JPS6034414B2 - Regeneration method of carbonaceous adsorbent for desulfurization - Google Patents

Regeneration method of carbonaceous adsorbent for desulfurization

Info

Publication number
JPS6034414B2
JPS6034414B2 JP54143033A JP14303379A JPS6034414B2 JP S6034414 B2 JPS6034414 B2 JP S6034414B2 JP 54143033 A JP54143033 A JP 54143033A JP 14303379 A JP14303379 A JP 14303379A JP S6034414 B2 JPS6034414 B2 JP S6034414B2
Authority
JP
Japan
Prior art keywords
adsorbent
gas
inactivated
ammonia
regenerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54143033A
Other languages
Japanese (ja)
Other versions
JPS5667541A (en
Inventor
和義 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP54143033A priority Critical patent/JPS6034414B2/en
Publication of JPS5667541A publication Critical patent/JPS5667541A/en
Publication of JPS6034414B2 publication Critical patent/JPS6034414B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 固定発生源からの排ガスを乾式脱硫する場合の一方法と
して、活性炭で代表される炭素質吸着剤を移動床の形で
活性炭と接触させる方法が実用化されている。
DETAILED DESCRIPTION OF THE INVENTION As a method for dry desulfurization of exhaust gas from a fixed source, a method has been put into practical use in which a carbonaceous adsorbent, typically activated carbon, is brought into contact with activated carbon in the form of a moving bed.

この乾式脱硫法では、炭素費吸着剤が活性炭との接触に
よって次第に不活化するため、適当な時期にこれを再生
して吸着能を回復させ、再び活性炭との接触に使用する
のが通例であって、この場合の再生には、不活化炭素質
吸着剤を不活性ガス雰囲気中で300〜650qCの温
度に加熱する方法が採用される。しかしながら、この加
熱再生法は不活化炭素質吸着剤に吸着されている硫酸を
、炭素質吸着剤自体を還元剤として、日2S04十1/
2C→S02十1/2C02十日20の如く分解脱離さ
せるものであるため、再生に際して炭素質吸着剤が必然
的に消耗するばかりでなく、表面酸化物の生成によって
炭素質吸着剤のS○k吸着能が低下するという問題があ
る。
In this dry desulfurization method, the carbonaceous adsorbent is gradually inactivated by contact with activated carbon, so it is customary to regenerate it at an appropriate time to restore adsorption capacity and use it again for contact with activated carbon. For regeneration in this case, a method is adopted in which the inactivated carbonaceous adsorbent is heated to a temperature of 300 to 650 qC in an inert gas atmosphere. However, this thermal regeneration method uses the carbonaceous adsorbent itself as a reducing agent to remove the sulfuric acid adsorbed on the inactivated carbonaceous adsorbent.
Since the carbonaceous adsorbent is decomposed and desorbed as shown in 2C→S0211/2C02Toka20, not only is the carbonaceous adsorbent inevitably consumed during regeneration, but also the S○ of the carbonaceous adsorbent is There is a problem that the k adsorption capacity decreases.

本発明はこの問題の解決を目差すものであって、予め不
活化炭素質吸着剤をアンモニアガスと接触させて当該吸
着剤に吸着させている硫酸をアンモニウム塩に変換させ
ることにより、不活性ガス雰囲気中での加熱再生に際し
て炭素質吸着剤の消耗を抑えると共に、再生された炭素
質吸着剤のS○k吸着能の向上を図らんとするものであ
る。
The present invention aims to solve this problem, and by bringing an inert carbonaceous adsorbent into contact with ammonia gas in advance to convert the sulfuric acid adsorbed onto the adsorbent into ammonium salt, an inert gas atmosphere is created. The aim is to suppress consumption of the carbonaceous adsorbent during heating and regeneration in the chamber, and to improve the S○k adsorption capacity of the regenerated carbonaceous adsorbent.

