JPS6035029B2 - concentration meter - Google Patents

concentration meter

Info

Publication number
JPS6035029B2
JPS6035029B2 JP11973779A JP11973779A JPS6035029B2 JP S6035029 B2 JPS6035029 B2 JP S6035029B2 JP 11973779 A JP11973779 A JP 11973779A JP 11973779 A JP11973779 A JP 11973779A JP S6035029 B2 JPS6035029 B2 JP S6035029B2
Authority
JP
Japan
Prior art keywords
measured
liquid
defoaming chamber
fluid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11973779A
Other languages
Japanese (ja)
Other versions
JPS5643534A (en
Inventor
一郎 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP11973779A priority Critical patent/JPS6035029B2/en
Publication of JPS5643534A publication Critical patent/JPS5643534A/en
Publication of JPS6035029B2 publication Critical patent/JPS6035029B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は例えば汚泥液の如き被測定液の濃度を測定する
濃度計に係り、特に被測定液の動き(動圧)を利用して
被測定液を加圧消泡室に流入密封し被測定液の濃度を測
定する濃度計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a concentration meter for measuring the concentration of a liquid to be measured, such as sludge liquid, and in particular, to a concentration meter that measures the concentration of a liquid to be measured, such as sludge liquid, and in particular to a concentration meter that uses movement (dynamic pressure) of the liquid to be measured to pressurize and defoam the liquid to be measured. This invention relates to a concentration meter that measures the concentration of a liquid that flows into a chamber and is sealed.

従来、この種の濃度計にあっては、第1図に示すように
被測定液の流通する配管1に蓮適するようにバイパス管
2を配設するとともに、このバイパス管2の途中にそれ
ぞれバルブ3,4を介して濃度測定部5を設けた構成で
ある。この濃度測定部5は、図示していないが内部に例
えば超音波の送波器および受波器を内蔵し、被測定液に
よる超音波の減衰量を受波器で受波して濃度を測定して
いる。ところで、このような濃度計は、被測定液中の気
泡の影響により正確に濃度を測定できない為、加圧用パ
イプ6を設け、ポンプPで気体を送入して気泡を消泡す
るようにしている。
Conventionally, in this type of concentration meter, as shown in FIG. 1, a bypass pipe 2 is disposed so as to fit into a pipe 1 through which the liquid to be measured flows, and a valve is installed in the middle of the bypass pipe 2. In this configuration, a concentration measuring section 5 is provided via 3 and 4. Although not shown, the concentration measurement unit 5 has an ultrasonic wave transmitter and a wave receiver built therein, and measures the concentration by receiving the amount of attenuation of the ultrasonic waves caused by the liquid to be measured with the wave receiver. are doing. By the way, since such a concentration meter cannot accurately measure the concentration due to the influence of air bubbles in the liquid to be measured, a pressurizing pipe 6 is provided and a pump P is used to supply gas to extinguish air bubbles. There is.

このため、実際に被測定液の濃度を測定する場合、両バ
ルブ3,4を開けて濃度測定部5に被測定液を入れた後
、両バルブ3,4を閉塞して加圧を加え、気泡を消去し
、その後、送波器から超音波を発信してその超音波の減
衰量を受波器で受波し被測定液の濃度を測定している。
しかし、以上のような濃度計にあっては、被測定液の導
入側及び導出側に設けた両バルブ3,4を閉塞しなけれ
ばならないので操作が簡単とは言えず、また何れか一方
のバルブ3又は4を閉塞し忘れると正確な濃度測定がで
きない。
Therefore, when actually measuring the concentration of the liquid to be measured, after opening both valves 3 and 4 and introducing the liquid to be measured into the concentration measurement section 5, both valves 3 and 4 are closed and pressurized. After eliminating the bubbles, a transmitter emits ultrasonic waves, and a receiver receives the attenuation of the ultrasonic waves to measure the concentration of the liquid to be measured.
However, in the concentration meter described above, both the valves 3 and 4 provided on the inlet and outlet sides of the liquid to be measured must be closed, so operation is not easy. If you forget to close valve 3 or 4, accurate concentration measurement will not be possible.

