KR100455478B1 - Optical pickup using reflective focusing lens - Google Patents

Optical pickup using reflective focusing lens Download PDF

Info

Publication number
KR100455478B1
KR100455478B1 KR10-2000-0085003A KR20000085003A KR100455478B1 KR 100455478 B1 KR100455478 B1 KR 100455478B1 KR 20000085003 A KR20000085003 A KR 20000085003A KR 100455478 B1 KR100455478 B1 KR 100455478B1
Authority
KR
South Korea
Prior art keywords
monitor
lens
primary light
total reflection
light
Prior art date
Application number
KR10-2000-0085003A
Other languages
Korean (ko)
Other versions
KR20020055781A (en
Inventor
김영식
김철민
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR10-2000-0085003A priority Critical patent/KR100455478B1/en
Priority to US10/003,070 priority patent/US6920098B2/en
Publication of KR20020055781A publication Critical patent/KR20020055781A/en
Application granted granted Critical
Publication of KR100455478B1 publication Critical patent/KR100455478B1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • G11B7/1263Power control during transducing, e.g. by monitoring
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1378Separate aberration correction lenses; Cylindrical lenses to generate astigmatism; Beam expanders

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

본 발명은 광픽업 장치에 관한 것으로서 특히 전방 모니터 광검출기용 전반사형 집광렌즈에 관한 것이다.The present invention relates to an optical pickup device, and more particularly, to a total reflection type condenser lens for a front monitor photodetector.

종래의 전방 모니터 PD용 광학계는 홀로그램(HOE:Hologram Optical Element)의 0차 빔의 일부를 이용하기 때문에 광량 이용 효율이 떨어지고 광특성이 저하되며, 축간 거리가 커지게 되는 단점이 있었다.Since the conventional optical system for the front monitor PD uses a part of the 0th order beam of a hologram optical element (HOE), the light quantity use efficiency is lowered, the optical characteristic is lowered, and the distance between axes is increased.

본 발명은 홀로그램 유니트의 HOE에서 회절되는 1차 광을 모아서 모니터 PD에 입사시켜 주는 전반사형 집광렌즈를 사용하였다. 전반사형 집광렌즈는 HOE에서 회절되는 1차광이 입사되는 면이 구면이고, 반사 및 출사면은 평면으로 구성된다. 반사면은 전반사면으로 이루어지며, 모든 면은 무코팅되어 있다. 홀로그램 유니트(HPM)을 광원으로 하여 출력된 광의 1차 광을 전반사형 집광렌즈를 이용해서 모니터 PD로 결상시켜 줌으로써, 주 빔의 이용 효율을 높이고 광특성 및 축간 거리의 개선을 기할 수 있도록 하였다.The present invention uses a total reflection type focusing lens that collects the primary light diffracted in the HOE of the hologram unit and enters the monitor PD. The total reflection type condensing lens has a spherical surface on which the primary light diffracted in the HOE is incident, and the reflection and emission surfaces have a flat surface. The reflective surface consists of a total reflection surface and all surfaces are uncoated. The primary light of the light output using the hologram unit (HPM) as a light source is formed into the monitor PD using a total reflection type condenser lens, thereby improving the utilization efficiency of the main beam and improving the optical characteristics and the interaxial distance.

Description

전반사형 집광렌즈를 이용한 광픽업 장치{OPTICAL PICKUP USING REFLECTIVE FOCUSING LENS}Optical pickup device using total reflection type focusing lens {OPTICAL PICKUP USING REFLECTIVE FOCUSING LENS}

본 발명은 홀로그램 유니트를 사용하는 광픽업 장치에서 전방 모니터 광 검출기(Front Monitor PD)용의 전반사형 집광렌즈에 관한 것이다.The present invention relates to a total reflection type condenser lens for a front monitor PD in an optical pickup apparatus using a hologram unit.