而して本発明に係る脱硫用炭素質吸着剤の再生方法は、
乾式排煙脱硫に使用されて不活化した炭素質吸着剤を不
活性ガス雰囲気中で加熱再生するに先立って、予めアン
モニアガスと接触させて不活化炭素質吸着剤に吸着され
ている硫酸の少なくとも一部をアンモニウム塩に変換さ
せ、しかる後その吸着剤を不活性ガス雰囲気中で加熱再
生することを特徴とする。本発明の方法によれば、排ガ
スと接触して不活化した炭素質吸着剤は、まずアンモニ
アガスと60〜1800C、好ましくは90〜1500
0の温度で接触せしめられる。
Therefore, the method for regenerating carbonaceous adsorbent for desulfurization according to the present invention is as follows:
Prior to heating and regenerating the inactivated carbonaceous adsorbent used for dry flue gas desulfurization in an inert gas atmosphere, at least the sulfuric acid adsorbed on the inactivated carbonaceous adsorbent is removed by contacting it with ammonia gas in advance. It is characterized by converting a portion of the adsorbent into ammonium salt, and then regenerating the adsorbent by heating in an inert gas atmosphere. According to the method of the present invention, the carbonaceous adsorbent that has been inactivated by contact with exhaust gas is first heated with ammonia gas at 60 to 1800C, preferably 90 to 1500C.
Contact is made at a temperature of 0.

この接触によりアンモニアは不活化炭素質吸着剤に吸着
され、当該吸着剤に既に吸着されている硫酸の少なくと
も一部を次式の如くアンモニウム塩に変換する。日2S
04十N比→NH4HS04 ・・・・・・(
1)日2S04十が日3一(NH4)2S04 ・
・・・・・(ロ)不活化炭素質吸着剤に対するアンモニ
アの吸着量は、当該吸着剤に吸着されている硫酸1モル
当り、0.1〜2モルの範囲であることを可とする。
Through this contact, ammonia is adsorbed on the inactivated carbonaceous adsorbent, and at least a portion of the sulfuric acid already adsorbed on the adsorbent is converted into an ammonium salt as shown in the following formula. day 2s
040N ratio → NH4HS04 ・・・・・・(
1) Sun 2S04 10 ga Sun 31 (NH4) 2S04 ・
(b) The amount of ammonia adsorbed on the inactivated carbonaceous adsorbent may be in the range of 0.1 to 2 moles per mole of sulfuric acid adsorbed on the adsorbent.

アンモニア吸着量がこれより少ない場合は、加熱再生に
際して炭素質吸着剤の消耗を抑えることができず、また
S○k吸着能の向上を図ることもできない。一方、アン
モニア吸着量が多過ぎた場合は、爾後の加熱再生時に回
収されるS02ガス中に、多量のアンモニアが混入する
弊害が起る。アンモニアガスとの接触によって硫酸の一
部又は全部がアンモニウム塩に変換された不活化炭素質
吸着剤は、次いで常法通り不活性ガス雰囲気中で350
〜600ooの温度に加熱されて再生される。この加熱
再生時に生起する化学反応の詳細は、必ずしの明らかで
はないが、主な反応は次式で示されるものと推定される
。洲瓜HS04一 NH3十$02十母L
03(NA)2S04一 4NH3十$02十N2
十組202/洲日3十(0)※→ 1/洲
2十比○※吸着剤上の表面酸素を意味する。
If the ammonia adsorption amount is less than this, it is not possible to suppress consumption of the carbonaceous adsorbent during thermal regeneration, and it is also not possible to improve the S○k adsorption capacity. On the other hand, if the amount of ammonia adsorption is too large, a large amount of ammonia will be mixed into the S02 gas recovered during subsequent thermal regeneration, resulting in a problem. The inactivated carbonaceous adsorbent, in which some or all of the sulfuric acid has been converted into ammonium salt by contact with ammonia gas, is then heated in an inert gas atmosphere for 350 min in a conventional manner.
It is heated to a temperature of ~600 oo and regenerated. The details of the chemical reaction that occurs during this heating regeneration are not necessarily clear, but the main reaction is presumed to be expressed by the following formula. Shuu Melon HS041 NH30$020 Mother L
03(NA)2S04-4NH30$020N2
Jugumi 202/Suhichi 30 (0) *→ 1/Shu 20 ratio ○ *Represents surface oxygen on the adsorbent.

