JPS60170041A - Optical pickup device - Google Patents

Optical pickup device

Info

Publication number
JPS60170041A
JPS60170041A JP59027871A JP2787184A JPS60170041A JP S60170041 A JPS60170041 A JP S60170041A JP 59027871 A JP59027871 A JP 59027871A JP 2787184 A JP2787184 A JP 2787184A JP S60170041 A JPS60170041 A JP S60170041A
Authority
JP
Japan
Prior art keywords
laser
output
semiconductor laser
frequency
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59027871A
Other languages
Japanese (ja)
Inventor
Haruhisa Takiguchi
治久 瀧口
Sadamasu Matsui
松井 定益
Shinji Kaneiwa
進治 兼岩
Mototaka Tanetani
元隆 種谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59027871A priority Critical patent/JPS60170041A/en
Publication of JPS60170041A publication Critical patent/JPS60170041A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Head (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce the level of noise caused by the feedback of the laser output light by applying a deep pulse modulation to a semiconductor laser having a reduced reflection factor on its output end face. CONSTITUTION:The output extraction factor of a semiconductor laser 1 is improved by setting the reflection factor at <=10% for a resonance surface for extraction of output and also at >=90% for a counter resonance surface respectively. a pulse generator 8 is connected to the laser 1 via a capacitor; while a light emitting diode 9 is connected with branching to the drive circuit of the laser 1 and then to an output circuit 11 via an LPF10. Therefore a DC current flows to the laser 1 from the circuit 11 in response to the signal given from the diode 9. Then a pulse current given from the generator 8 is superposed on the DC current of the laser 1. Thus the laser 1 is driven. This suppresses the fluctuation of the optical output of the laser 1 due to the feedback of reflected light and then reduces the noise level.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、光学的に情報を書き込み再生する光デイスク
情報処理装置に対して有効となるピンクアンプ装置に関
し、特に半導体レーザを光源として用いた光学式ピック
アップ装置に関するものである。
[Detailed Description of the Invention] Technical Field> The present invention relates to a pink amplifier device that is effective for an optical disk information processing device that optically writes and reproduces information, and particularly relates to an optical pickup device that uses a semiconductor laser as a light source. It is related to the device.

〈従来技術〉 光ディスクに情報を書き込み又は再生する手段として半
導体レーザを用いた光学式ピックアップ装置が従来より
実用化されている。
<Prior Art> Optical pickup devices that use semiconductor lasers as means for writing or reproducing information on optical discs have been put into practical use.

光学式ピックアップ装置の基本的構成の1例を第1図に
示す。半導体レーザ1を出た光はコリメータレンズ2に
よって平行光となり、順次ビーム1 ・ スプリッタ3、偏光プリズム4、74波長板5、集光レ
ンズ6を通してディスク7に照射される。
An example of the basic configuration of an optical pickup device is shown in FIG. The light emitted from the semiconductor laser 1 is turned into parallel light by a collimator lens 2, and is sequentially irradiated onto a disk 7 through a beam 1/splitter 3, a polarizing prism 4, a 74-wave plate 5, and a condenser lens 6.

