ2a→半透
過fJ11a→絞りこみレンズ5→ディスク6→絞りこ
みレンズ5→半透過鏡11a→牛透過鏡11b→反射鏡
13b、13a→レンズ2bを経て発光点8bに注入さ
れる。なお同時に発光点8aからの光は半透過鏡11a
によって発光点8aに帰還されるものおよび半透過鏡1
1bにより主光検出器7に導かれるものもある。一方、
発光点8bからのレーザ光は逆の経路を経て一部は発光
点8aに注入され、他の一部は主光検出器7に導かれ、
また他の一部は発光点8bK帰還される。
Light from the light emitting point 8a is transmitted through the light emitting point 8a → lens 2a → semi-transparent fJ11a → focusing lens 5 → disk 6 → focusing lens 5 → semi-transmitting mirror 11a → cow transmitting mirror 11b → reflecting mirrors 13b, 13a → lens 2b is injected into the light emitting point 8b. At the same time, the light from the light emitting point 8a passes through the semi-transparent mirror 11a.
and the semi-transparent mirror 1 that is returned to the light emitting point 8a by
Some are guided to the main photodetector 7 by 1b. on the other hand,
A part of the laser light from the light emitting point 8b is injected into the light emitting point 8a through the reverse path, and the other part is guided to the main photodetector 7.
The other part is fed back to the light emitting point 8bK.

ここで半透過鏡11aおよびllbの透過率と反射率が
等しく各々50%、他の光学系の光効率は第5図の実施
例の場合と等しいものとすると、発光点8aから射出は
れた光の約2%が発光点8bに注入きれ、約4%が発光
点8aに帰還される。一方、発光点8bから射出された
光の約2%が発光点8aに注入され約1%が発光点8b
に帰還される。したがって双方の発光点の発光量が等し
いと仮定し、各々の発光点へ注入される光量を加えあわ
せると発光点8aには約6%、発光点8bには約3%相
当の光量が注入される。
Here, assuming that the transmittance and reflectance of the semi-transmissive mirrors 11a and llb are equal to 50% each, and that the light efficiency of the other optical systems is the same as in the embodiment shown in FIG. About 2% of the light is completely injected into the light emitting point 8b, and about 4% is returned to the light emitting point 8a. On the other hand, about 2% of the light emitted from the light emitting point 8b is injected into the light emitting point 8a, and about 1% is injected into the light emitting point 8b.
will be returned to. Therefore, assuming that the amount of light emitted from both light emitting points is equal, and adding the amount of light injected to each light emitting point, the amount of light equivalent to about 6% is injected into the light emitting point 8a, and about 3% is injected into the light emitting point 8b. Ru.

本実施例では偏光素子を用いていない為、ディスクの複
屈折性によるレーザへの注入光量の変動や、光検出器へ
の信号光蓋の変動を受けにくいという利点を有する。
Since this embodiment does not use a polarizing element, it has the advantage of being less susceptible to fluctuations in the amount of light injected into the laser due to the birefringence of the disk and fluctuations in the signal light cover to the photodetector.

本発明は、以上説明したように光ピツクアップ装置にお
いて、光源の半導体レーザの片方または両方の発光点か
ら射出されたレーザ光を射出された発光点とは異なるも
う一方の発光点へ注入させること罠より、半導体レーザ
のコヒーレンシイヲ低下させることができるため、半導
体レーザの光雑音を抑制させ、その結果、ディスクより
良質な信号を検出することができる。
As explained above, in an optical pickup device, the present invention provides a trap for injecting laser light emitted from one or both light emitting points of a semiconductor laser of a light source into another light emitting point different from the emitted light emitting point. Since the coherency of the semiconductor laser can be lowered, the optical noise of the semiconductor laser can be suppressed, and as a result, a signal of higher quality than the disk can be detected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は従来の光ピツクアップの構成を説
明する図、第2図は半導体レーザへの帰還光量とレーザ
雑音レベルの関係を示す図、第3図(a)(b)は光帰
還による雑晋低減効果を示す図、第4図、第5図、第6
図は本発明の実施例を示す図である。
Figures 1 (a) and (b) are diagrams explaining the configuration of a conventional optical pickup, Figure 2 is a diagram showing the relationship between the amount of feedback light to the semiconductor laser and the laser noise level, and Figure 3 (a) and (b). Figures 4, 5, and 6 show the noise reduction effect of optical feedback.
The figure shows an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、互いに反対方向にレーザ光を射出する2つの発光点
を有する単−縦モード半導体レーザと、該半導体レーザ
からの、少なくとも一方の光ビームを光分配素子を介し
て所定の反射面上に絞りこむ光学手段と、上記反射面か
らの反射光を上記光分配素子を介して受光する光検出器
とからなる光ピツクアップ装置において、上記半導体レ
ーザの少なくとも一方の発光点から射出されたレーザ光
を、所定光量だけ射出された発光点とは異なるもう一方
の発光点へ注入する光注入手段を具備することを特徴と
する光ピツクアップ装置。 2、上記光注入手段は、単一発光点からの全射出光量の
1%以上の光量を上記発光点に注入する特許請求の範囲
第1項記載の光ピツクアップ装置。
[Claims] 1. A single-longitudinal mode semiconductor laser having two light emitting points that emit laser light in opposite directions, and at least one light beam from the semiconductor laser being directed through a light distribution element. An optical pickup device comprising an optical means focusing the light onto the reflective surface of the semiconductor laser, and a photodetector that receives the reflected light from the reflective surface via the light distribution element, in which light is emitted from at least one light emitting point of the semiconductor laser. 1. An optical pickup device comprising a light injection means for injecting a predetermined amount of laser light into a light emitting point different from the light emitting point from which the laser light was emitted. 2. The light pickup device according to claim 1, wherein the light injection means injects into the light emitting point an amount of light equal to or more than 1% of the total amount of light emitted from a single light emitting point.
JP57119772A 1982-07-12 1982-07-12 Optical pickup device Pending JPS5911548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57119772A JPS5911548A (en) 1982-07-12 1982-07-12 Optical pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57119772A JPS5911548A (en) 1982-07-12 1982-07-12 Optical pickup device

Publications (1)

Publication Number Publication Date
JPS5911548A true JPS5911548A (en) 1984-01-21

Family

ID=14769821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57119772A Pending JPS5911548A (en) 1982-07-12 1982-07-12 Optical pickup device

Country Status (1)

Country Link
JP (1) JPS5911548A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0438042A2 (en) * 1990-01-16 1991-07-24 International Business Machines Corporation Utilizing wasted laser light in optical systems
EP0593370A1 (en) * 1992-10-16 1994-04-20 Eastman Kodak Company Apparatus and method for laser noise cancellation in an optical storage system using a front facet monitor signal
WO1997032373A1 (en) * 1996-03-01 1997-09-04 Agfa-Gevaert Aktiengesellschaft Method and device for operating a laser diode
WO1998001858A1 (en) * 1996-07-08 1998-01-15 Zen Research N.V. Apparatus and methods for providing non-coherent laser illumination for multi-track reading apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0438042A2 (en) * 1990-01-16 1991-07-24 International Business Machines Corporation Utilizing wasted laser light in optical systems
EP0593370A1 (en) * 1992-10-16 1994-04-20 Eastman Kodak Company Apparatus and method for laser noise cancellation in an optical storage system using a front facet monitor signal
WO1997032373A1 (en) * 1996-03-01 1997-09-04 Agfa-Gevaert Aktiengesellschaft Method and device for operating a laser diode
WO1998001858A1 (en) * 1996-07-08 1998-01-15 Zen Research N.V. Apparatus and methods for providing non-coherent laser illumination for multi-track reading apparatus

Similar Documents

Publication Publication Date Title
US4333173A (en) Optical information processor with prismatic correction of laser beam shape
US4532619A (en) Method and apparatus for reducing semiconductor laser optical noise
US5067117A (en) Output stabilizing apparatus for an optical head
JPS5911548A (en) Optical pickup device
KR100299201B1 (en) Optical pickup
CN1074533C (en) Apparatus for measuring degree of inclination of objective lens for optical pickup
JPS58111391A (en) Semiconductor laser device
JPS58125245A (en) Optical pickup device
JPS58188342A (en) Noise reducing method of semiconductor laser light
JPS58175149A (en) Optical pickup device
JPH01260882A (en) Light emitting element module
US7298688B2 (en) Light emitting module and optical pickup apparatus and method employing the same
US5917801A (en) Optical pickup device
JPS6040538A (en) Optical information reader
JPS60154337A (en) Optical pickup device
US7450476B2 (en) Light emitting module and optical pickup apparatus and method employing the same
JPH03214102A (en) Optical coupler
KR100455478B1 (en) Optical pickup using reflective focusing lens
JPS61292233A (en) Optical head
JPS5988888A (en) Photo feedback type semiconductor laser device
JPS58175146A (en) Semiconductor laser
JPS60192377A (en) Driving method for semiconductor laser element
JPS58175148A (en) Optical pickup device
KR100585076B1 (en) Compatible optical pickup
US20060104329A1 (en) Apparatus for diode laser beam quality control