何れにしてもNH4HS04,(NH4)2S04など
のアンモニウム塩の形で不活化炭素質吸着剤に吸着され
たアンモニアの大半は、加熱再生時に窒素に分解され、
その分解率は吸着されたアンモニア量及び再生時の加熱
温度にもよるが、通常80〜99%である。
In any case, most of the ammonia adsorbed on the inert carbonaceous adsorbent in the form of ammonium salts such as NH4HS04 and (NH4)2S04 is decomposed into nitrogen during thermal regeneration.
The decomposition rate depends on the amount of ammonia adsorbed and the heating temperature during regeneration, but is usually 80 to 99%.

しかし、アンモニアの窒素への分解が不充分である場合
には、不活化炭素質吸着剤から脱離するS02ガス中に
アンモニアが混入する。従って、この脱離S02ガスか
ら硫酸乃至硫黄を製造せんとする場合には、アンモニウ
ム塩による製造装置の閉塞、腐蝕あるいは製品純度の低
下が起る可能性がある。そこでアンモニアの混入が予想
される場合には、脱離602ガス中に窒素酸化物を付加
的に注入し、これを再生された炭素質吸着剤と接触させ
て次式の如く残存アンモニアを窒素に分解することが好
ましい。4NH3十州0一肌十組20 磯日3十洲02一7N2十12も0 上記の分解反応に於て、炭素質吸着剤は触媒として作用
し、分解反応を促進する。
However, if the decomposition of ammonia into nitrogen is insufficient, ammonia will be mixed into the S02 gas desorbed from the inactivated carbonaceous adsorbent. Therefore, when attempting to produce sulfuric acid or sulfur from this desorbed S02 gas, there is a possibility that ammonium salts may clog the production equipment, cause corrosion, or reduce the purity of the product. Therefore, if ammonia is expected to be mixed in, nitrogen oxides are additionally injected into the desorbed 602 gas, and this is brought into contact with the regenerated carbonaceous adsorbent to convert the remaining ammonia into nitrogen as shown in the following formula. Decomposition is preferred. 4NH3 Jushu 01 Hada Jugumi 20 Isobi 3 Toshu 02-7N2 Ju-12 0 In the above decomposition reaction, the carbonaceous adsorbent acts as a catalyst and promotes the decomposition reaction.

ここで注目すべき点は高濃度のS02が共存するにも拘
らず「炭素質吸着剤が不活化されないことである。上記
の分解反応は150〜50000で生起するので、再生
された炭素質吸着剤を改めて加熱する要はなく、窒素酸
化物を脱離S02ガスに注入して再生炭素質吸着剤に接
触させれば、満足な結果を得ることができる。窒素酸化
物の付加量はアンモニア1モル当り0.75〜1モル、
好ましくは1〜5モルの範囲を可とする。尚「窒素酸化
物に酸素などの酸化剤が混在していると、炭素質吸着剤
の消耗が起るので、酸化剤が混在している場合は、予め
これを除去することが望ましい。本発明に係る再生方法
の利点は、不活性ガス雰囲気中での加熱再生に際して炭
素質吸着剤の消耗が少なく、再生された炭素質吸着剤の
S○×吸着能が向上する点にあるが、こうした利点は第
1図及び第2図によって具体的に説明することができる
What is noteworthy here is that the carbonaceous adsorbent is not inactivated despite the coexistence of a high concentration of S02. There is no need to heat the agent again, and satisfactory results can be obtained by injecting nitrogen oxides into the desorbed S02 gas and contacting the regenerated carbonaceous adsorbent.The amount of nitrogen oxides added is 1. 0.75 to 1 mole per mole,
Preferably, a range of 1 to 5 moles is allowed. Furthermore, if oxidizing agents such as oxygen are mixed with nitrogen oxides, the carbonaceous adsorbent will be consumed, so if oxidizing agents are mixed, it is desirable to remove this in advance.The present invention The advantage of this regeneration method is that the carbonaceous adsorbent is less consumed during heating regeneration in an inert gas atmosphere, and the S○× adsorption capacity of the regenerated carbonaceous adsorbent is improved. can be specifically explained with reference to FIGS. 1 and 2.

すなわち、第1図はボイラー排ガスの乾式脱硫に使用さ
れたが故に、硫酸を吸着して付活化した活性炭(吸着量
S02として110の9/g活性炭)を、3%のアンモ
ニアガスを含む150ooの窒素ガスと接触させて所定
量のアンモニアを吸着させた後、38000の窒素気流
中で加熱再生した場合の活性炭消耗量を示すものであっ
て、図示の通り、アンモニアを吸着させてから不活化活
性炭を加熱再生すれば、活性炭の消耗を防止することが
でき、アンモニア吸着量の増大について消耗防止効果も
増大する。
In other words, in Figure 1, activated carbon activated by adsorbing sulfuric acid (110 9/g activated carbon as adsorption amount S02) was used for dry desulfurization of boiler exhaust gas, so 150 oo of activated carbon containing 3% ammonia gas was used. This figure shows the amount of activated carbon consumed when a predetermined amount of ammonia is adsorbed by contact with nitrogen gas and then heated and regenerated in a nitrogen stream of 38,000 ml.As shown in the figure, after adsorbing ammonia, inactivated activated carbon If activated carbon is regenerated by heating, consumption of activated carbon can be prevented, and the effect of preventing consumption will also increase with respect to an increase in the amount of ammonia adsorption.

第2図は本発明の方法によって不活化活性炭を再生した
場合には、再生毎に活性炭のS02吸着量が増加する事
実を示すものであって、鴇の活性炭(粒径4柳)を吊し
た反応器に、1000ppmのS02と10%のH20
を含有する空気を120℃で5時間通過させて活性炭に
S02を硫酸として吸着させた後、3%のアンモニアを
含む150℃の窒素ガスを1時間通過させ、しかる後ア
ンモニアを吸着した不活化活性炭を38000の窒素気
流中で加熱再生し、この際脱離するS02より活性炭の
S02吸着量を測定し、再生された活性炭については上
記と同様にこれを不活化させて再生する操作を繰返した
場合の実験結果である。
Figure 2 shows the fact that when inactivated activated carbon is regenerated by the method of the present invention, the amount of S02 adsorbed by the activated carbon increases each time it is regenerated. In the reactor, 1000 ppm S02 and 10% H20
After passing air containing S02 at 120°C for 5 hours to adsorb S02 as sulfuric acid on activated carbon, nitrogen gas at 150°C containing 3% ammonia was passed for 1 hour, and then inactivated activated carbon adsorbed ammonia. When the activated carbon is heated and regenerated in a nitrogen stream of 38,000 yen, the amount of S02 adsorbed on the activated carbon is measured from the S02 desorbed at this time, and the regenerated activated carbon is inactivated and regenerated in the same manner as above. These are the experimental results.

次に本発明の再生方法を実施するのに適した再生装置の
一例を側断面図で示す第3図及び第4図にそって、本発
明方法を説明する。
Next, the method of the present invention will be explained with reference to FIGS. 3 and 4, which show a side sectional view of an example of a reproducing apparatus suitable for implementing the reproducing method of the present invention.

第3図及び第4図に於て、乾式脱硫に使用されて不活化
した炭素質吸着剤(以下、単に吸着剤という)は上部バ
ルブV,から移動床式再生器1に供給され、一旦貯留領
域2に蓄えられる。次いで不活化吸着剤は混合領域3に
流下し、ここでライン4から供給されるアンモニア含有
不活性ガスと接触する。この接触によって不活化吸着剤
に吸着されている硫酸の一部又は全部は、酸性硫酸アン
モニウム、硫酸アンモニウムなどのアンモニウム塩に変
換される。しかる後不活化吸着剤は加熱領域5内にほぼ
垂直に配置された複数本の伝熱管6内を下降する。この
際、加熱領域5内の伝熱管外側には、領域下部の入口か
ら上部の出口に向う加熱ガスがライン7を介して供給さ
れているので、伝熱管6内の不活化吸着剤は加熱ガスと
の間接的熱交換によって30000以上の再生温度に加
熱される。従って、不活化吸着剤が伝熱管6内を通過す
る間に、不活化吸着剤からS02、N2などが脱離し、
これら脱離ガスは吸着剤と共に、第3図の再生器では分
離領域8に下降する。既述した通り、不活化活性炭にア
ンモニウム塩の形で吸着したアンモニアの大部分は、伝
熱管内で再生温度に加熱されることにより窒素に分解さ
れるが、この分解が不充分である場合には、不活化吸着
剤から脱離したガス中にアンモニアが混入する。
In Figures 3 and 4, the carbonaceous adsorbent (hereinafter simply referred to as adsorbent) that has been inactivated and used for dry desulfurization is supplied to the moving bed regenerator 1 from the upper valve V, and is temporarily stored. Stored in area 2. The deactivated adsorbent then flows down into the mixing zone 3 where it comes into contact with the ammonia-containing inert gas supplied from line 4. Through this contact, part or all of the sulfuric acid adsorbed on the inactivated adsorbent is converted into ammonium salts such as acidic ammonium sulfate and ammonium sulfate. Thereafter, the inactivated adsorbent descends through a plurality of heat transfer tubes 6 arranged substantially vertically within the heating region 5. At this time, heated gas is supplied to the outside of the heat exchanger tube in the heating region 5 from the inlet at the lower part of the region to the outlet at the upper part via the line 7, so that the inactivated adsorbent in the heat exchanger tube 6 is heated by the heated gas. heated to a regeneration temperature of over 30,000°C by indirect heat exchange with Therefore, while the inactivated adsorbent passes through the heat transfer tube 6, S02, N2, etc. are desorbed from the inactivated adsorbent.
These desorbed gases, together with the adsorbent, descend into the separation zone 8 in the regenerator of FIG. As mentioned above, most of the ammonia adsorbed in the form of ammonium salt on inactivated activated carbon is decomposed into nitrogen by being heated to the regeneration temperature in the heat exchanger tube, but if this decomposition is insufficient, In this case, ammonia is mixed into the gas desorbed from the inactivated adsorbent.

それ故、アンモニアの混入が予想される場合には、第4
図の如く、伝熱管6を下降した吸着剤をNH3分解領域
9に供給し、ライン10から送られる窒素酸化物してア
ンモニアを窒素に分解してから、分離領域8に下降させ
る。分離領域8に於ては不活化吸着剤から脱離したガス
が不活化ガスに伴われてライン11に排出され、再生さ
れた吸着剤は下部バルブV2から再生器外に取出される
Therefore, if contamination with ammonia is expected,
As shown in the figure, the adsorbent that has descended through the heat exchanger tube 6 is supplied to the NH3 decomposition region 9, and the nitrogen oxides and ammonia sent from the line 10 are decomposed into nitrogen, and then the adsorbent is descended to the separation region 8. In the separation region 8, the gas desorbed from the inactivated adsorbent is discharged to the line 11 together with the inactivated gas, and the regenerated adsorbent is taken out of the regenerator from the lower valve V2.

尚、符号12は整流体を示す。また第3図、第4図に示
す例では、伝熱管6内に不活化吸着剤を流し、管外に加
熱ガスを流しているが、これを逆にして管内に加熱ガス
を流し、管外に不活化吸着剤を流しても差支えない。本
発明の再生方法は乾式排煙脱硫に使用されて不活化した
炭素質吸着剤すべてに適用可能であって、そうした炭素
質吸着剤には、活性炭、コークスなどの外、これらに五
酸化バナジウムなどの金属酸化物を担持させたものがあ
る。また本発明で使用されるアンモニアガスはこれ単味
で用いることができる外、第3図及び第4図に示す如く
、不活性ガスとの混合物の形で用いることもできる。さ
らに脱離ガスに注入する窒素酸化物は、アンモニアを接
触空気酸化するか、硝酸塩又は亜硝酸塩の分解などによ
って得ることが好ましく、脱離ガスへの注入に際しては
不活性ガスで希釈することを可とする。実施例 ボイラー排ガスの乾式脱硫に使用され、硫酸を吸着して
不活化した活性炭(吸着量S02として110の9/g
活性炭)を、5%のアンモニアガスを含む150oCの
窒素ガスと接触させ、吸着NH3/吸着S02のモル比
を0.6とした。
In addition, the code|symbol 12 shows a rectifier. In addition, in the examples shown in FIGS. 3 and 4, the inactivated adsorbent is flowed inside the heat transfer tube 6 and the heated gas is flowed outside the tube, but this is reversed and the heated gas is flowed inside the tube and the heated gas is flowed outside the tube. There is no problem in flowing an inactivated adsorbent into the tank. The regeneration method of the present invention is applicable to all inactivated carbonaceous adsorbents used in dry flue gas desulfurization, and such carbonaceous adsorbents include activated carbon, coke, etc., as well as vanadium pentoxide, etc. Some metal oxides are supported. Furthermore, the ammonia gas used in the present invention can be used alone or in the form of a mixture with an inert gas, as shown in FIGS. 3 and 4. Furthermore, nitrogen oxides to be injected into the desorption gas are preferably obtained by catalytic air oxidation of ammonia or decomposition of nitrates or nitrites, and when injected into the desorption gas, they can be diluted with an inert gas. shall be. Example Activated carbon used for dry desulfurization of boiler exhaust gas and inactivated by adsorbing sulfuric acid (adsorption amount S02: 9/g of 110)
The activated carbon) was contacted with nitrogen gas at 150oC containing 5% ammonia gas, and the molar ratio of adsorbed NH3/adsorbed S02 was set to 0.6.

しかる後この活性炭を窒素気流中で加熱し、再生活性炭
を得た。またこの加熱再生時に回収されるS02 19
.6%、C024.1%、日2044.7%、NH30
.6%、N231%の脱離ガスにNOを2%注入し、上
記の再生活性炭を8.17そ収容した反応器に温度30
000、流量1州従/時で供給したところ、反応器出口
でのNH3濃度は0.001%であった。
Thereafter, this activated carbon was heated in a nitrogen stream to obtain regenerated activated carbon. Also, S02 19 recovered during this heating regeneration
.. 6%, C024.1%, 2044.7%, NH30
.. 2% NO was injected into the desorption gas containing 6% N, 31% N2, and the reactor containing 8.17% of the above regenerated activated carbon was heated to a temperature of 30%.
000 at a flow rate of 1/hour, the NH3 concentration at the reactor outlet was 0.001%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は吸着NH3/吸着S02のモル比と活性炭の消
耗量との関係を示すグラフである。 第2図は活性炭の再生回数とS02吸着量との関係を示
すグラフである。第3図及び第4図は本発明方法を実施
するのに通した再生器の側断面図である。1・・・・・
・再生器、2・・・・・・貯留領域、3・・・・・・混
合領域、4・・…・アンモニア含有不活性ガスラィン、
5…・・・加熱領域、6・…・・伝熱賛、7・・…・加
熱ガスラィン、8・・・・・・分離領域、9・・・・・
・NH3分解領域、10・・・・・・窒素酸化物導入ラ
イン、11・・・・・・脱離ガスラィン、12・・・・
・・整流体。 第l図 第2図 第3図 第4図
FIG. 1 is a graph showing the relationship between the molar ratio of adsorbed NH3/adsorbed S02 and the amount of consumed activated carbon. FIG. 2 is a graph showing the relationship between the number of times activated carbon is regenerated and the amount of S02 adsorbed. 3 and 4 are side sectional views of a regenerator through which the method of the present invention may be carried out. 1...
・Regenerator, 2...Storage area, 3...Mixing area, 4...Ammonia-containing inert gas line,
5... Heating area, 6... Heat transfer support, 7... Heating gas line, 8... Separation area, 9...
・NH3 decomposition area, 10... Nitrogen oxide introduction line, 11... Desorption gas line, 12...
...Fluid regulation. Figure l Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 乾式脱硫法に使用されて不活化した炭素質吸着剤を
、不活性ガス雰囲気中で加熱再生する方法に於て、不活
化吸着剤の加熱再生に先立ち、不活化吸着剤を予めアン
モニアガスと接触させて不活化吸着剤に吸着されている
硫酸の少なくとも一部をアンモニウム塩に変換させ、し
かる後その吸着剤を不活性ガス雰囲気中で加熱すること
を特徴とする脱硫用炭素質吸着剤の再生法。 2 移動床式再生器の上流域で、アンモニアガスと不活
性ガスとの混合ガスと不活化吸着剤を接触させ、前記再
生器の中流域で不活化吸着剤を加熱ガスとの間接的熱交
換で再生温度に加熱し、前記再生器の下流域で不活化吸
着剤からの脱離ガスを再生吸着剤から分離することを特
徴とする特許請求の範囲第1項記載の再生法。 3 移動床再生器の下流域で、不活化吸着剤からの脱離
ガスを再生吸着剤から分離するに先立ち、脱離ガス中に
窒素酸化物を注入して再生吸着剤を接触させ、脱離ガス
中のアンモニアを窒素に分解することを特徴とする特許
請求の範囲第2項記載の再生法。
[Scope of Claims] 1. In a method of heating and regenerating a carbonaceous adsorbent that has been inactivated by use in a dry desulfurization method in an inert gas atmosphere, prior to heating and regenerating the inactivated adsorbent, inactivation adsorption is performed. Desulfurization characterized by contacting the agent with ammonia gas in advance to convert at least a portion of the sulfuric acid adsorbed on the inert adsorbent into ammonium salt, and then heating the adsorbent in an inert gas atmosphere. Regeneration method of carbonaceous adsorbent for use. 2. In the upstream region of the moving bed regenerator, the mixed gas of ammonia gas and inert gas is brought into contact with the inactivated adsorbent, and in the middle region of the regenerator, the inactivated adsorbent is subjected to indirect heat exchange with the heated gas. 2. The regeneration method according to claim 1, wherein the deactivated adsorbent is heated to a regeneration temperature in the downstream region of the regenerator, and the desorbed gas from the regenerated adsorbent is separated from the regenerated adsorbent. 3 In the downstream region of the moving bed regenerator, before separating the desorbed gas from the inactivated adsorbent from the regenerated adsorbent, nitrogen oxides are injected into the desorbed gas to bring it into contact with the regenerated adsorbent, and the desorbed gas is The regeneration method according to claim 2, characterized in that ammonia in the gas is decomposed into nitrogen.
JP54143033A 1979-11-05 1979-11-05 Regeneration method of carbonaceous adsorbent for desulfurization Expired JPS6034414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54143033A JPS6034414B2 (en) 1979-11-05 1979-11-05 Regeneration method of carbonaceous adsorbent for desulfurization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54143033A JPS6034414B2 (en) 1979-11-05 1979-11-05 Regeneration method of carbonaceous adsorbent for desulfurization

Publications (2)

Publication Number Publication Date
JPS5667541A JPS5667541A (en) 1981-06-06
JPS6034414B2 true JPS6034414B2 (en) 1985-08-08

Family

ID=15329339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54143033A Expired JPS6034414B2 (en) 1979-11-05 1979-11-05 Regeneration method of carbonaceous adsorbent for desulfurization

Country Status (1)

Country Link
JP (1) JPS6034414B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150421A (en) * 1980-04-23 1981-11-20 Hitachi Ltd Cleaning of waste gas

Also Published As

Publication number Publication date
JPS5667541A (en) 1981-06-06

Similar Documents

Publication Publication Date Title
Knoblauch et al. Application of active coke in processes of SO2-and NOx-removal from flue gases
US4210628A (en) Removal of nitrogen oxides
US6610264B1 (en) Process and system for desulfurizing a gas stream
CA2193638C (en) Exhaust gas treating systems
JPH0153086B2 (en)
JPS5911329B2 (en) How to remove nitrogen oxides and sulfur oxides from exhaust gas
US4070305A (en) Process for regenerating catalyst
US5489421A (en) Process for preparing hydroxylamine from NOx -containing flue gases
JPS6317488B2 (en)
US6106791A (en) Exhaust gas treating systems
US6814948B1 (en) Exhaust gas treating systems
JPH0154089B2 (en)
JPS6034414B2 (en) Regeneration method of carbonaceous adsorbent for desulfurization
CN112295354B (en) Regulation and control method for inhibiting SRG flue gas crystallization
TW201838707A (en) Process for the removal of sulphur oxides and nitrogen oxides contained in off-gas from an industrial plant
CA2118120C (en) Process and apparatus for recovering sulphur from a gas stream containing hydrogen sulphide
CA2828440A1 (en) Process and plant for the removal of nitrogen oxides from oxygen-containing gas streams
EP0514941A1 (en) Process for the separation of sulphur oxides from offgases
JPS5841893B2 (en) Hiengasu Shiyorihouhou
JPS6034412B2 (en) Reactivation method for carbonaceous adsorbent for desulfurization
JP3807634B2 (en) Carbonaceous catalyst regeneration method and regenerator
JPS6034413B2 (en) Method for regenerating carbonaceous adsorbent used for flue gas treatment
JPH0153568B2 (en)
JPH0433492B2 (en)
JPH0659408B2 (en) Regeneration method of desulfurization carbonaceous catalyst