ディスク7に情報を書き込む場合は、信号に応じた周波
数で半導体レーザ1をパルス駆動する。ディスク7から
情報を読み取る場合は半導体レーザ1を直流電流て駆動
し、ディスク7上のピットの有無に応じて変調された反
射光の光量を検出器8で検出する。以上の如き光学式ピ
ックアップにおいては、f導体レーザの像がディスク7
上に結像される構成となっているので、ディスク7から
の反別光の一部が半導体レーザlに帰還される。一般に
半導体レーザにおいては、その出射光の一部が帰還され
るとレーザの雑音レベルが増加することが知られており
、例えば、出射光量の01チ程度の帰還光量があっても
、レーザの相対雑音強度は1000倍以上も増加し、元
ディスク情報処理装置の性能を悪化させる。このために
、第1図に示す如く174波長板5と偏光プリズム4を
挿入し、ディスク7からの反射光が、半導体レーザlに
帰還しないように構成している。しかしながら、このよ
うに帰還防止機構を付加しても、反射光の帰還を完全に
阻止することはできない。光デイスク装置に用いられる
ディスク基板は一般的に高分子樹脂材料が用いられる。
When writing information on the disk 7, the semiconductor laser 1 is pulse-driven at a frequency according to the signal. When reading information from the disk 7, the semiconductor laser 1 is driven with a direct current, and the detector 8 detects the amount of reflected light that is modulated depending on the presence or absence of pits on the disk 7. In the optical pickup as described above, the image of the f-conductor laser is transferred to the disk 7.
Since the structure is such that an image is formed upward, a part of the separated light from the disk 7 is returned to the semiconductor laser l. It is generally known that the noise level of a semiconductor laser increases when a part of its emitted light is fed back.For example, even if the amount of feedback light is about 0.1 inch of the emitted light, the relative The noise intensity increases by more than 1000 times, deteriorating the performance of the original disk information processing device. For this purpose, as shown in FIG. 1, a 174 wavelength plate 5 and a polarizing prism 4 are inserted to prevent the reflected light from the disk 7 from returning to the semiconductor laser l. However, even if such a feedback prevention mechanism is added, it is not possible to completely prevent the reflected light from returning. A polymer resin material is generally used for a disk substrate used in an optical disk device.

この高分子樹脂板はわずかな複屈折性を有しており、こ
のため、帰還防止用の1/4波長板5と偏光プリズム4
を付設してもディスク7の複屈折性のためにディスク7
からの反別光の一部が半導体レーザlに帰還される。捷
た1/4波長板5や偏光プリズム4の光学調整ずれによ
っても反射光が帰還される。従って、これらの原因でデ
ィスク7からの反射光の数チは半導体レーザ1に帰還さ
れ、レーザ出力光の雑音レベルを高くしてしまう。レー
ザの雑音レベルの増加は信号再生時に大きな問題となる
This polymer resin plate has a slight birefringence, and therefore the quarter wavelength plate 5 and the polarizing prism 4 for preventing feedback are used.
Even if disk 7 is attached, due to the birefringence of disk 7,
A part of the infrared light is fed back to the semiconductor laser l. Reflected light is also fed back due to optical adjustment deviations of the shunted quarter-wave plate 5 and polarizing prism 4. Therefore, due to these reasons, several beams of reflected light from the disk 7 are fed back to the semiconductor laser 1, increasing the noise level of the laser output light. The increase in laser noise level poses a major problem during signal reproduction.

ところで、光デ°イスク装置のピックアップ装置用光源
としての半導体レーザに要求される仕様としては、低雑
音であること以外に情報を高速で観き込む必要から、4
0r+zW程度の高出力発振が可能であることが不可欠
となる。このような高出力を得るために半導体レーザは
、フッグリペロー共振器を構成する出力取出用共振面の
反射率を10−以下とし、これに対向する共振面の反射
率を9.0%以上として収り出し効率を上げる手段が置
設されている。このため、通常の端面反射率が32チの
半導体レーザに比べて帰還光の影響は一層大きくなる。
By the way, the specifications required for a semiconductor laser as a light source for a pickup device of an optical disk device include, in addition to low noise, the need to read information at high speed.
It is essential that high output oscillation of about 0r+zW is possible. In order to obtain such high output, semiconductor lasers are designed to have a reflectance of 10% or less for the output extraction resonant surface that constitutes the Fugg-Reperot resonator, and a reflectance of 9.0% or more for the opposing resonant surface. Measures are in place to increase extraction efficiency. For this reason, the influence of the feedback light becomes even greater than in a normal semiconductor laser whose end face reflectance is 32 inches.