특히 본 발명은 홀로그램(HOE:Hologram Optical Unit)의 1차 광을 모아서 모니터 PD에 입사시키기 위한 전반사형 집광렌즈로서, 집광렌즈의 입사면은 구형이고 반사면은 전반사형 평면이며 출사면은 평면으로 하되 상기 출사면에 대향하는 위치에 모니터 PD를 위치시켜 줌으로써 주 빔의 광 이용 효율을 높이고 광특성 및 축간 거리의 개선을 이룰 수 있도록 한 전방 모니터 광검출기용 전반사형 집광렌즈에 관한 것이다.In particular, the present invention is a total reflection type condenser lens for collecting the primary light of the hologram (HOE: Hologram Optical Unit) to enter the monitor PD, the incident surface of the condenser lens is spherical and the reflecting surface is a total reflection type plane and the exit surface is a plane However, the present invention relates to a total reflection type condenser lens for a front monitor photodetector, in which a monitor PD is positioned at a position opposite to the emission surface, thereby improving light utilization efficiency of the main beam and improving optical characteristics and axial distance.

광디스크 기록 장치 중의 하나인 CD-R/RW의 경우 레이저 광출력을 모니터하여 광출력이 일정하도록 구동전류를 조정하는 방법이 이용된다. 이를 위하여 모니터 PD를 이용하고 있는데, 레이저 다이오드의 후방에 놓인 광검출기(PD)가 레이저 광출력을 모니터하기는 편리하지만, 레이저 다이오드의 전방 출사 광출력이 후방 출사 광출력에 비해 비선형적이므로 후방 모니터 PD는 정확성이 떨어지는 단점을 가지고 있다. 이런 점을 극복하기 위해서 전방 출사 광을 직접 모니터하는 전방 모니터 PD를 이용한다.In the case of CD-R / RW, which is one of the optical disc recording apparatuses, a method of monitoring the laser light output and adjusting the driving current so that the light output is constant is used. For this purpose, the monitor PD is used. Although the photodetector PD placed behind the laser diode is convenient to monitor the laser light output, the rear monitor PD is not used because the front output light output of the laser diode is nonlinear compared to the rear output light output. Has the disadvantage of poor accuracy. To overcome this, a front monitor PD is used that directly monitors the front exit light.

도1은 광픽업용 고출력 홀로그램 픽업 모듈(HPM)을 사용하는 CD-R/RW용 픽업에서 전방 모니터 PD용 광학계의 일반적인 구성을 보여주고 있다.Fig. 1 shows the general configuration of the optical system for the front monitor PD in a pickup for a CD-R / RW using a high output hologram pickup module (HPM) for optical pickup.

HPM(101)에서 출력된 광은 시준렌즈(102)를 통해서 평행 빔으로 변환되고 빔 스프리터(103)를 통과하여 반사경(104)에 의해 반사된 다음, 대물렌즈(105)로 집속되어 광디스크(106) 상의 임의의 한 점에 집속된다. 또한 빔 스프리터(103)에 의해서 상기 HOE의 0차 빔의 일부를 모니터 PD(107)로 결상시켜 기록 광파워의 조절에 이용하도록 하고 있다.The light output from the HPM 101 is converted into a parallel beam through the collimating lens 102, passed through the beam splitter 103, reflected by the reflector 104, and then focused into the objective lens 105 to be optical disk 106. Is focused on any one point on In addition, the beam splitter 103 forms a part of the 0th order beam of the HOE to the monitor PD 107 so as to be used for adjusting the recording optical power.

이와같이 기존의 전방 모니터 PD용 광학계는 HOE의 0차 빔의 일부를 이용하기 때문에 광량의 이용 효율이 떨어진다. 또한 광특성이 떨어지고 축간 거리가 길어지는 단점이 있다.As such, the conventional optical system for the front monitor PD uses a part of the 0th order beam of the HOE, so the efficiency of use of the light amount is reduced. In addition, there is a disadvantage in that the optical properties are reduced and the distance between the axes is long.

본 발명은 전방 모니터 PD용 전반사형 집광렌즈를 제안한다. 특히 본 발명은 전방 모니터 PD용 전반사형 집광렌즈가 HOE에서 회절되는 1차 광을 모아서 PD에 입사시켜 줌으로써, 광량 이용 효율을 높이고 광특성 및 축간 거리를 개선할 수 있도록 한 전방 모니터 광검출기용 전반사형 집광렌즈를 제안한다.The present invention proposes a total reflection type condenser lens for a front monitor PD. Particularly, the present invention collects the primary light diffracted in the HOE and enters the PD by the total reflection type condenser lens for the front monitor PD, thereby improving the light quantity utilization efficiency and improving the optical characteristics and the axial distance. A sand condenser lens is proposed.

