JPH019003Y2 - - Google Patents

Info

Publication number
JPH019003Y2
JPH019003Y2 JP1980164833U JP16483380U JPH019003Y2 JP H019003 Y2 JPH019003 Y2 JP H019003Y2 JP 1980164833 U JP1980164833 U JP 1980164833U JP 16483380 U JP16483380 U JP 16483380U JP H019003 Y2 JPH019003 Y2 JP H019003Y2
Authority
JP
Japan
Prior art keywords
concentration
suspension
measurement chamber
gate valve
sludge pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980164833U
Other languages
Japanese (ja)
Other versions
JPS5786453U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980164833U priority Critical patent/JPH019003Y2/ja
Publication of JPS5786453U publication Critical patent/JPS5786453U/ja
Application granted granted Critical
Publication of JPH019003Y2 publication Critical patent/JPH019003Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【考案の詳細な説明】 本考案は汚泥等懸濁液の濃度を測定する濃度測
定装置に関する。
[Detailed Description of the Invention] The present invention relates to a concentration measuring device for measuring the concentration of a suspension such as sludge.

懸濁液の中でも、例えば汚水処理工程で発生す
る汚泥等の場合には、液中に微細気泡やガス泡を
含んでいる。ところが、この様に微細気泡やガス
泡(以下、単に気泡等という)が含まれている
と、超音波、光、放射線等を使用して懸濁濃度を
測定する測定方法の場合には実濃度以上、または
以下となつて測定値に誤差を生ずる原因となる。
Among suspension liquids, for example, in the case of sludge generated in a sewage treatment process, the liquid contains fine bubbles and gas bubbles. However, if such microbubbles or gas bubbles (hereinafter simply referred to as bubbles) are included, the actual concentration cannot be measured using methods that use ultrasonic waves, light, radiation, etc. to measure suspension concentration. If the value is above or below, it will cause an error in the measured value.

そこで、出願人は、従来からこの種の懸濁液の
濃度測定においては、例えば実開昭54−48693号
公報の第1の実施例に示すように、汚泥管路自体
の一部を所定の間隔を置いて2つの弁で締切ると
共にバイパス管路を併設し、その状態でこの2つ
の弁の間を一定値まで加圧消泡することにより懸
濁濃度を測定するようにした濃度測定装置を用い
ていた。つまり、懸濁液を加圧することにより気
体の飽和溶解度を高め液中に含まれる気泡を溶解
させ、気泡の影響を除去しようとするものであ
る。
Therefore, in the concentration measurement of this type of suspension, the applicant has conventionally developed a method for measuring the concentration of a part of the sludge pipe itself, as shown in the first embodiment of Japanese Utility Model Application Publication No. 54-48693. A concentration measuring device that measures suspended concentration by closing two valves at an interval and installing a bypass line, and then pressurizing and defoaming between these two valves to a certain value. was used. That is, by pressurizing the suspension liquid, the saturated solubility of gas is increased, the air bubbles contained in the liquid are dissolved, and the influence of the air bubbles is removed.

また、上記公報の第2の実施例に示すように、
バイパス管路を併設することなく、汚泥管路をT
字形に分岐し加圧容器を設けることも行なわれて
いた。
Furthermore, as shown in the second example of the above publication,
The sludge pipe is connected to T without installing a bypass pipe.
It was also practiced to branch into a shape and provide a pressurized container.

しかしながら、上記公報の第1の実施例の場合
は、2つの弁機構を必要とすると共に、バイパス
管路をも併設しなければならないために、装置自
体も大型化せざるを得ず、また、構造の簡素化に
ついても未だ改良の余地を有するものであつた。
However, in the case of the first embodiment of the above-mentioned publication, two valve mechanisms are required, and a bypass pipe must also be installed, so the device itself has to be enlarged. There was still room for improvement in terms of structural simplification.

そして、上記公報の第2の実施例の場合は、弁
機構も1つで足り、バイパス管路の併設も不要な
ものであるため、装置の小型化及び構造の簡素化
を図ることは可能になつたが、濃度測定を行なお
うとする加圧容器内にサンプリングに適した懸濁
液を導入することが非常に困難になるという別の
問題点を有するものであつた。
In the case of the second embodiment of the above-mentioned publication, one valve mechanism is sufficient and there is no need to provide a bypass line, so it is possible to downsize the device and simplify the structure. However, this method has another problem in that it becomes very difficult to introduce a suspension suitable for sampling into a pressurized container in which the concentration is to be measured.

この考案は上記事情に鑑みなされたものであつ
て、装置の小型化及び構造の充分な簡素化を図る
ことができ、さらに、加圧下において濃度測定を
行なおうとする加圧容器(濃度測定室)内に、サ
ンプリングに適した懸濁液を円滑に導入すること
が可能な濃度測定装置を提供することを目的とす
るものである。
This idea was developed in view of the above circumstances, and it is possible to reduce the size of the device and sufficiently simplify the structure. ) It is an object of the present invention to provide a concentration measuring device that can smoothly introduce a suspension suitable for sampling into a container.

以下、本考案を図示の実施例について説明す
る。
Hereinafter, the present invention will be explained with reference to the illustrated embodiments.

まず、第1図において、1は汚泥管路本管の一
部にフランジ部2を利用して一体的に組込まれる
汚泥管路で、その一側面に略円形の開口3が穿設
されている。開口3には弾力性を有し、気密接触
が可能な弾力スペーサ4、及びセンサ取付部5と
を介して、例えば半球状の湾曲蓋6がボルト締め
等の方法によつて着脱可能に固設されている。湾
曲蓋6の内側には上記センサ取付部5と、共締め
された、例えば合成ゴム材等の弾性体よりなる気
密性の可動膜7が設けられており、開口3に臨む
濃度測定室8はこの可動膜7により周囲が覆設さ
れるようになつている。
First, in FIG. 1, 1 is a sludge pipe that is integrated into a part of the main sludge pipe using a flange 2, and a substantially circular opening 3 is bored in one side of the sludge pipe. . For example, a hemispherical curved lid 6 is removably fixed to the opening 3 via a resilient spacer 4 that is resilient and capable of airtight contact, and a sensor mounting portion 5 by bolting or the like. has been done. An airtight movable membrane 7 made of an elastic material such as synthetic rubber is provided on the inside of the curved lid 6 and is fastened together with the sensor mounting part 5. The movable membrane 7 covers the surrounding area.

そして、濃度測定室8の外部には図示を省略し
た加圧源が設置されており、この加圧源は、後述
する回転仕切弁14の閉弁時に湾曲蓋6の一部に
孔設した吸排気口9より可動膜7を内側に圧縮変
形させることにより濃度測定室8内を加圧できる
ようになつている。なお、加圧源としては、例え
ば空気圧等が用いられるが、それ以外の油圧等の
手段を利用しても差支えない。
A pressurization source (not shown) is installed outside the concentration measurement chamber 8, and this pressurization source is connected to a suction hole provided in a part of the curved lid 6 when the rotary gate valve 14, which will be described later, is closed. By compressing and deforming the movable membrane 7 inward through the exhaust port 9, the inside of the concentration measurement chamber 8 can be pressurized. Note that as the pressure source, for example, air pressure is used, but other means such as hydraulic pressure may also be used.

また、センサ取付部5には、互いに対向する位
置に配設された超音波の送信子10、及びその受
信子(または反射板)11により構成される濃度
検出手段12が設けられており、その検出信号は
記録装置等にデータ伝送され処理されるようにな
つている。
Further, the sensor mounting portion 5 is provided with a concentration detection means 12 composed of an ultrasonic transmitter 10 and its receiver (or reflector) 11 disposed at positions facing each other. The detection signal is data transmitted to a recording device or the like and processed.

一方、上記開口部3に接した弾力スペーサ4の
内側には、その開口面に合わせ回転軸13によつ
て汚泥管路1の軸方向へ所定角度(90゜)だけ回
動自在に軸支された回転仕切弁14が設けられて
いる。回転仕切弁14は実線で示すように弾力ス
ペーサ4内に内接したり、仮想線の如く垂直位置
に回動でき、この動作によつて汚泥管路1を流れ
る懸濁液を自在にサンプリングし、かつ上方の濃
度測定室8を密閉状態とすることができるもので
ある。図示の実線の如く弾力スペーサ4を完全に
押し広げ閉塞した状態においては上述の内部サン
プリング液への加圧は充分可能となる。すなわ
ち、この状態で吸排気口9より加圧源からの圧力
空気を封入するとサンプリング液は可動膜7の内
側への圧縮変形により所定の圧力値に高められ気
泡は圧縮され、更に気体の飽和溶解度が増すので
液中の気泡は溶解する。よつて、この様な加圧下
で濃度測定をすると気泡等の含有による測定誤差
は解消される。
On the other hand, inside the elastic spacer 4 in contact with the opening 3, a rotary shaft 13 is rotatably supported by a predetermined angle (90°) in the axial direction of the sludge pipe line 1 in alignment with the opening surface. A rotating gate valve 14 is provided. The rotary gate valve 14 can be inscribed in the elastic spacer 4 as shown by the solid line or can be rotated to a vertical position as shown by the imaginary line, and by this operation, the suspension flowing through the sludge pipe 1 can be freely sampled. Moreover, the upper concentration measurement chamber 8 can be kept in a sealed state. When the elastic spacer 4 is completely expanded and closed as shown by the solid line in the figure, the above-mentioned internal sampling liquid can be sufficiently pressurized. That is, when pressurized air from a pressurized source is filled in through the intake/exhaust port 9 in this state, the sampling liquid is compressed and deformed inside the movable membrane 7, increasing the pressure to a predetermined value, compressing the bubbles, and further increasing the saturated solubility of the gas. increases, so air bubbles in the liquid dissolve. Therefore, when the concentration is measured under such pressure, measurement errors due to the inclusion of air bubbles, etc. are eliminated.

そして、15は回転仕切弁14の反対側位置の
汚泥管路1の内側に形成された隆起部であり、1
6は回転仕切弁14の回転駆動を行なう駆動手段
である。
15 is a raised portion formed inside the sludge pipe line 1 at a position opposite to the rotary gate valve 14;
Reference numeral 6 denotes a driving means for rotating the rotary gate valve 14.

次に上記のように構成される本実施例の動作に
ついて説明する。汚泥管路1を流れる懸濁液は隆
起部15によつて、第1図の矢印で示すように、
上方へ案内あるいは誘導される。したがつて、懸
濁液のサンプリングを行なうべく、駆動手段16
により回転仕切弁14を90゜回転させて開弁する
と、この開弁状態にある回転仕切弁14と隆起部
15とが協働して、懸濁液の濃度測定室8への案
内透導作用を行なう。そのため、回転仕切弁14
の開弁時には、懸濁液の大部分は濃度測定室8を
経由して汚泥管路1内を流れることになり、この
状態で回転仕切弁14を水平位置に戻して閉弁す
れば、濃度測定室8内には、汚泥管路1内を通常
に流れる懸濁液とほぼ同様の懸濁状態にある懸濁
液が採取され、好適なサンプリング液を得られる
ことになる。なお、それまでに濃度測定室8に残
留していたサンプリング液は、新しく導入される
サンプリング液によつて汚泥管路1へ排出され、
いわゆるセルフクリーニングが行なわれる。
Next, the operation of this embodiment configured as described above will be explained. The suspension flowing through the sludge pipe 1 is caused by the raised portions 15 as shown by the arrows in FIG.
Guided or guided upwards. Therefore, in order to sample the suspension, the drive means 16
When the rotary gate valve 14 is opened by rotating it by 90 degrees, the rotary gate valve 14 in the open state and the raised portion 15 work together to guide and transmit the suspension to the concentration measurement chamber 8. Do the following. Therefore, the rotary gate valve 14
When the valve is opened, most of the suspension will flow through the concentration measurement chamber 8 into the sludge pipe 1. If the rotary gate valve 14 is returned to the horizontal position and closed in this state, the concentration will be reduced. In the measuring chamber 8, a suspension in a state of suspension substantially similar to that normally flowing through the sludge pipe 1 is collected, and a suitable sampling liquid can be obtained. Note that the sampling liquid remaining in the concentration measurement chamber 8 until then is discharged to the sludge pipe line 1 by the newly introduced sampling liquid.
So-called self-cleaning is performed.

このように、新しいサンプリング液が濃度測定
室8内へ導入された後、回転仕切弁14の閉弁時
に前述した加圧源によつて、吸排気口9を介して
可動膜7の圧縮変形が行なわれ、サンプリング液
即ち懸濁液が導入された濃度測定室8の加圧、消
泡が行なわれる。この場合の加圧は、湾曲蓋6の
ような外側容器の形状に自在に馴染む可動膜7を
用い、しかも可動膜7の吸排気口9に接する部分
のみを変形させるようにするだけでよいので、従
来通常に用いられていたダイアフラム部材と異な
り、受圧室のような空間部が不要となる。したが
つて、その分だけスペース的にも有利なものとな
つている。
In this manner, after a new sampling liquid is introduced into the concentration measuring chamber 8, the movable membrane 7 is compressively deformed through the suction/exhaust port 9 by the above-mentioned pressurizing source when the rotary gate valve 14 is closed. Then, the concentration measuring chamber 8 into which the sampling liquid, ie, the suspension liquid was introduced, is pressurized and defoamed. In this case, pressurization can be done by using a movable membrane 7 that freely adapts to the shape of the outer container such as a curved lid 6, and by deforming only the portion of the movable membrane 7 that comes into contact with the intake/exhaust port 9. Unlike the diaphragm member conventionally used, a space such as a pressure receiving chamber is not required. Therefore, it is advantageous in terms of space.

次いで、このような消泡状態で超音波送信子1
0より超音波を発信し、対向の受信子(または反
射板)11でこれを受信するか、または反射しこ
の反射信号を送信子10で受け、濃度に応じ減衰
した受信信号を計測して汚染の濃度を測定し、こ
の結果は沈澱汚染の引き抜きや薬注等の制御信号
に利用される。そして、測定が完了すると給排気
口9より圧入空気を排除し、回転仕切弁14を次
の測定に備えて回動する。なお、給気口と排気口
は、別々に設けてもよい。これらの測定に必要な
各工程を繰返えすことによつて連続的に濃度の計
測が行われる。
Next, in such a defoamed state, the ultrasonic transmitter 1 is
An ultrasonic wave is emitted from 0, and it is received by the opposite receiver (or reflector) 11, or reflected and this reflected signal is received by the transmitter 10, and the received signal that is attenuated according to the concentration is measured to detect contamination. The concentration is measured, and the results are used as control signals for extraction of precipitate contamination, chemical injection, etc. When the measurement is completed, the pressurized air is removed from the air supply/exhaust port 9, and the rotary gate valve 14 is rotated in preparation for the next measurement. Note that the air supply port and the air exhaust port may be provided separately. By repeating each step necessary for these measurements, the concentration can be continuously measured.

以上の回転仕切弁14の回転、加圧、消泡、濃
度計測等の夫々の動作は、例えば、中央監視制御
装置(図示せず)からの所定のプログラム指令に
よつて自動的に行われる。また、上記送信子10
および受信子(または、反射板)11は懸濁液測
定切換時に充分表面の洗浄がなされるので測定に
支障を来たすようなことはない。
The above-mentioned operations such as rotation of the rotary gate valve 14, pressurization, defoaming, concentration measurement, etc. are automatically performed according to predetermined program instructions from a central monitoring and control device (not shown), for example. In addition, the transmitter 10
The surface of the receiver (or reflector) 11 is sufficiently cleaned at the time of changing the suspension measurement, so that it does not interfere with the measurement.

以上のように、この考案によれば、濃度検出手
段が取付けられ気密性可動膜により覆設された濃
度測定室と汚泥管路とを回転仕切弁により仕切る
と共に、この気密性可動膜を加圧源により内側に
圧縮変形させるようにし、さらに開弁時の回転仕
切弁と協働して濃度測定室への懸濁液の導入を案
内する隆起部を汚泥管路の内側に形成する構成と
したので、弁機構を一つにすることができ、バイ
パス管路の併設を不要にすることができると共
に、汚泥管路を通常に流れる場合とほぼ同様の懸
濁状態にある懸濁液を採取することができる。し
かも、上記濃度検出手段は一対の超音波送受信子
から成り、それらの超音波送受信子を、濃度測定
室内の気密性可動膜と回転仕切弁との間で上記濃
度測定室の側壁対向位置に配設したことにより、
上記濃度検出手段はそれ独自に超音波送受信機能
を発揮させることができ、その送受信機能を回転
仕切弁の一部に持たせた場合のような濃度検出上
の弊害、即ち、回転仕切弁のガタ付き等によつて
濃度検出機能が損なわれるような不都合がなくな
る。また、上記濃度検出手段は、回転仕切弁の開
弁時に懸濁液で必然的に洗浄されるので、常時安
定した高精度の濃度検出機能を発揮する。したが
つて、装置の小型化及び構造の簡素化を図ること
ができ、さらに、サンプリングに適した懸濁液を
円滑に導入することが可能な濃度測定装置を実現
できるという効果がある。
As described above, according to this invention, the concentration measurement chamber, which is equipped with a concentration detection means and covered by an airtight movable membrane, and the sludge pipe are separated by a rotary gate valve, and this airtight movable membrane is pressurized. The sludge pipe is compressed and deformed inward by the source, and a raised part is formed inside the sludge pipe to guide the introduction of the suspension into the concentration measurement chamber in cooperation with the rotary gate valve when the valve is opened. Therefore, the valve mechanism can be integrated into one, making it unnecessary to install a bypass pipe, and the suspension can be collected in almost the same suspended state as when it normally flows through a sludge pipe. be able to. Moreover, the concentration detecting means is composed of a pair of ultrasonic transmitters and receivers, and these ultrasonic transmitters and receivers are arranged at positions facing the side wall of the concentration measurement chamber between the airtight movable membrane and the rotary gate valve in the concentration measurement chamber. By establishing
The above-mentioned concentration detection means can independently perform an ultrasonic transmission and reception function, and if the transmission and reception function is provided as a part of the rotary gate valve, there are no problems with concentration detection, such as backlash of the rotary gate valve. This eliminates the inconvenience of impairing the concentration detection function due to adhesion or the like. Furthermore, since the concentration detection means is necessarily washed with the suspension when the rotary gate valve is opened, it always exhibits a stable and highly accurate concentration detection function. Therefore, it is possible to reduce the size of the device and simplify the structure, and furthermore, it is possible to realize a concentration measuring device that can smoothly introduce a suspension suitable for sampling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例を示す濃度測定装置
の断面図、第2図はその−断面図である。 1……汚泥管路、7……気密性可動膜、8……
濃度測定室、12……濃度検出手段、14……回
転仕切弁、15……隆起部。
FIG. 1 is a cross-sectional view of a concentration measuring device showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view thereof. 1...Sludge pipe line, 7...Airtight movable membrane, 8...
Concentration measurement chamber, 12... Concentration detection means, 14... Rotary gate valve, 15... Protrusion.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 濃度を測定すべき懸濁液が流れる汚泥管路に付
設され、該汚泥管路内に連通して外側に膨出する
濃度測定室と、この濃度測定室内に張設された気
密性可動膜と、上記濃度測定室内における上記汚
泥管路との連通開口部近傍で該開口部を開閉する
方向へ所定角度回転可能に軸支された回転仕切弁
と、この回転仕切弁と上記気密性可動膜との間で
上記濃度測定室の側壁対向位置に配設された一対
の超音波送受信子から成る濃度検出手段と、上記
濃度測定室の外部に設置され、上記回転仕切弁の
閉弁時に上記気密性可動膜を内側に圧縮変形さ
せ、懸濁液導入状態の上記濃度測定室内を加圧す
る加圧源と、上記回転仕切弁の反対側位置の上記
汚泥管路内側に形成され、開弁時の該回転仕切弁
と協働して上記濃度測定室内に懸濁液を導入させ
る隆起部とを備えた濃度測定装置。
A concentration measurement chamber attached to a sludge pipe through which a suspension whose concentration is to be measured flows and communicates with the sludge pipe and bulges outward; and an airtight movable membrane stretched inside the concentration measurement chamber. , a rotary gate valve pivotably supported near a communication opening with the sludge pipe in the concentration measurement chamber so as to be rotatable at a predetermined angle in a direction for opening and closing the opening; the rotary gate valve and the airtight movable membrane; a concentration detection means consisting of a pair of ultrasonic transmitter/receivers disposed opposite to each other on the side wall of the concentration measurement chamber; A pressurizing source compresses and deforms the movable membrane inward and pressurizes the concentration measurement chamber in a state where the suspension is introduced. A concentration measuring device comprising: a protuberance that cooperates with a rotary gate valve to introduce a suspension into the concentration measuring chamber.
JP1980164833U 1980-11-17 1980-11-17 Expired JPH019003Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980164833U JPH019003Y2 (en) 1980-11-17 1980-11-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980164833U JPH019003Y2 (en) 1980-11-17 1980-11-17

Publications (2)

Publication Number Publication Date
JPS5786453U JPS5786453U (en) 1982-05-28
JPH019003Y2 true JPH019003Y2 (en) 1989-03-10

Family

ID=29523549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980164833U Expired JPH019003Y2 (en) 1980-11-17 1980-11-17

Country Status (1)

Country Link
JP (1) JPH019003Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539491Y2 (en) * 1985-05-21 1993-10-06

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643534A (en) * 1979-09-18 1981-04-22 Toshiba Corp Densitometer
JPS56118664A (en) * 1980-02-22 1981-09-17 Nishihara Environ Sanit Res Corp Density measuring device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738625Y2 (en) * 1977-05-06 1982-08-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643534A (en) * 1979-09-18 1981-04-22 Toshiba Corp Densitometer
JPS56118664A (en) * 1980-02-22 1981-09-17 Nishihara Environ Sanit Res Corp Density measuring device

Also Published As

Publication number Publication date
JPS5786453U (en) 1982-05-28

Similar Documents

Publication Publication Date Title
WO2002018940A3 (en) Device for measuring analyte concentration in a fluid
CN213210110U (en) Open-air water quality monitoring device
JPH0755662A (en) Automatic water sampling device and method for automatically sampling deep-sea water
CN109557295A (en) Vim and vigour test method, vim and vigour test host, reagent packet and vim and vigour test card
US4476707A (en) Gas flow measurement with detented chopper valve
CN110456048A (en) Multi-functional excrement acquisition and detection device
JPH019003Y2 (en)
CN211273963U (en) Gas analyzer probe dust removal structure
JPS58219450A (en) Measuring instrument for concentration
CN112666087B (en) Spectrophotometry test method sample treatment test capsule
CN112683801B (en) Spectrophotometry sample treatment test capsule
WO2021168237A1 (en) Excreta sampling toilet and inline specimen analysis system and method
CN112798582B (en) Sewage detection method and application
CN220656501U (en) Deaeration tank capable of detecting material viscosity in real time
JP3776236B2 (en) Mouth sealing device for reagent container in specimen testing device
CN218212103U (en) Sampling detection device
CN112683802B (en) Spectrophotometry sample treatment test capsule
JPS5844363Y2 (en) Kendaku Ekinonoudo Sokutei Souchi
CN109765075A (en) A kind of shallow water sampler
JP3207585B2 (en) Photoacoustic sample cell, method of detecting the same, method of mounting the same, and method of determining defective mounting
CN219348877U (en) Fecal immediate detection device for realizing transfer of reaction reagent through position switching
CN211978400U (en) Sampling detection device of pesticide production reation kettle
CN219565412U (en) Intelligent detection sampling ship
CN218848157U (en) Portable excrement and urine detection device
CN218629779U (en) Portable water quality detector