次に、帰還光と雑音発生との関係について詳述する。第
2図は帰還がない場合の出射端面の反射率を10%以F
とした半導体レーザの電流に対する光出力、相対雑音強
度及びスペクトルを示す特性図である。使用した半導体
レーザはVSIS(V−channel 5ubstr
ate Inner 5tripe)型レーザ素子で出
射端面反射率2%、裏面反射率95%に設定している。
Next, the relationship between feedback light and noise generation will be explained in detail. Figure 2 shows the reflectance of the output end face of 10% or more when there is no feedback.
FIG. 3 is a characteristic diagram showing the optical output, relative noise intensity, and spectrum with respect to the current of the semiconductor laser. The semiconductor laser used is VSIS (V-channel 5ubstr
The output end surface reflectance is set to 2% and the back surface reflectance is set to 2% and 95%, respectively, using a laser element of the type (inner 5 tripe) type.

第2図に示すように横モードが制御された屈折率導波型
のVSISレーザにおいテモ、ARコート(誘電1漢に
よる共振端面被覆)を施すと出力smw程度までは多重
縦モード発振となる。
As shown in FIG. 2, when an AR coating (resonant end face coating with a dielectric layer) is applied to a refractive index guided VSIS laser with a controlled transverse mode, multiple longitudinal mode oscillation occurs up to an output of about smw.

第3図及び第4図は相対帰還量: (++i)還光爪÷
端面出Q(I光fij: ) F = 8%、0.0O
Itibとしたときの光出力、相対雑音強度及びスペク
トルを各々示したものである。第3図に示したF=3チ
と比較的帰還光量が大きい場合において、相対雑音強度
は出方45代W程度までに大きなピークを持つ。またス
ペクトルは全出力領域で多重縦モードとなる。この帰還
光による雑音の増大は、帰還光による里子雑音のためで
あって、出射端面反射率が小さいほど大きくなる。一方
、第4図に示したようにF=0.001チと帰還光量が
比較的小さい時は、出方3mWまでは多重縦モードとな
って雑音の増大は顕著ではない。しかし3fflW以上
では光ディスクと半導体レーザの距離がレーザ発振光波
長の半分(λ/2〜0.4μm)の周期で雑音が大きく
なったり小さくなったりする。それにつれて、スペクト
ルも図示する如く単−縦モード(雑音が小さいとき)と
モード競合(雑音か大きいとき)の二つの状態を繰り返
す。このモード競合は、レーザ縦モード間の競合だけで
はなく、レーザとディスクより構成される外部共振器の
縦モード間の競合も含まれる。
Figures 3 and 4 show the relative feedback amount: (++i) Return nail ÷
Edge output Q (I light fij: ) F = 8%, 0.0O
The optical output, relative noise intensity, and spectrum are shown respectively when itib is set as Itib. When the amount of feedback light is relatively large, such as F=3, as shown in FIG. 3, the relative noise intensity has a large peak up to about 45 W. Moreover, the spectrum has multiple longitudinal modes in the entire output range. This increase in noise due to the feedback light is due to foster noise due to the feedback light, and increases as the output end face reflectance decreases. On the other hand, as shown in FIG. 4, when the amount of feedback light is relatively small, such as F=0.001, the output power up to 3 mW becomes a multiple longitudinal mode, and the increase in noise is not significant. However, when the distance between the optical disk and the semiconductor laser exceeds 3 fflW, the noise increases or decreases at a period of half the wavelength of the laser oscillation light (λ/2 to 0.4 μm). Accordingly, the spectrum repeats two states, as shown in the figure, a single-longitudinal mode (when the noise is small) and a mode competition (when the noise is large). This mode competition includes not only competition between laser longitudinal modes but also competition between longitudinal modes of an external resonator constituted by a laser and a disk.