또한 본 발명은 HOE에서 회절되는 1차광을 집광시켜 주기 위한 구면(렌즈면)과 상기 렌즈면에 의해서 집광된 1차광을 모니터 PD상에 결상시켜 주기 위하여 전반사를 이루는 반사 평면 및, 출사면을 포함하는 집광렌즈를 제안한다.In addition, the present invention includes a spherical surface (lens surface) for condensing the primary light diffracted in the HOE, a reflection plane that forms a total reflection to form the primary light collected by the lens surface on the monitor PD, and an emission surface A condenser lens is proposed.

또한 본 발명은 상기 집광렌즈가 모니터 PD 까지 상기 HOE의 1차광을 전달시켜 주기 위한 광 도파로를 일체로 갖는 것을 특징으로 하는 전방 모니터 광검출기용 전반사형 집광렌즈를 제안한다.In another aspect, the present invention proposes a total reflection type condenser lens for a front monitor photodetector, characterized in that the condenser lens integrally has an optical waveguide for transmitting the primary light of the HOE to the monitor PD.

도1은 종래의 전방 모니터 PD용 광학계의 구성을 나타낸 도면1 is a view showing the configuration of a conventional optical system for a front monitor PD;

도2는 본 발명의 전반사형 집광렌즈 제1실시예에 따른 전방 모니터 PD용 광학계의 구성을 나타낸 도면2 is a diagram showing the configuration of an optical system for front monitor PD according to the first embodiment of the total reflection type condenser lens of the present invention;

도3은 본 발명의 제2실시예에 따른 전반사형 집광렌즈 구조를 나타낸 도면3 is a view showing a total reflection type condenser lens structure according to a second embodiment of the present invention;

본 발명은 홀로그램 유니트를 광원으로 사용하는 광픽업 장치의 광학계에서 상기 홀로그램 유니트에서 회절되는 1차 광을 집속하여 모니터 PD에 결상시켜 주는 전반사형 집광렌즈를 포함하여 이루어지는 것을 특징으로 하는 광픽업 장치이다.The present invention is an optical pickup device comprising a total reflection type focusing lens for focusing the primary light diffracted by the hologram unit in the optical system of the optical pickup device using the hologram unit as a light source to form an image on the monitor PD .

또한 본 발명에서, 상기 집광렌즈는 상기 1차 광을 집광시켜 주기 위한 구면의 렌즈면과, 상기 렌즈면을 통과하여 집광된 1차 광을 반사시켜 주기 위한 반사면과, 상기 반사된 1차광을 모니터 PD상에 결상시켜 주기 위한 출사면을 포함하여 이루어지는 것을 특징으로 한다.In the present invention, the condensing lens is a spherical lens surface for condensing the primary light, a reflection surface for reflecting the primary light focused through the lens surface, and the reflected primary light And an exit surface for forming an image on the monitor PD.

또한 본 발명에서, 상기 집광렌즈가 상기 1차 광을 상기 모니터 PD로 유도하기 위한 광 도파로를 포함하여 이루어지는 것을 특징으로 한다.In the present invention, it is characterized in that the condenser lens comprises an optical waveguide for guiding the primary light to the monitor PD.

또한 본 발명에서, 상기 집광렌즈의 1차광 출사면에 모니터 PD가 대면하여 이루어지는 것을 특징으로 한다.In addition, the present invention, characterized in that the monitor PD is made to face the primary light emitting surface of the condensing lens.

또한 본 발명에서, 상기 집광렌즈가 사출 성형되어 이루어지는 것을 특징으로 한다.In the present invention, the light collecting lens is characterized in that the injection molding.