さらに、一方のバルブ4を他方のバルブ3より遅く閉じ
ると、両バルブ3,4間には被測定液層と空気層とがで
きて適切な加圧状態が得られなないばかりか設置状態に
よっては超音波経路に空気層が介在し測定誤差となるな
どの欠点を有する。そこで、以上の不都合を回避するた
めに、2個のバルブ3,4を用いることなく、配管と加
圧消泡室との間にバルブを設け、加圧消泡室への被測定
液の導入をポンプで減圧してバルブを引き離すとともに
被測定液を加圧消泡室に入れ気泡を消泡して被測定液の
濃度を測定している。
Furthermore, if one valve 4 is closed later than the other valve 3, a layer of liquid to be measured and an air layer will be created between the two valves 3 and 4, and not only will an appropriate pressurized state not be obtained, but also depending on the installation state. However, this method has drawbacks such as an air layer intervening in the ultrasonic path, resulting in measurement errors. Therefore, in order to avoid the above-mentioned inconvenience, instead of using the two valves 3 and 4, a valve is provided between the piping and the pressurized defoaming chamber, and the liquid to be measured is introduced into the pressurized defoaming chamber. The concentration of the liquid to be measured is measured by reducing the pressure with a pump and pulling the valve apart, and then putting the liquid to be measured into a pressurized defoaming chamber to defoam the bubbles.

もう1つの例は、流路と濃度測定部を持つ加圧消泡室と
を有するボールバルブを配管側部に設け、通常被測定液
の一部をボールバルブの流路を通って流し、濃度測定時
はそのボールバルブを手動で回動して配管を閉塞すると
ともにボールバルブの流路に存在する被測定液に加圧を
加えて消泡した後に濃度測定部で濃度を測定する構成で
ある。
Another example is to install a ball valve on the side of the pipe that has a flow path and a pressurized defoaming chamber with a concentration measuring section, and normally a part of the liquid to be measured is allowed to flow through the flow path of the ball valve. During measurement, the ball valve is manually rotated to close the piping, and the liquid to be measured in the flow path of the ball valve is pressurized to eliminate bubbles, and then the concentration is measured in the concentration measuring section. .

.しかし、上述する2つの濃度計は、被測定液の導
入にあたってポンプ等を用いて被測定液を加圧消泡室に
入れる点で他動的であり、特に後者のものはバルブが複
雑な構成をとらざるをえなく製造面で多少問題がある。
.. However, the two concentration meters mentioned above are passive in that they use a pump etc. to introduce the liquid to be measured into a pressurized defoaming chamber, and the latter one in particular has a complicated valve structure. There are some problems with manufacturing.

本発明は、上記実情にかんがみてなされたものであって
、配管の側壁に被測定液を自由に流入するように濃度測
定手段を持つ加圧消泡室を設け、配管内を流れる流体の
動き(勤圧)を用いて自動的に被測定液を加圧消泡室に
導入して濃度を測定する濃度計を提供するものである。
The present invention has been made in view of the above-mentioned circumstances, and includes a pressurized defoaming chamber having a concentration measuring means so that the liquid to be measured can freely flow into the side wall of the piping, and movement of the fluid flowing inside the piping. The purpose of the present invention is to provide a concentration meter that automatically introduces a liquid to be measured into a pressurized defoaming chamber and measures its concentration using (pressure).