ところで通常のλ/2厚の端面コートを施した反射率3
2%のレーザに高周波の正弦波を重畳することによって
多モード発振させモード競合雑音を抑制するこ吉が提案
されている(特願昭55−11 ’a 515−’6)
。しかし、単に多モード発振させるだけでは、外部共振
器モード間の競合による雑音は抑制てきない。そこで実
際は、コヒーレンス長が外部共振器よりも短くなるよう
に、充分に大きい周波数(〜600MH2)の信号を重
量する必要がある。
By the way, the reflectance is 3 with normal λ/2 thickness end coating.
Kokichi has been proposed, which suppresses mode competition noise by superimposing a high-frequency sine wave on a 2% laser to generate multimode oscillation (Japanese Patent Application No. 55-11 'a 515-'6).
. However, simply causing multimode oscillation does not suppress noise due to competition between external resonator modes. Therefore, in reality, it is necessary to weight a signal with a sufficiently large frequency (~600 MH2) so that the coherence length is shorter than that of the external resonator.

また、端[n」低反射率コートのレーザに顕著な、帰還
光Blの大きい場合に現われる量子雑癲は、コヒーレン
ス長を短くしただけでは、低減することができない。従
って、高出力のために端面反射率を低くしたレーザでは
、単に高周波の正弦波を重畳するのみでは、光帰還雑音
を低減することは不可能である。
In addition, the quantum noise that appears when the feedback light Bl is large, which is noticeable in lasers with a low reflectance coating on the end [n], cannot be reduced simply by shortening the coherence length. Therefore, in a laser whose end face reflectance is low due to high output, it is impossible to reduce optical feedback noise simply by superimposing a high frequency sine wave.

光学式ピックアップ装置の光源として半導体レーザを適
用する場合、レーザの雑音は主に、信号M少時に問題と
なることは既に記したが、再生時のレーザ出力はtJf
能な限り小さいことが望ましい。
As already mentioned, when a semiconductor laser is used as a light source for an optical pickup device, laser noise becomes a problem mainly when the signal M is small, but the laser output during reproduction is tJf.
It is desirable that it be as small as possible.

これは光ディスクの劣化を防ぐためであって、通常、ゼ
J少時のレーザ出力は1〜5mWK設定されている。レ
ーザ出力が直流駆動で3mWと5ynWのときの帰還光
量に対する相対雑音強度の依存性を第5図及び第6図に
各々実線で示す。図から明らかなように、帰還光量が大
きくなるに従って相対雑音強度が漸増している。帰還光
量の小さい領域では5mWの場合はモード競合が生じ雑
音が増大している。
This is to prevent deterioration of the optical disc, and normally the laser output when low is set to 1 to 5 mWK. The dependence of the relative noise intensity on the amount of feedback light when the laser output is 3 mW and 5 ynW in DC driving is shown by solid lines in FIGS. 5 and 6, respectively. As is clear from the figure, the relative noise intensity gradually increases as the amount of feedback light increases. In a region where the amount of feedback light is small, mode competition occurs when the power is 5 mW, and noise increases.

このような雑音の増大は、システムの機能を低下させる
ので低減化が不可欠である。
Such an increase in noise degrades the functionality of the system, so it is essential to reduce it.

〈発明の目的〉 木発8Aは、半導体レーザを用いたピックアンプ装置に
おいて、レーザ出力光の帰還による雑音を低減化した新
規有用な光学式ピンクアップ装置mを提供することを目
的とする。
<Object of the Invention> The object of the Kihatsu 8A is to provide a new and useful optical pink-up device m that reduces noise due to feedback of laser output light in a pick amplifier device using a semiconductor laser.

〈実施例〉 第7図は本発りJの一実施例を示す光学式ビックアンプ
装置の構成図である。図中第1図と同−符”J(l乃至
7)は同一内容を示す。
<Embodiment> FIG. 7 is a block diagram of an optical big amplifier device showing an embodiment of the invention J. In the figure, the same symbols "J (l to 7) as in FIG. 1 indicate the same contents.