도2는 본 발명의 제1실시예 따른 전반사형 집광렌즈를 포함하는 픽업의 광학계 구조를 보여준다. 광원으로 HPM(201)을 사용하였으며, 상기 HPM(201)에서 출력된 HOE의 0차 광(200a)을 이용하는 주 빔 광학계는 상기 발산하는 0차 광을 평행빔으로 만들어 주기 위한 시준렌즈(202)와, 상기 시준렌즈(202)에 의해서 평행빔으로 변환된 광을 반사시켜 주기 위한 반사경(203), 그리고 상기 반사된 평행빔을 집속하기 위한 대물렌즈(204)와, 상기 대물렌즈(204)에 의해서 집속된 빔이 임의의 한 점에 집속되어 데이터를 읽거나 쓰게 되는 광디스크(205)를 포함하고 있다. 그리고 상기 HPM(201)로부터 발산하는 1차 회절빔-1차 광(200b)을 모니터 PD(207)로 입사시키는 집광렌즈(206)와 상기 집광렌즈(206)에 의해서 집광된 1차 광이 결상되는 모니터 PD(207)를 포함하고 있다.2 shows an optical system structure of a pickup including a total reflection type condenser lens according to the first embodiment of the present invention. The HPM 201 was used as a light source, and the main beam optical system using the zero-order light 200a of the HOE output from the HPM 201 has a collimation lens 202 for making the divergent zero-order light into a parallel beam. A reflection mirror 203 for reflecting the light converted into the parallel beam by the collimating lens 202, an objective lens 204 for focusing the reflected parallel beam, and an objective lens 204. And an optical disk 205 for focusing a beam focused at an arbitrary point to read or write data. The condenser lens 206 for injecting the primary diffraction beam-primary light 200b emitted from the HPM 201 to the monitor PD 207 and the primary light condensed by the condenser lens 206 form an image. The monitor PD 207 is included.

상기 집광렌즈(206)의 입사면은 구면으로 렌즈면(206a)을 이루고 있고, 렌즈면(206a)을 통해서 입사된 1차 광을 PD쪽으로 결상시켜 주기 위하여 평면의 반사면(206b)을 갖고 있다. 그리고 상기 반사면(206b)에서 반사된 1차 광을 모니터 PD상에 결상시켜 주기 위하여 평면의 출사면(206c)을 갖고 있다. 상기 반사면(206b)을 비롯한 모든 면은 무코팅된다. 상기 출사면(206c)에 대향하여 모니터 PD(207)가 위치한다.The incident surface of the condenser lens 206 forms a spherical lens surface 206a, and has a planar reflective surface 206b to form primary light incident through the lens surface 206a toward the PD. . In addition, in order to form the primary light reflected by the reflecting surface 206b on the monitor PD, it has a plane emitting surface 206c. All surfaces, including the reflective surface 206b, are uncoated. The monitor PD 207 is positioned opposite the exit surface 206c.

도2의 본 발명 실시예에서 HPM에 사용된 홀로그램(HOE)의 좌우측 회절각은 15.58°와 19.36°이고, 회절 효율은 87.4%(0차 광)와 4.9%(1차 광)이다. 그리고 0차 광을 사용하는 주빔 광학계(특히 시준렌즈)와의 충돌을 피하기 최소화하기 위하여 회절각 19.36°인 1차 회절 광을 이용하며, 레이저 방사각은 최소 7°×16°, 최대 11°×21°이며, 대표적으로는 8°×18.5°이다.The left and right diffraction angles of the hologram (HOE) used in the HPM in the embodiment of FIG. 2 are 15.58 ° and 19.36 °, and the diffraction efficiencies are 87.4% (0th order light) and 4.9% (first order light). In order to avoid collision with the main beam optical system (especially collimator lens) that uses zero-order light, the first-order diffraction light with a diffraction angle of 19.36 ° is used, and the laser emission angle is at least 7 ° × 16 ° and at most 11 ° × 21. It is °, and is typically 8 degrees x 18.5 degrees.

상기 집광렌즈는 예를 들면 플라스틱을 이용한 사출 성형법으로 제작할 수 있다.The condensing lens can be produced, for example, by injection molding using plastic.