以下、本発明の実施例を図面を参照して説明する。第2
図は濃度計の一実施例を示す図であって、これは被測定
液の流れる配管11の一側壁に接して加圧消泡室12を
設けるとともに、これら配管11と加圧消泡室12との
接する部分に被測定液の加圧消泡室への流入および排出
を行なう液流路口部13を形成する。この加圧消泡室1
2には例えば空気や窒素等の気体を噴射して加圧消泡室
12内の被測定液に含む気泡を消泡する加圧用パイプ1
4および超音波を発信する送波器15a、発信した超音
波を受信する受波器15b(以下15a,15bを濃度
測定器と称する)が設けられている。また、この加圧消
泡室12の端部に液密にアクチェータ16を装着すると
ともに、アクチェータ16から前記液流路口部13を閉
塞する弁部17aを先端に持つプランジャー17を伸縮
自在に突出させている。従って、以上のような濃度計の
構成にするとアクチェータ16を駆動してプランジャ1
7を少し引くと、配管11と加圧消泡室12とが液流路
口部13を介して蓮通される。
Embodiments of the present invention will be described below with reference to the drawings. Second
The figure shows an example of a concentration meter, in which a pressurized defoaming chamber 12 is provided in contact with one side wall of a pipe 11 through which the liquid to be measured flows, and a pressurized defoaming chamber 12 is provided between the pipes 11 and the pressurized defoaming chamber 12. A liquid flow path opening 13 is formed at the portion in contact with the liquid to be measured to flow into and discharge the liquid to be measured into the pressurized defoaming chamber. This pressurized defoaming chamber 1
2 is a pressurizing pipe 1 for defoaming bubbles contained in the liquid to be measured in the pressurizing defoaming chamber 12 by injecting gas such as air or nitrogen.
4, a transmitter 15a for transmitting ultrasonic waves, and a receiver 15b for receiving the transmitted ultrasonic waves (hereinafter, 15a and 15b will be referred to as concentration measuring devices). Further, an actuator 16 is attached to the end of the pressurized defoaming chamber 12 in a liquid-tight manner, and a plunger 17 having a valve portion 17a at its tip that closes off the liquid flow path opening 13 is extendably protruded from the actuator 16. I'm letting you do it. Therefore, when the concentration meter is configured as described above, the actuator 16 is driven and the plunger 1 is
When 7 is slightly pulled, the piping 11 and the pressurized defoaming chamber 12 are connected through the liquid flow path opening 13.

そして、このような状態を形成することにより、被測定
液の動圧によって自動的に配管11から加圧消泡室12
に被測定液が流入するので、適宜な時期にアクチェータ
16の動作を止めれば磁石の消勢又はばねの復元力等に
よって元の位置に戻ってプランジャー7の弁部17aで
液流路口部13を閉塞する。しかる後、加圧用パイプ1
4を通して圧力を加え被測定液に含まれる気泡を消泡し
、濃度測定器15a,15bで濃度を測定する。濃度測
定後は、同機にプランジャ17を引いて加圧用パイプ1
4で加圧すれば、加圧消泡室12内の被測定液が排出す
るとともに排出後は前述同様に配管11内の被測定液が
加圧消泡室12に流入する。即ち、加圧消泡室12内で
被測定液の置換が行なわれる。なお、第2図では加圧消
泡室12に加圧用パイプ14を設けたが、加圧消泡室1
2の側壁に直接ダイヤフラムを設け、このダイヤフラム
にて間接的に気体を加えて被測定液の気泡を消泡する構
成であってもよいものである。次に、第3図は本発明の
濃度計の他の実施例を示す図である。
By creating such a state, the dynamic pressure of the liquid to be measured automatically moves the pressure defoaming chamber 12 from the piping 11.
Since the liquid to be measured flows in, if the operation of the actuator 16 is stopped at an appropriate time, it will return to its original position due to the deenergization of the magnet or the restoring force of the spring, and the valve portion 17a of the plunger 7 will open the liquid flow path opening 13. occlude. After that, pressurize pipe 1
4 to extinguish bubbles contained in the liquid to be measured, and the concentration is measured using concentration measuring devices 15a and 15b. After measuring the concentration, pull the plunger 17 to the machine and pressurize the pipe 1.
4, the liquid to be measured in the pressurized defoaming chamber 12 is discharged, and after the discharge, the liquid to be measured in the piping 11 flows into the pressurized defoaming chamber 12 as described above. That is, the liquid to be measured is replaced within the pressurized defoaming chamber 12. In addition, in FIG. 2, the pressurizing pipe 14 is provided in the pressurizing defoaming chamber 12, but the pressurizing defoaming chamber 1
A configuration may also be adopted in which a diaphragm is provided directly on the side wall of 2, and gas is indirectly added through this diaphragm to defoam bubbles in the liquid to be measured. Next, FIG. 3 is a diagram showing another embodiment of the densitometer of the present invention.

この濃度計にあっては、配管11の側壁に液流路口部1
3を介して直接達通する加圧消泡室12を装着する点で
第2図を同じであるが、この加圧消泡室12の側部に支
柱18を立ててこれにアクチェータ16を支持するとと
もにアクチェータ16のプランジャー17の先端に取着
する弁板19が液流路口部13の一側部から他側部に伸
びて閉塞し、或いは弁板19を引いて配管11と加圧消
泡室12とを蓮適するようにしたものである。20は液
流路口部13を液密にするパッキング、21は加圧消泡
室12とアクチェータ16個とを液密にするパッキング
である。
In this concentration meter, a liquid flow path opening 1 is attached to the side wall of the pipe 11.
2 is the same in that a pressurized defoaming chamber 12 is installed which communicates directly through the pressurized defoaming chamber 12, but a column 18 is erected on the side of this pressurized defoaming chamber 12 and the actuator 16 is supported on this. At the same time, the valve plate 19 attached to the tip of the plunger 17 of the actuator 16 extends from one side of the liquid flow path opening 13 to the other side and closes it, or the valve plate 19 is pulled and the pressure is removed from the piping 11. The bubble chamber 12 is adapted to fit a lotus. 20 is a packing that makes the liquid flow path opening 13 liquid-tight, and 21 is a packing that makes the pressurized defoaming chamber 12 and the 16 actuators liquid-tight.

また、濃度測定器15a,15bは超音波の送受波器又
は光の投光器および受光器等を用いる。以上の濃度計の
動作は第2図と殆んど同じである。
Further, the concentration measuring devices 15a and 15b use an ultrasonic wave transmitter/receiver, a light projector, a light receiver, or the like. The operation of the densitometer described above is almost the same as that shown in FIG.

即ち、アクチェータ16を駆動して弁板19を少し引く
と、配管11と加圧消泡室12との間に流路が形成し配
管11内の被測定液が被測定液自体の動圧で自然に加圧
消泡室12に被測定液が入ってくる。加圧消泡室12に
被測定液が完全に満たされた時点でアクチェー夕16の
プランジャー17に取着される弁板19を前進させて液
流路口部13を閉塞する。しかる後、加圧用パイプ14
から気体を送って加圧を加え被測定液中に含まれる気泡
を消泡し、その後濃度測定器15a,15bで被測定液
の濃度を測定する。濃度測定後、同じく弁板19を少し
開いて加圧用パイプ14から気体(例えば空気、窒素等
)を噴射させて加圧消泡室12から被測定液を排出する
That is, when the actuator 16 is driven to slightly pull the valve plate 19, a flow path is formed between the piping 11 and the pressurized defoaming chamber 12, and the liquid to be measured in the piping 11 is heated by the dynamic pressure of the liquid to be measured itself. The liquid to be measured naturally enters the pressurized defoaming chamber 12. When the pressurized defoaming chamber 12 is completely filled with the liquid to be measured, the valve plate 19 attached to the plunger 17 of the actuator 16 is advanced to close the liquid flow path opening 13. After that, the pressurizing pipe 14
Gas is sent to apply pressure to eliminate bubbles contained in the liquid to be measured, and then the concentration of the liquid to be measured is measured using concentration measuring devices 15a and 15b. After the concentration measurement, the valve plate 19 is similarly opened slightly to inject gas (for example, air, nitrogen, etc.) from the pressurizing pipe 14 to discharge the liquid to be measured from the pressurized defoaming chamber 12.

排出後、気体の噴射を止めると、被測定液の勤圧によっ
て自然と被測定液が加圧消泡室12に流入してくるので
、前述と同様な動作によって被測定液の濃度を測定する
。この濃度計も加圧消泡室12の側壁にダイヤフラムを
設け、このダイヤフラムを用いて間接的に気体を加えて
気泡の消泡を行なってもよいものである。また、上記説
明では、弁体19を少し開いて被測定液を加圧消泡室1
2に入れるようにしたが弁体19を全開して被測定液を
流入させてもよいことは言うまでもない。第4図は同じ
く本発明濃度計の他の例であって、これは配管11の内
側につば状をなすピストン21aを有する環状の操作シ
リンダ21を内装するとともに、この操作シリンダ21
の外側に位置して配管11内側にそれぞれ分離して加圧
消泡室12とピストン駆動室22を形成している。
After discharging, when the gas injection is stopped, the liquid to be measured naturally flows into the pressurized defoaming chamber 12 due to the pressure of the liquid to be measured, so the concentration of the liquid to be measured is measured by the same operation as described above. . This concentration meter may also be provided with a diaphragm on the side wall of the pressurized defoaming chamber 12, and the diaphragm may be used to indirectly add gas to defoam the bubbles. In addition, in the above explanation, the valve body 19 is slightly opened and the liquid to be measured is pumped into the pressurized defoaming chamber 1.
2, but it goes without saying that the valve body 19 may be fully opened to allow the liquid to be measured to flow in. FIG. 4 shows another example of the concentration meter of the present invention, in which an annular operating cylinder 21 having a collar-shaped piston 21a is installed inside the pipe 11, and this operating cylinder 21
A pressurized defoaming chamber 12 and a piston drive chamber 22 are formed separately inside the piping 11 and located outside of the piping 11 .

そして、加圧消泡室12に気泡の消泡および被測定液の
排出を行なう加圧用パイプ14と、被測定液の濃度を測
定する濃度測定器15a,15bとを設けている。一方
、ピストン駆動室22はピストン21aで2分され、そ
れぞれの室にピストン駆動用の空気導入口23,24を
設けている。25はパッキングである。
The pressure defoaming chamber 12 is provided with a pressurizing pipe 14 for defoaming bubbles and discharging the liquid to be measured, and concentration measuring instruments 15a and 15b for measuring the concentration of the liquid to be measured. On the other hand, the piston drive chamber 22 is divided into two by the piston 21a, and each chamber is provided with air inlets 23 and 24 for driving the piston. 25 is packing.

この濃度計にあっては、空気導入口23より空気を導入
して操作シリンク21を図示矢印右側へ移動させる。
In this concentration meter, air is introduced through the air inlet 23 to move the operating cylinder 21 to the right of the arrow in the figure.

そうすると、シリンダ21の左端が開□して配管11と
加圧消泡室12とが連通するので、配管11内の被測定
液がその液の動圧によって自動的に加圧消泡室12に流
入する。加圧消泡室12に被測定液が完全に満たされた
ならば、空気導入口24から空気を入れて操作シリンダ
21を図示矢印左側へ移動させて加圧消泡室12を閉塞
する。しかる後、加圧用パイプ14で気体を送って気泡
を消泡後、濃度測定器15a,15bで被測定液の濃度
を測定する。従って、この濃度計も被測定液の動圧で自
動的に加圧消泡室12に被測定液を流入することができ
る。第5図は同じく本発明濃度計の他の例を示す図であ
る。
Then, the left end of the cylinder 21 opens □ and the piping 11 and the pressurized defoaming chamber 12 communicate with each other, so that the liquid to be measured in the piping 11 automatically flows into the pressurized defoaming chamber 12 due to the dynamic pressure of the liquid. Inflow. When the pressurized defoaming chamber 12 is completely filled with the liquid to be measured, air is introduced from the air inlet 24 and the operating cylinder 21 is moved to the left in the direction of the arrow in the figure to close the pressurized defoaming chamber 12. Thereafter, gas is sent through the pressurizing pipe 14 to extinguish the bubbles, and then the concentration of the liquid to be measured is measured using the concentration measuring devices 15a and 15b. Therefore, this concentration meter can also automatically cause the liquid to be measured to flow into the pressurized defoaming chamber 12 using the dynamic pressure of the liquid to be measured. FIG. 5 is a diagram showing another example of the densitometer of the present invention.

この例は、配管11の底部又はその近傍に他端部をめく
らとした加圧消泡室12を持つ弁32を据え付けるとと
もに、弁32織部に被測定液の流入および排除を行なう
バブリング用パイプ33を設けた構成である。以上述べ
た第5図の濃度計も第2図ないし第4図と同様に被測定
液の動圧で自動的に被測定液を加圧消泡室12に流入さ
せることができる。
In this example, a valve 32 having a pressurized defoaming chamber 12 with the other end closed is installed at or near the bottom of the pipe 11, and a bubbling pipe 33 is used to inflow and remove the liquid to be measured into the valve 32. This is a configuration with a The above-described concentration meter shown in FIG. 5 can also automatically cause the liquid to be measured to flow into the pressurized defoaming chamber 12 using the dynamic pressure of the liquid to be measured, similarly to those shown in FIGS. 2 to 4.

その他、本発明はその要旨を逸脱しない範囲で種々の変
形実施が可能である。例えば被測定液を流す2個の配管
の間にほぼ配管内径と等しい2つの貫通孔を有するスラ
イドブロックを液密に介在し、通常は一方の貫通孔を使
用して配管とスライドブロックとで流路を形成している
。しかして、被測定液の濃度を測定する時はスライドブ
ロックをスライドして他方の貫通孔と配管とで流路を形
成するとともに、前記一方の貫通孔は2個の配管側部に
密接配置する濃度測定器を持つ加圧消泡室に被測定液を
保持したまま収納し、その加圧消泡室で加圧消泡して被
測定液の濃度を測定するようにしてもよいものである。
以上詳記したように本発明によれば、配管の側壁に接し
て被測定液が自由に流入できるような加圧消泡室を設け
、この配管と加圧消泡室との境界部分に弁体を設置する
構成としたので、弁体の一部又は全部を外部からの弁制
御信号により開くことで加圧消泡室に自動的かつ簡単に
被測定液を入れることができる。
In addition, various modifications can be made to the present invention without departing from the gist thereof. For example, a slide block having two through holes approximately equal to the inner diameter of the pipes is interposed fluid-tight between two pipes through which the liquid to be measured flows, and normally one of the through holes is used to flow the liquid between the pipes and the slide block. forming a road. Therefore, when measuring the concentration of a liquid to be measured, the slide block is slid to form a flow path between the other through hole and the piping, and the one through hole is placed closely on the side of the two piping. The liquid to be measured may be stored in a pressurized defoaming chamber with a concentration measuring device, and the concentration of the liquid to be measured may be measured by defoaming under pressure in the pressurized defoaming chamber. .
As described in detail above, according to the present invention, a pressurized defoaming chamber is provided in contact with the side wall of the piping and allows the liquid to be measured to freely flow in, and a valve is provided at the boundary between the piping and the pressurized defoaming chamber. Since the structure is such that the valve body is installed, the liquid to be measured can be automatically and easily introduced into the pressurized defoaming chamber by opening part or all of the valve body in response to a valve control signal from the outside.

従って、従来のバイパス管を設けた濃度計のように、両
弁の操作の時間的ずれによって空気層ができたりするこ
とがなく、またポンプ等で他動的に被測定液を加圧消泡
室に入れるという操作をとる必要かない。つまり、本濃
度計は被測定液の動きを利用して自然と被測定液を加圧
消泡室に入れることができる。このことは操作を簡素化
するだけでなく、濃度計全体をコンパクトに実現できる
Therefore, unlike conventional concentration meters equipped with bypass pipes, there is no air layer created due to the time lag in the operation of both valves, and the liquid to be measured is passively pressurized and defoamed using a pump, etc. There is no need to take the action of entering the room. In other words, this densitometer can naturally introduce the liquid to be measured into the pressurized defoaming chamber by utilizing the movement of the liquid to be measured. This not only simplifies the operation, but also makes the entire densitometer compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一例を示す濃度計の構成図、第2図は本
発明に係る濃度計の一実施例を示す一部断面図、第3図
は本発明濃度計の他の実施例であって同図Aは一部切り
欠いて示す縦断面図、同図Bは同図Aの側面図、第4図
および第5図は同じく本発明濃度計の他の例を示す図で
ある。 11・・・・・・配管、12・・・・・・加圧消泡室、
13・・・・・・液流路口部、14・・・・・・加圧用
パイプ、15a,15b・・・・・・濃度測定器、16
・・・・・・アクチェータ、17・…・・プランジャー
、17a…・・・弁部、17b…・・・弁板、17c・
・・・・・バタフライ用弁板、17d・・・・・・弁、
21・・・・・・操作シリンダ、21a・・・・・・ピ
ストン・22・・・・・・ピストン駆動室。 第1図 第2図 第3図 第4図 第5図
Fig. 1 is a configuration diagram of a densitometer showing a conventional example, Fig. 2 is a partial sectional view showing an embodiment of the densitometer according to the present invention, and Fig. 3 is a diagram showing another embodiment of the densitometer according to the present invention. Figure A is a partially cut away vertical sectional view, Figure B is a side view of Figure A, and Figures 4 and 5 are views showing other examples of the densitometer of the present invention. 11... Piping, 12... Pressurized defoaming chamber,
13... Liquid flow path opening, 14... Pressurizing pipe, 15a, 15b... Concentration measuring device, 16
...actuator, 17...plunger, 17a...valve section, 17b...valve plate, 17c...
...Butterfly valve plate, 17d...Valve,
21... Operating cylinder, 21a... Piston, 22... Piston drive chamber. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 被測定流体の流通する配管とこの配管の側壁に被測
定流体が自由に流入するように設けた加圧消泡室との間
に介在され被測定流体を加圧消泡室に入れて封入する弁
体と、この弁体により前記加圧消泡室内に封入された被
測定流体中の気泡を消泡する圧力印加手段と、この手段
によつて消泡された被測定流体の濃度を測定する濃度測
定器とを具備したことを特徴とする濃度計。 2 弁体は、アクチエータのプランジヤー自身又はプラ
ンジヤー先端に取着した弁板を用いこのプランジヤーを
伸縮して加圧消泡室への被測定流体の入れ替えを助長す
るようにした特許請求の範囲第1項記載の濃度計。 3 弁体は配管と加圧消泡室との境界部の一側部から他
側部へ進退移動するように設けるとともに、弁体の一部
又は全部を開けて被測定流体の動きによつて自然に加圧
消泡室に前記被測定流体が流入するようにした特許請求
の範囲第1項記載の濃度計。 4 圧力印加手段は、被測定流体中の気泡を消泡する機
能と加圧消泡室内の被測定流体を排出する機能を兼ねる
ようにした特許請求の範囲第1項記載の濃度計。 5 弁体として、加圧消泡室を兼ねる片めくら弁を用い
、この加圧消泡室の被測定流体の排出をバブリングによ
つて行なうようにした特許請求の範囲第1項記載の濃度
計。
[Scope of Claims] 1. A pressure defoaming chamber that pressurizes and extinguishes the fluid to be measured is interposed between a pipe through which the fluid to be measured flows and a pressurized defoaming chamber provided so that the fluid to be measured freely flows into the side wall of this piping. a valve body to be sealed in a bubble chamber; a pressure applying means for defoaming bubbles in the fluid to be measured sealed in the pressure defoaming chamber by the valve body; A concentration meter comprising a concentration measuring device for measuring the concentration of a fluid to be measured. 2. The valve body is adapted to expand and contract the plunger using the plunger itself of the actuator or a valve plate attached to the tip of the plunger to facilitate exchange of the fluid to be measured into the pressurized defoaming chamber. Densitometer described in section. 3. The valve body is installed so that it can move back and forth from one side of the boundary between the piping and the pressurized defoaming chamber to the other side, and by opening part or all of the valve body, it can be moved by the movement of the fluid to be measured. 2. The concentration meter according to claim 1, wherein the fluid to be measured naturally flows into the pressurized defoaming chamber. 4. The concentration meter according to claim 1, wherein the pressure applying means has both the function of defoaming bubbles in the fluid to be measured and the function of discharging the fluid to be measured from the pressurized defoaming chamber. 5. The concentration meter according to claim 1, wherein a single blind valve serving as a pressurized defoaming chamber is used as the valve body, and the fluid to be measured from the pressurized defoaming chamber is discharged by bubbling. .
JP11973779A 1979-09-18 1979-09-18 concentration meter Expired JPS6035029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11973779A JPS6035029B2 (en) 1979-09-18 1979-09-18 concentration meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11973779A JPS6035029B2 (en) 1979-09-18 1979-09-18 concentration meter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP20587581A Division JPS6035621B2 (en) 1981-12-19 1981-12-19 concentration meter

Publications (2)

Publication Number Publication Date
JPS5643534A JPS5643534A (en) 1981-04-22
JPS6035029B2 true JPS6035029B2 (en) 1985-08-12

Family

ID=14768871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11973779A Expired JPS6035029B2 (en) 1979-09-18 1979-09-18 concentration meter

Country Status (1)

Country Link
JP (1) JPS6035029B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56118664A (en) * 1980-02-22 1981-09-17 Nishihara Environ Sanit Res Corp Density measuring device
JPH019003Y2 (en) * 1980-11-17 1989-03-10
JPH01260347A (en) * 1988-04-12 1989-10-17 Kao Corp Absorption analysis/measurement method and apparatus

Also Published As

Publication number Publication date
JPS5643534A (en) 1981-04-22

Similar Documents

Publication Publication Date Title
US4152922A (en) Apparatus and method for determining the characteristic of a flowmeter
CA1278843C (en) Flow control system using boyle's law
ES2001906A6 (en) Ultra-sonic sensor for detecting air bubbles in flowing liquids.
KR960018313A (en) Valve drive control method, valve drive control device and fluid supply device
US2538111A (en) Carbonated beverage dispensing device
JPS6035029B2 (en) concentration meter
JPH0220827B2 (en)
JPS6014120A (en) Flowmeter and flow-rate measuring device with attachment device through which accuracy on measurement is improved
JPS627390Y2 (en)
JPS6035621B2 (en) concentration meter
JPH0518666Y2 (en)
JPS6324481Y2 (en)
SU1553834A1 (en) Metering tank
SU1145255A1 (en) Device for checking liquid leaks from articles
SU1094851A1 (en) Apparatus for pouring liquid into tank cars
JPS597581Y2 (en) Fluid metering dispenser
FR2339797A1 (en) Flush tank filling ball valve - has diaphragm dividing chamber and closing ports when pressure chamber fills
JPS6239364B2 (en)
SU628546A1 (en) Pressure transducer
JPS5769209A (en) Unit type flowmeter
US1150955A (en) Water-meter.
SU898299A1 (en) Plant for investigating capillary phenomena in a porous media under high pressure and temperature
SU1004989A1 (en) Pulse-type micro metering pump of liquid under pressure
US3420416A (en) Liquid dispensing apparatus
JPS603352Y2 (en) Automatic drug injection device