本実施例は、パルス発生器8、半導体レーザlの出力を
受光する受光ダイオード9、受光ダイオード9の出力の
低周波数分を取り出す低減p波器10及びこの低域p波
器IOの出力が一定となるように半導体レーザ1に直流
電流を供給する定出力回路11より構成されている。半
導体レーザ1の駆動に際してはパルス電流を重畳するこ
とによって反射光帰還による半導体レーザの光出力の変
動を抑止することができる。パルス発生器8は容量を介
して半導体レーザlに接続され、また受光ダイオード9
は半導体レーザ1の駆動回路に分岐接続されかつ低域P
波器10を介して定出力回路11に接続されている。従
って、受光ダイオード9かもの信号に応じて半導体レー
ザ1に定出力回路11より直流電流が供給され、これに
パルス発生器8からのパルス電流が重畳されて半導体レ
ーザlが駆動される。
This embodiment includes a pulse generator 8, a light receiving diode 9 that receives the output of the semiconductor laser 1, a reduction p-wave generator 10 that extracts the low frequency component of the output of the light-receiving diode 9, and an output of the low-frequency p-wave generator IO that is constant. It is composed of a constant output circuit 11 that supplies a direct current to the semiconductor laser 1 so that the following equation is obtained. When driving the semiconductor laser 1, by superimposing a pulse current, fluctuations in the optical output of the semiconductor laser due to feedback of reflected light can be suppressed. The pulse generator 8 is connected to the semiconductor laser l via a capacitor, and is also connected to the light receiving diode 9.
is branch-connected to the drive circuit of the semiconductor laser 1 and has a low frequency P
It is connected to a constant output circuit 11 via a wave generator 10. Therefore, a direct current is supplied to the semiconductor laser 1 from the constant output circuit 11 in accordance with the signal from the light receiving diode 9, and a pulse current from the pulse generator 8 is superimposed on this to drive the semiconductor laser 1.

第8図は、相対帰還元臘を3%とし、直流電流を加える
と同時にパルス電流を重畳した場合の平均光出力及び平
均雑音強度を示している。第8図より光出力の最大値t
d 6 m Wであるが、平均値は3mWとなっている
。一方、雑音に関しては、図中実線で示した直流電流の
みで駆動した場合((は8 m Wの出力でIXIQ−
11H2となるが、破線で示したパルス駆動の場合には
光出力の最大値が平均値の2倍となっていることと、雑
音の発生がパルスの印加によりレーザの発振している間
のみであって、デユーティ比50チのパルスで駆動して
いる場合に雑音電力が半分になることから、光出力の最
大値6mWに対応する相対雑音強度5XIO−13Hz
−1の半分の2.5 X 10−+3 HZ−1が平均
出力3mWの雑音強度となる。即ちこの場合、パルス駆
動によって16dBの雑音の改善が実現される。
FIG. 8 shows the average optical output and average noise intensity when the relative feedback source is set to 3% and when a DC current is applied and a pulse current is simultaneously superimposed. From Figure 8, the maximum value t of optical output
d 6 mW, but the average value is 3 mW. On the other hand, regarding the noise, when driven only with DC current shown by the solid line in the figure ((IXIQ-
11H2, but in the case of pulse drive shown by the broken line, the maximum value of the optical output is twice the average value, and the noise is generated only while the laser is oscillating due to the application of pulses. Therefore, when driving with a pulse with a duty ratio of 50, the noise power is halved, so the relative noise intensity corresponding to the maximum optical output of 6 mW is 5XIO-13Hz.
-1 half, 2.5 x 10-+3 Hz-1, is the noise intensity with an average output of 3 mW. That is, in this case, pulse driving achieves a 16 dB noise improvement.

ところで、半導体レーザIにパルス等で閾値電流以下の
深い変調を加えると、キャリア分布の変動によってFM
変調され、スペクトルライン幅が広がることは前述の正
弦波を重畳した場合と同じであり、コヒーレンス長が短
くなると期待される。
By the way, when deep modulation below the threshold current is applied to the semiconductor laser I using pulses, etc., the FM
The modulation and broadening of the spectral line width is the same as in the case of superimposing a sine wave as described above, and it is expected that the coherence length will be shortened.

実際にVSIS型レーザ素子の閾値電流40fflAの
素子において、変調周波数50MH21変調電流16m
A、直流電流35mAで駆動したところ、コヒーレンス
長は1??IFF+以下となった。
Actually, in a VSIS type laser device with a threshold current of 40fflA, the modulation frequency was 50MH21 and the modulation current was 16m.
A. When driven with a DC current of 35 mA, the coherence length is 1? ? It became below IFF+.

第4図に示したような相対帰還光1葭の小さい場合に生
じるモード競合雑音は出射光と帰還光のフヒーレントな
相互作用によって発生するので、パルス駆動によりコヒ
ーレンス長を短くした半導体レーザでは全く発生しない
The mode competition noise that occurs when the relative feedback light intensity is small as shown in Figure 4 is generated by coherent interaction between the emitted light and the feedback light, so it does not occur at all in a semiconductor laser whose coherence length is shortened by pulse driving. do not.

変調周波数が50MHzと前述の600MH2に比へ一
桁以上小さい値でも充分にコヒーレンス長が短くなる理
由は以上の2点にある。(1)本発811に用いる半導
体レーザは出射面反射率が例えば2%程度と小さく、従
って光子の寿命が短く通常の反射率32%のレーザ素子
に比へて元来コヒーレンス長が1桁程度小さくなること
、(2)パルス駆動であるため、パルスの繰り返し周波
数が小さくてもパルスの高調波成分による変調があり、
単一周波数の正弦波変調に比へてFM変調によるライン
幅の広がりが大きくなることである。
There are two reasons why the coherence length is sufficiently short even when the modulation frequency is 50 MHz, which is one order of magnitude smaller than the above-mentioned 600 MH2. (1) The semiconductor laser used in the present invention 811 has a small output surface reflectance of, for example, about 2%, and therefore has a short photon lifetime and a coherence length of about one digit compared to a normal laser element with a reflectance of 32%. (2) Since it is pulse driven, even if the pulse repetition frequency is small, there is modulation due to the harmonic components of the pulse;
The line width broadening due to FM modulation is greater than that due to single frequency sine wave modulation.

パルスの繰り返し周波数は、中央極限定理から再生(r
jりの周波数成分における上限周波数の2倍以上の周波
数でなければならず、実用的にll−i5倍程度が必要
である。しかし、この値はl3fj述の600MH2に
比へ充分に小さく、本発明を記録再生用光デイスク装置
に適用した場合に記録用のパルス駆動回路がそのまま利
用できるという利点もある。
The repetition frequency of the pulse is reproduced from the central limit theorem (r
The frequency must be twice or more the upper limit frequency of the frequency component of j, and practically it is required to be about 5 times ll-i. However, this value is sufficiently small compared to 600MH2 mentioned in l3fj, and when the present invention is applied to an optical disk device for recording and reproducing, there is an advantage that the pulse drive circuit for recording can be used as is.

第5図及び第6図に閾値電流以下の深いパルスで変調し
たvsts型レーザ素子の帰還光量に対する相対雑音強
度の依存性を破線で示す。同図に実線で示す直流電流駆
動の場合の特性に比へ、全領域にわたって雑音の低減化
が実現されている。
In FIGS. 5 and 6, the dependence of the relative noise intensity on the amount of feedback light of a vsts type laser element modulated with a deep pulse below the threshold current is shown by a broken line. Compared to the characteristics in the case of direct current drive shown by the solid line in the figure, noise reduction has been achieved over the entire range.