도2에 나타낸 바와같이 본 발명에 따르면 HPM(201)에서 발산하는 0차 광(주빔)(200a)은 시준렌즈(202)에 의해서 평행빔으로 변환되고 반사경(203)에서 전반사되어 대물렌즈(204)를 통해 디스크(205) 상의 임의의 한 점에 집속된다.As shown in FIG. 2, according to the present invention, the 0th order light (main beam) 200a emitted by the HPM 201 is converted into a parallel beam by the collimating lens 202, and totally reflected by the reflecting mirror 203, to give an objective lens 204. Is focused at any point on the disk 205.

그리고, HPM(201)에서 발산하는 1차 광(200b)은 집광렌즈(206)에 의해서 모니터 PD(207)상에 결상된다. 즉, HPM에서 출력된 1차 광(200b)은 렌즈면(206a)에 의해서 집광되고, 반사면(206b)에 의해서 전반사되어 출사면(206c)을 통해 모니터 PD(207) 상에 결상된다.The primary light 200b emitted from the HPM 201 is imaged on the monitor PD 207 by the condenser lens 206. That is, the primary light 200b output from the HPM is collected by the lens surface 206a, totally reflected by the reflection surface 206b, and imaged on the monitor PD 207 through the emission surface 206c.

도3은 본 발명의 집광렌즈 제2실시예 구조를 나타낸다. 도3에 나타낸 바와같이 집광렌즈(301)에서 1차 광의 입사면은 구면의 렌즈면(301a)을 이루고, 상기 렌즈면(301a)에 의해서 집광된 1차 광은 내부의 반사면(301b)에서 반사되는데, 이 때 모니터 PD로 상기 반사광이 전파되기 위한 광 도파로(301c)가 형성되어 있고, 이 광 도파로(301c)의 종단에는 출사면(301d)이 이루어져 있다. 상기 출사면(301d)은 광 도파로에 대하여 경사져 있고, 그 종단면에 모니터 PD(300)가 밀착되어 있다.Fig. 3 shows the structure of a second embodiment of the condenser lens of the present invention. As shown in FIG. 3, the incident surface of the primary light in the condensing lens 301 forms a spherical lens surface 301a, and the primary light collected by the lens surface 301a is formed in the reflection surface 301b therein. In this case, an optical waveguide 301c for propagating the reflected light to the monitor PD is formed, and an emission surface 301d is formed at the end of the optical waveguide 301c. The emission surface 301d is inclined with respect to the optical waveguide, and the monitor PD 300 is in close contact with the longitudinal surface thereof.

도3의 본 발명 제2실시예에 따른 집광렌즈는 광 도파로(301c)를 갖는 구조로서, 모니터 PD(300) 까지 상기 1차 회절 광을 유도하는 구조가 된다. 이렇게 하면모니터 PD(300)의 위치가 다소 떨어져 있어도 손실없이 1차광을 모니터 PD까지 유도하여 결상시킬 수 있는 장점이 있다.The condensing lens according to the second embodiment of the present invention of FIG. 3 has an optical waveguide 301c and has a structure of inducing the first diffracted light to the monitor PD 300. In this way, even if the position of the monitor PD 300 is somewhat separated, there is an advantage that the primary light can be induced to the monitor PD without image loss.

상기 도2 및 도3에 나타낸 바와같이 본 발명의 집광렌즈를 적용한 광학계에 따르면, 모니터 PD용 빔을 HPM의 1차 광을 이용하기 때문에 기존의 주 빔(0차 광)의 일부를 사용하는 경우보다 대물렌즈 출사 광량이 증가하게 된다. 또한 대물렌즈 출사 광량이 증가함에 따라 모니터 PD 입사 광량이 선형적이어서 광기록 파워 제어에 문제가 없음을 확인할 수 있다.According to the optical system to which the condensing lens of the present invention is applied as shown in Figs. 2 and 3, when a part of the existing main beam (0th order light) is used because the monitor PD beam uses the primary light of HPM The amount of output of the objective lens is increased. In addition, as the amount of output of the objective lens is increased, the amount of incident light of the PD of the monitor is linear, so that there is no problem in controlling the optical recording power.

또한, 방사각이 증가하기 때문에 광효율도 증가한다. 그리고 집광렌즈의 반사면에 적절한 각도를 줌으로써 여기서 반사되는 광이 HOE로 피드백되어 영향을 주는 것을 방지할 수 있기 때문에 안정성의 문제도 자연스럽게 해결된다.In addition, since the angle of radiation increases, the light efficiency also increases. In addition, the problem of stability is naturally solved by giving an appropriate angle to the reflective surface of the condensing lens to prevent the reflected light from being fed back to the HOE.

본 발명에서는 홀로그램 유니트의 HOE에서 회절되는 1차광을 모아서 모니터 PD에 입사시켜 준다. 그러므로 주 빔(0차 광)의 이용 효율을 높일 수 있고, 광특성의 개선과 축간 거리 개선이 가능하게 된다.In the present invention, the primary light diffracted by the HOE of the hologram unit is collected and made incident on the monitor PD. Therefore, the utilization efficiency of the main beam (0th order light) can be improved, and the optical characteristic and the axis distance can be improved.

Claims (5)

홀로그램 유니트를 광원으로 사용하는 광픽업 장치의 광학계에서 상기 홀로그램 유니트에서 회절되는 1차 광을 집속하여 모니터 PD에 결상시켜 주는 전반사형 집광렌즈를 포함하여 이루어지며,In the optical system of the optical pickup device using the hologram unit as a light source, and comprises a total reflection type condensing lens for focusing the primary light diffracted by the hologram unit to form an image on the monitor PD, 상기 집광렌즈는, 상기 1차 광을 집광시켜 주기 위한 구면의 렌즈면과, 상기 렌즈면을 통과하여 집광된 1차 광을 반사시켜 주기 위한 반사면과, 상기 반사된 1차광을 상기 모니터 PD 상에 결상시켜 주기 위한 출사면을 포함하는 것을 특징으로 하는 광픽업 장치. The condensing lens may include a spherical lens surface for condensing the primary light, a reflection surface for reflecting the primary light focused through the lens surface, and the reflected primary light on the monitor PD. And an emission surface for forming an image on the optical pickup device. 삭제delete 제 1 항에 있어서,상기 집광렌즈가 상기 1차 광을 상기 모니터 PD로 유도하기 위한 광 도파로를 포함하여 이루어지는 것을 특징으로 하는 광픽업 장치. The optical pickup apparatus of claim 1, wherein the condenser lens comprises an optical waveguide for guiding the primary light to the monitor PD. 제 1 항에 있어서,상기 집광렌즈의 1차광 출사면에 모니터 PD가 대면하여 이루어지는 것을 특징으로 하는 광픽업 장치. The optical pickup apparatus of claim 1, wherein the monitor PD faces the primary light exit surface of the condenser lens. 제 1 항에 있어서,상기 집광렌즈가 사출 성형되어 이루어지는 것을 특징으로 하는 광픽업 장치. The optical pickup apparatus of claim 1, wherein the condenser lens is injection molded.
KR10-2000-0085003A 2000-12-29 2000-12-29 Optical pickup using reflective focusing lens KR100455478B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-2000-0085003A KR100455478B1 (en) 2000-12-29 2000-12-29 Optical pickup using reflective focusing lens
US10/003,070 US6920098B2 (en) 2000-12-29 2001-12-06 Optical pick-up device having lens for first-order light beam convergence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0085003A KR100455478B1 (en) 2000-12-29 2000-12-29 Optical pickup using reflective focusing lens

Publications (2)

Publication Number Publication Date
KR20020055781A KR20020055781A (en) 2002-07-10
KR100455478B1 true KR100455478B1 (en) 2004-11-08

Family

ID=19703844

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0085003A KR100455478B1 (en) 2000-12-29 2000-12-29 Optical pickup using reflective focusing lens

Country Status (2)

Country Link
US (1) US6920098B2 (en)
KR (1) KR100455478B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100443676B1 (en) * 2001-09-13 2004-08-09 엘지전자 주식회사 Optical pickup using reflective focusing lens