〈発明の効果〉 以上詳述した如く本発明によれば閾値電流以下の深いパ
ルス変調を出射端面の反射率を小さくした半導体レーザ
に加えるパルス印加手段を付設することによって、帰還
光量の大きい場合に問題となる量子雑音と帰還光量が小
さい場合に現われるモード競合雑音の双方の雑音を低減
することができ、光デイスク情報処理装置の光学式ピン
クアンプ装置として特性及び信頼性の高いものが得られ
る。
<Effects of the Invention> As described in detail above, according to the present invention, by providing a pulse applying means that applies deep pulse modulation below the threshold current to a semiconductor laser whose output end face has a low reflectance, it is possible to Both the problematic quantum noise and the mode competition noise that appears when the amount of feedback light is small can be reduced, and an optical pink amplifier device for an optical disk information processing device with high characteristics and reliability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は半導体レーザを用いた光学式ピックアップの、
基本構成を示す構成図である。 第2図は光帰還がない場合のレーザ出射端面反射率を1
0%以下とした半導体レーザの駆動電流に対する光出力
、相対雑音強度及びスペクトルを示す特性図である。 第3図、第4図はそれぞれ相対帰還量を3%、0.00
1%とした場合の光出力、相対雑音強度及びスペクトル
の駆動電流依存性を示す特性図である。 第5図、第6図はそれぞれ光出力を3mW、5mWとし
た場合の直流′屯流駆IIν」(実線)、パルス駆動(
破線)に於ける相対強度雑音の帰還光量依存性を示す特
性図である。 第7図は本発明の1実施例を示す光学的ピックアップ装
置の構成図である。第8図は、本発明の動作原理を説明
する説明図である。 I・・・半一9休レーザ、7・・・ディスク、8・・・
パルス発生器、9・・・受光ダイオード、10・・・低
域沖波器、11・・・定出力回路。 代理人 弁理士 福 士 愛 彦(他2名“)第1図 西Y勅を虎(mA) 単動(丸(mA) 第 7 図 第8図
Figure 1 shows an optical pickup using a semiconductor laser.
FIG. 2 is a configuration diagram showing the basic configuration. Figure 2 shows the reflectance of the laser output end face when there is no optical feedback.
FIG. 3 is a characteristic diagram showing optical output, relative noise intensity, and spectrum with respect to drive current of a semiconductor laser set to 0% or less. Figures 3 and 4 show relative feedback amounts of 3% and 0.00, respectively.
FIG. 3 is a characteristic diagram showing the drive current dependence of optical output, relative noise intensity, and spectrum when the ratio is 1%. Figures 5 and 6 show direct current 'ton current drive IIv' (solid line) and pulse drive (
FIG. 4 is a characteristic diagram showing the dependence of the relative intensity noise on the amount of feedback light in the case of (broken line). FIG. 7 is a block diagram of an optical pickup device showing one embodiment of the present invention. FIG. 8 is an explanatory diagram illustrating the operating principle of the present invention. I...Half-Ichiku Laser, 7...Disc, 8...
Pulse generator, 9... Light receiving diode, 10... Low frequency wave generator, 11... Constant output circuit. Agent Patent attorney Aihiko Fuku (and 2 others) Fig. 1 Nishi Yoku wo Tora (mA) Single acting (circle (mA) Fig. 7 Fig. 8

Claims (1)

【特許請求の範囲】 1、被照射面上にレーザ光を照射するための出射端面の
反射率を10%以1;とし、該出射端面に・対向する裏
面の反射率を90%以上とした一?導体レーザ素子と、
該半導体レーザ素子を駆動する自流駆動手段と、情報値
りにおける上限周波数の2倍以上の周波数を有する高周
波電流を前記半導体レーザ素子に重畳印加する手段と、
を具備して成ることを特徴とする光学式ビックアンプ装
置。 2 前記半導体レーザ素子に高周波電流を重畳印加する
手段が前記半導体レーザ素子を駆動する直流電源と、該
直流電源に重畳する高周波電流の発生手段と、 レーザ光の一部が照射される光検出器と、該光検出器の
出力の低周波分をp波する低域p波器と、該低域p波器
の出力を前記直流電源に帰還して前記半導体レーザ素子
の出力の低周波数成分を一定とする手段と、より成る特
許請求の範囲第1項記載の光学式ピックアップ装置。
[Scope of Claims] 1. The reflectance of the output end face for irradiating the laser beam onto the irradiated surface is set to 10% or more, and the reflectance of the back surface facing the output end face is set to 90% or higher. one? a conductive laser element,
a self-current driving means for driving the semiconductor laser element; a means for superimposing a high-frequency current having a frequency that is twice or more than the upper limit frequency in the information value to the semiconductor laser element;
An optical big amplifier device comprising: 2. A means for applying a high-frequency current in a superimposed manner to the semiconductor laser element includes: a DC power supply that drives the semiconductor laser element; a means for generating a high-frequency current to be superimposed on the DC power supply; and a photodetector to which a portion of the laser light is irradiated. a low-frequency p-wave generator that converts the low-frequency component of the output of the photodetector into a p-wave; and a low-frequency p-wave generator that feeds back the output of the low-frequency p-wave generator to the DC power supply to generate the low-frequency component of the output of the semiconductor laser element. 2. An optical pickup device according to claim 1, comprising means for making the optical pickup constant.
JP59027871A 1984-02-14 1984-02-14 Optical pickup device Pending JPS60170041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59027871A JPS60170041A (en) 1984-02-14 1984-02-14 Optical pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59027871A JPS60170041A (en) 1984-02-14 1984-02-14 Optical pickup device

Publications (1)

Publication Number Publication Date
JPS60170041A true JPS60170041A (en) 1985-09-03

Family

ID=12232957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59027871A Pending JPS60170041A (en) 1984-02-14 1984-02-14 Optical pickup device

Country Status (1)

Country Link
JP (1) JPS60170041A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119743A (en) * 1985-11-20 1987-06-01 Hitachi Ltd Semiconductor laser driving device
JPS62142721U (en) * 1986-03-04 1987-09-09
JPS62236150A (en) * 1986-04-08 1987-10-16 Matsushita Electric Ind Co Ltd Optical disk device
US4799069A (en) * 1986-04-18 1989-01-17 Minolta Camera Kabushiki Kaisha Laser recording apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119743A (en) * 1985-11-20 1987-06-01 Hitachi Ltd Semiconductor laser driving device
JPS62142721U (en) * 1986-03-04 1987-09-09
JPS62236150A (en) * 1986-04-08 1987-10-16 Matsushita Electric Ind Co Ltd Optical disk device
US4799069A (en) * 1986-04-18 1989-01-17 Minolta Camera Kabushiki Kaisha Laser recording apparatus

Similar Documents

Publication Publication Date Title
JP2785921B2 (en) Semiconductor laser drive circuit for optical memory readout device
EP0514758B1 (en) Laser light generator
KR910003217B1 (en) Semiconductor laser driving method and apparatus
GB2144912A (en) Light emitting device and optical signal processing system employing the same
EP0532274B1 (en) Noise reduction system for optical record and reproduction apparatus using auto-power controlled semiconductor laser device
KR20060132902A (en) System for reducing feedback noise due to relaxation oscillation in optical data recording reproducing systems using optimized external cavity
JPS60170041A (en) Optical pickup device
US5398223A (en) Reproducing method and reproducing apparatus for optical recording medium
JPS60192377A (en) Driving method for semiconductor laser element
JPH0743841B2 (en) Semiconductor laser driving method
JPS6139245A (en) Optical pickup device
JP2005209988A (en) Method for driving semiconductor laser and optical disk device
JPS58153239A (en) Optical pickup device
JP2998162B2 (en) Optical pickup device
KR100711348B1 (en) Optical disc device and information recording/reproduction method
JP2000228559A (en) Optical device
EP0183046A2 (en) Process for reducing feedback in a semiconductor laser used in an optical data storage system
KR20050084331A (en) Injection locked diode lasers
JPS60154337A (en) Optical pickup device
JPS60242527A (en) Laser light generating device
JPS60140551A (en) Semiconductor laser driving method of optical information reproducing device
JP2957797B2 (en) Multiple recording method of optical recording medium
JP3284591B2 (en) Optical disc recording method
JPS59129948A (en) Optical information processing device
JPH04291031A (en) Light source device and optical pick-up utilizing it