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211839A (en) * 1985-03-15 1986-09-19 Ricoh Co Ltd Optical pickup device
JPH02265038A (en) * 1989-04-06 1990-10-29 Ricoh Co Ltd Optical information recording and reproducing device
JPH03269835A (en) * 1990-03-19 1991-12-02 Matsushita Electric Ind Co Ltd Optical pickup device
JPH05203824A (en) * 1992-01-24 1993-08-13 Sharp Corp Optical integrated circuit, optical pickup, and optical information processor
JPH06119651A (en) * 1992-10-06 1994-04-28 Sharp Corp Optical pickup device
US5663944A (en) * 1995-12-29 1997-09-02 Samsung Electronics Co., Ltd. Vertical cavity laser light beam monitored by reflection of a half mirror, with application in optical pick-up
KR19990018478A (en) * 1997-08-27 1999-03-15 윤종용 Slim optical pickup using total reflection prism
KR20000043288A (en) * 1998-12-28 2000-07-15 전주범 Waveguide type collecting optical pickup device available for converging nth secondary beam

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475210A (en) * 1991-09-09 1995-12-12 Kabushiki Kaisha Toshiba Noise reduction system for optical record and reproduction apparatus using auto-power controlled semiconductor laser device
US5640380A (en) * 1994-08-04 1997-06-17 Matsushita Electric Industrial Co., Ltd. Optical head with a translucent plate to split a light beam
JPH11273119A (en) * 1998-03-24 1999-10-08 Pioneer Electron Corp Optical pickup device
US6584060B1 (en) * 1998-06-24 2003-06-24 Ricoh Company, Ltd. Optical pick-up device for recording/reading information on optical recording medium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211839A (en) * 1985-03-15 1986-09-19 Ricoh Co Ltd Optical pickup device
JPH02265038A (en) * 1989-04-06 1990-10-29 Ricoh Co Ltd Optical information recording and reproducing device
JPH03269835A (en) * 1990-03-19 1991-12-02 Matsushita Electric Ind Co Ltd Optical pickup device
JPH05203824A (en) * 1992-01-24 1993-08-13 Sharp Corp Optical integrated circuit, optical pickup, and optical information processor
JPH06119651A (en) * 1992-10-06 1994-04-28 Sharp Corp Optical pickup device
US5663944A (en) * 1995-12-29 1997-09-02 Samsung Electronics Co., Ltd. Vertical cavity laser light beam monitored by reflection of a half mirror, with application in optical pick-up
KR19990018478A (en) * 1997-08-27 1999-03-15 윤종용 Slim optical pickup using total reflection prism
KR20000043288A (en) * 1998-12-28 2000-07-15 전주범 Waveguide type collecting optical pickup device available for converging nth secondary beam

Also Published As

Publication number Publication date
US20020105881A1 (en) 2002-08-08
US6920098B2 (en) 2005-07-19
KR20020055781A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
US4799210A (en) Fiber optic read/write head for an optical disk memory system
KR19990083967A (en) Optical pick up for suppressing astigmatism
KR100478559B1 (en) Optical pickup for recordable and playable discs
US4823335A (en) Optical head device having deflection means including means for reducing reflected light angle
US7355798B2 (en) Optical system for collimating elliptical light beam and optical device using the same
KR100295102B1 (en) Optical pickup
RU2176097C2 (en) Optical system forming beam ( variants ) and optical sensor
KR100455478B1 (en) Optical pickup using reflective focusing lens
US5007713A (en) Beam converting apparatus with a parallel light beam input and output from one prism plane
KR100252944B1 (en) Device for picking-up light
KR100443676B1 (en) Optical pickup using reflective focusing lens
KR100438290B1 (en) Optical pickup
JP3122690B2 (en) Polarizing beam splitter and optical head
US7298688B2 (en) Light emitting module and optical pickup apparatus and method employing the same
KR100516919B1 (en) Focusing waveguide grating coupler and optical pickup head using the same
KR20030023307A (en) Optical pickup using fresnel focusing lens
KR960025433A (en) Beam Orthogonal Prisms for Optical Disc Recording Devices
KR100220506B1 (en) An optical head system using a dual focus method
US20040105169A1 (en) Object lens system and optical pick-up apparatus
SU1679541A1 (en) Device for reproducing information from optic record carrier
KR20020069476A (en) Optical member and optical pickup using the optical member
KR920003493Y1 (en) Optical pick-up system
KR0137084Y1 (en) An optical pickup device for dvd
KR20000050716A (en) A beam splitter of optical pick-up device
JPH02189733A (en) Optical head

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100929

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee