JPS6034413B2 - Method for regenerating carbonaceous adsorbent used for flue gas treatment - Google Patents

Method for regenerating carbonaceous adsorbent used for flue gas treatment

Info

Publication number
JPS6034413B2
JPS6034413B2 JP54103397A JP10339779A JPS6034413B2 JP S6034413 B2 JPS6034413 B2 JP S6034413B2 JP 54103397 A JP54103397 A JP 54103397A JP 10339779 A JP10339779 A JP 10339779A JP S6034413 B2 JPS6034413 B2 JP S6034413B2
Authority
JP
Japan
Prior art keywords
adsorbent
exhausted
ammonia
gas
moving bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54103397A
Other languages
Japanese (ja)
Other versions
JPS5628642A (en
Inventor
慎一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP54103397A priority Critical patent/JPS6034413B2/en
Publication of JPS5628642A publication Critical patent/JPS5628642A/en
Publication of JPS6034413B2 publication Critical patent/JPS6034413B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 本発明はイオゥ酸化物含有排ガスとの接触によって疲弊
した炭素質吸着剤の再生方法に関するものであって、さ
らに詳しくは疲弊吸着剤の再生時に副生される比較的高
濃度の二酸化ィオウガスを、三酸化イオウ及びアンモニ
アが実質的に含まれない状態で回収すると共に、疲弊吸
着剤を排ガス処理に再使用できる状態に再生する方法に
係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regenerating a carbonaceous adsorbent that has been exhausted by contact with exhaust gas containing sulfur oxides, and more specifically relates to a method for regenerating a carbonaceous adsorbent that has been exhausted by contact with a sulfur oxide-containing exhaust gas. The present invention relates to a method for recovering concentrated sulfur dioxide gas in a state substantially free of sulfur trioxide and ammonia, and regenerating exhausted adsorbents to a state where they can be reused for exhaust gas treatment.

ィオウ酸化物を含有する排ガスにアンモニアを注入混合
し、これを活性炭で代表される炭素質吸着剤と接触させ
る排煙処理方法は、排ガスからィオウ酸化物を効果的に
除去できるばかりでなく、排ガス中に窒素酸化物が共存
している場合には、この窒素酸化物をも同時に除去でき
る利点を有している。
A flue gas treatment method in which ammonia is injected and mixed into flue gas containing sulfur oxides and brought into contact with a carbonaceous adsorbent such as activated carbon not only effectively removes sulfur oxides from flue gases, but also When nitrogen oxides coexist therein, it has the advantage that these nitrogen oxides can also be removed at the same time.

この場合、排ガス中のィオウ酸化物は硫酸、酸性硫酸ア
ンモニウム、硫酸アンモニウムなどとして炭素質吸着剤
に吸着され、一方窒素酸化物は還元剤としてのアンモニ
アの作用で窒素と水に分解される。それ故、この排煙処
理法で使用される炭素質吸着剤は、排ガスとの接触時間
の経過と共に硫酸乃至は硫酸塩などが吸着剤表面に蓄積
するため次第に疲弊するが、こうした疲弊吸着剤は適当
な時期にこれを加熱再生すれば、上記の排煙処理に再使
用することができる。そしてこの加熱再生時には、比較
的高濃度の二酸化ィオゥガスが得られ、このガスからは
硫酸乃至はィオウを回収することができる。しかしなが
ら、従来の加熱再生法で副生される比較的高濃度の二酸
化ィオウガスは、三酸化ィオウやアンモニアを同伴して
いる点で問題なしとはしない。すなわち、従来採用され
ている加熱再生法は、疲弊吸着剤を通常300〜650
o0の昇温下に不活性ガスと接触させる方法であって、
この接触により疲弊吸着剤上の硫酸、硫酸塩及びアンモ
ニアは、大凡次式の如く分解して疲弊吸着剤は再生され
る。
In this case, sulfur oxides in the exhaust gas are adsorbed on the carbonaceous adsorbent as sulfuric acid, acidic ammonium sulfate, ammonium sulfate, etc., while nitrogen oxides are decomposed into nitrogen and water by the action of ammonia as a reducing agent. Therefore, the carbonaceous adsorbent used in this flue gas treatment method gradually becomes exhausted as sulfuric acid or sulfate accumulates on the surface of the adsorbent over time of contact with the flue gas. If this is heated and regenerated at an appropriate time, it can be reused for the above-mentioned flue gas treatment. During this heating and regeneration, sulfur dioxide gas with a relatively high concentration is obtained, and sulfuric acid or sulfur can be recovered from this gas. However, the relatively high concentration of sulfur dioxide gas produced as a by-product in the conventional thermal regeneration method is not without problems in that it also accompanies sulfur trioxide and ammonia. That is, in the conventional heating regeneration method, the exhausted adsorbent is usually heated to 300 to 650
A method of contacting with an inert gas at an elevated temperature of o0,
Through this contact, sulfuric acid, sulfate, and ammonia on the exhausted adsorbent are decomposed as shown in the following equation, and the exhausted adsorbent is regenerated.

24S04十C→ 交02十C02十2L
O洲&HS04→ NH3十$02十N2十母
L03(NH,)2S04→ 4NH3十$02十
N2十母L02/刈日3十(0)※一 1
ノ洲2十比0※吸着剤表面弐酸素を意味するそしてこれ
らの分解生成物は不活性ガスによって吸着剤からパージ
されるので、比較的高濃度(約25〜30%程度)の二
酸化ィオウが副生される訳であるが、上記の分解反応式
からも明らかな通り、この副生ガス中にはアンモニアが
同伴される外、二酸化ィオウまで還元されない三酸化ィ
オウが二酸化ィオゥ1容量当り0.001〜0.01容
程度同伴される。
24S040C → 020C0212L
Ozu & HS04 → NH30$020N20mother L03 (NH,)2S04→ 4NH30$020N20mother L02/Karihi 30(0)*1 1
Nosu 20 ratio 0 *means nitric oxide on the surface of the adsorbent.These decomposition products are purged from the adsorbent by an inert gas, so a relatively high concentration (approximately 25-30%) of sulfur dioxide is produced. As is clear from the decomposition reaction equation above, this byproduct gas not only contains ammonia but also contains 0.0% sulfur trioxide, which is not reduced to sulfur dioxide, per volume of sulfur dioxide. About 0.001 to 0.01 volume is accompanied.

それ故、この種の副生ガスから硫酸乃至はィオゥを回収
せんとした場合には、アンモニア及び三酸化ィオウに起
因する回収装置の閉塞や製品純度の低下を覚悟しなけれ
ばならない。本発明は疲弊吸着剤の再生時に副生される
比較的高濃度の二酸化ィオウガスを、三酸化ィオウ及び
アンモニアが実質的に含まれない状態で回収すると共に
、疲弊吸着剤を排ガス処理に再使用できる状態に再生す
る方法を提供する。尚、疲弊吸着剤を加熱再生しながら
、再生時に副生される比較的高濃度の二酸化ィオウガス
から三酸化ィオウを除去する方法は、特開昭52−10
9491号公報に記載されているが、この方法は疲弊吸
着剤の加熱媒体として砂などを利用している点並びに再
生時の副生ガス中にアンモニアが含まれていない点で本
発明と峻別される。
Therefore, when attempting to recover sulfuric acid or sulfur from this type of by-product gas, one must be prepared for clogging of the recovery equipment and reduction in product purity due to ammonia and sulfur trioxide. The present invention enables the recovery of relatively high-concentration sulfur dioxide gas, which is produced as a by-product during the regeneration of exhausted adsorbents, in a state substantially free of sulfur trioxide and ammonia, and allows the exhausted adsorbents to be reused for exhaust gas treatment. Provide a way to play to the state. A method for removing sulfur trioxide from the relatively high concentration sulfur dioxide gas produced by-product during regeneration while regenerating the exhausted adsorbent by heating is disclosed in Japanese Patent Application Laid-Open No. 52-10.
This method is clearly distinguished from the present invention in that sand or the like is used as a heating medium for the exhausted adsorbent and that ammonia is not included in the by-product gas during regeneration. Ru.

また特開昭52−71373号公報及び同52一688
58号公報には、排ガス中のアンモニアを共存する酸素
で接触分解する(小H3十3Q→が2十細20)方法が
記載されているが、本発明で疲弊吸着剤の再生時に副生
される比較的高濃度の二酸化ィオゥガス中には、殆んど
酸素が含まれていない点で、本発明は上記のアンモニア
分解法とも相違する。而して本発明に係る疲弊炭素費吸
着剤の再生方法は、【a}前記の疲弊吸着剤を上下2段
の移動床として流下させ、【b}上段の移動床では後述
する第1ガス流と疲弊吸着剤とを約150〜35000
の温度で接触させて、第1ガス流中の三酸化ィオウとア
ンモニアを疲弊吸着剤に捕捉させ、三酸化ィオウとアン
モニアを実質的に含まず、比較的高濃度で二酸化ィオウ
を含有する第2ガス流を当該移動床から回収すると共に
、三酸化ィオウとアンモニアを捕捉した疲弊吸着剤を下
段の移動床に移行させ、‘cー下段の移動床では前記の
疲弊吸着剤を約300〜650℃の昇温下に不活性ガス
と接触させて、疲弊吸着剤を再生すると共にこの再生時
に解放される二酸化イオウ、三酸化イオウ及びアンモニ
アなどを前記の不活性ガスで吸着剤からパージしてこの
ガス流を当該移動床の上部から取り出し、側下段の移動
床の上部から取り出されたガス流を前記の第1ガス流と
して上段の移動床に供給し、再生された吸着剤を下段の
移動床の底部から回収する、ことを特徴とする。
Also, JP-A-52-71373 and JP-A-52-688
Publication No. 58 describes a method of catalytically decomposing ammonia in exhaust gas with coexisting oxygen (small H303Q→20 fine 20). The present invention also differs from the ammonia decomposition method described above in that the relatively high concentration iogas contains almost no oxygen. Therefore, the method for regenerating an exhausted carbon cost adsorbent according to the present invention is as follows: [a] The exhausted adsorbent is caused to flow down as two upper and lower moving beds, and [b] The upper moving bed has a first gas flow as described below. and the fatigue adsorbent, about 150 to 35,000
to cause the sulfur trioxide and ammonia in the first gas stream to be captured by the exhausted adsorbent, and to form a second gas stream substantially free of sulfur trioxide and ammonia and containing a relatively high concentration of sulfur dioxide. A gas stream is withdrawn from the moving bed and the exhausted adsorbent, which has captured sulfur trioxide and ammonia, is transferred to the lower moving bed where the exhausted adsorbent is heated at about 300-650°C. The exhausted adsorbent is regenerated by contacting it with an inert gas at an elevated temperature of The gas stream taken from the top of the lower moving bed is fed as the first gas stream to the upper moving bed, and the regenerated adsorbent is transferred to the lower moving bed. It is characterized by being collected from the bottom.

すなわち、本発明は疲弊炭素質吸着剤の再生時に副生さ
れる第1ガス流を、再生時の疲弊炭素質吸着剤と温度約
150〜35ぴ○で接触せしめれば、第1ガス流中で二
酸化ィオウと混在する三酸化ィオウとアンモニアが、次
式によって疲弊炭素質吸着剤に捕捉されるという性質を
利用する。
That is, in the present invention, if the first gas stream by-produced during the regeneration of the exhausted carbonaceous adsorbent is brought into contact with the exhausted carbonaceous adsorbent during the regeneration at a temperature of about 150 to 35 pi The property that sulfur trioxide and ammonia mixed with sulfur dioxide are captured by the exhausted carbonaceous adsorbent according to the following equation is utilized.

S03十日20→日2S04 NH3十日2S04→NH4HS04 NH3十NH4HS04→(NH4)2S04この場合
、第1ガス流中のアンモニアを橘集するのに必要な硫酸
量は、第1ガス流と疲弊吸着剤との接触温度にも依存す
るが、一般にアンモニア1モル当り0.5〜1モルの、
好ましくは1〜2モルの硫酸を必要とする。
S03 Toka 20 → Sun 2S04 NH3 Toka 2S04 → NH4HS04 NH3 Ten NH4HS04 → (NH4)2S04 In this case, the amount of sulfuric acid required to collect the ammonia in the first gas flow is the sum of the first gas flow and exhaustion adsorption. Although it depends on the contact temperature with the agent, generally 0.5 to 1 mol per mol of ammonia.
Preferably 1 to 2 moles of sulfuric acid are required.

しかし、この硫酸量は移動床として流下する疲弊吸着剤
の移動量を調節することによって容易にこれを維持する
ことができる。進んで添付図面にそって本発明をさらに
具体的に説明する。
However, this amount of sulfuric acid can be easily maintained by adjusting the amount of exhausted adsorbent flowing down as a moving bed. The present invention will now be described in more detail with reference to the accompanying drawings.

アンモニアを注入したィオウ酸化物含有排ガスとの薮触
によって疲弊した炭素質吸着剤は、再生器1の頂部バル
ブV,を介して再生器内に供給される。再生器内では疲
弊吸着剤が上下2段の移動床として流下し、上段の移動
床2に於て疲弊吸着剤はライン8を介して下段の移動床
から送られる第1ガス流と温度約150〜300こ0で
接触する。この接触によって第1ガス流中の三酸化ィオ
ウとアンモニアは硫酸乃至は硫酸塩として疲弊吸着剤に
捕捉される。三酸化ィオゥとアンモニアを捕捉した疲弊
吸着剤は、上段の移動床2から下段の移動床に移行し、
ライン3から供給される不活性ガスと接触しながら複数
本の伝熱管4内を流下する。伝熱管4は加熱領域5内に
ほぼ垂直に配置され、この加熱領域にはライン6を流れ
る加熱ガスが供給される。伝熱管内を流下する不活性ガ
スと疲弊吸着剤は、加熱ガスとの間接的熱交換によって
約300〜650こ○の再生温度に加熱され、これによ
って疲弊吸着剤は二酸化ィオウ、三酸化ィオウ及びアン
モニアなどを放って再生されると共に、二酸化ィオウ、
三酸化ィオウ及びアンモニアなどは不活性ガスによって
再生吸着剤からパージされる。次いで再生吸着剤は不活
性ガスなどと共に分離領域7に下降し、この領域で二酸
化ィオウ、三酸化ィオウ及びアンモニアを同伴した不活
性ガスが再生吸着剤から分離され、この再生吸着剤は分
離領域7の底部に設けたバルブV2を経て再生器外に取
り出され、排ガスとの接触に再使用される。一方、再生
吸着剤から分離されたガス流は、分離領域7の上部から
ライン8を経て上段の移動床2に回送され、ここに於て
ガス流中の三酸化ィオゥ及びアンモニアは疲弊吸着剤に
捕捉されるので、移動床2の上部からは実質的に三酸化
ィオウとアンモニアを含まない比較的高濃度の二酸化イ
オウガスをライン10に取り出すことができる。尚、図
中の符号9は整流体を示す。以上の述べて来たところか
ら明らかな通り、本発明の方法によれば、排ガスとの接
触によって疲弊した炭素質吸着剤を再使用可能な状態に
再生できるばかりでなく、再生時に副生される比較的高
濃度の二酸化ィオウを、三酸化ィオゥやアンモニアが含
まれない状態で回収できるので、当該副生ガスを硫酸回
収又はィオゥ回収の各装置に供給しても、装置が閉塞す
る庭れがなく、また製品純度が低下する心配もない。
The carbonaceous adsorbent exhausted by contact with the sulfur oxide-containing exhaust gas injected with ammonia is fed into the regenerator through the top valve V of the regenerator 1. In the regenerator, the exhausted adsorbent flows down as moving beds in two stages, upper and lower. Contact at ~300k0. This contact traps the sulfur trioxide and ammonia in the first gas stream in the form of sulfuric acid or sulfate on the exhausted adsorbent. The exhausted adsorbent that has captured sulfur trioxide and ammonia moves from the upper moving bed 2 to the lower moving bed,
It flows down through the plurality of heat transfer tubes 4 while coming into contact with the inert gas supplied from the line 3. The heat exchanger tubes 4 are arranged approximately vertically in a heating region 5, which heating region is supplied with heating gas flowing in a line 6. The inert gas and exhausted adsorbent flowing down in the heat exchanger tube are heated to a regeneration temperature of about 300 to 650 degrees by indirect heat exchange with the heated gas, whereby the exhausted adsorbent becomes sulfur dioxide, sulfur trioxide, and In addition to being regenerated by releasing ammonia, etc., sulfur dioxide,
Sulfur trioxide, ammonia, etc. are purged from the regenerated adsorbent by an inert gas. Next, the regenerated adsorbent descends to the separation region 7 together with the inert gas, and in this region, the inert gas accompanied by sulfur dioxide, sulfur trioxide, and ammonia is separated from the regenerated adsorbent. It is taken out of the regenerator through a valve V2 provided at the bottom of the regenerator, and is reused for contact with exhaust gas. On the other hand, the gas stream separated from the regenerated adsorbent is sent from the top of the separation zone 7 via line 8 to the upper moving bed 2, where the sulfur trioxide and ammonia in the gas stream are transferred to the exhausted adsorbent. Since the sulfur dioxide gas is trapped, a relatively high concentration of sulfur dioxide gas, which is substantially free of sulfur trioxide and ammonia, can be taken out from the upper part of the moving bed 2 into the line 10. In addition, the code|symbol 9 in a figure shows a rectifier. As is clear from the above, according to the method of the present invention, not only can the carbonaceous adsorbent exhausted by contact with exhaust gas be regenerated into a reusable state, but also the carbonaceous adsorbent that is Relatively high concentrations of sulfur dioxide can be recovered in a state that does not contain sulfur trioxide or ammonia, so even if the byproduct gas is supplied to sulfuric acid recovery or sulfur recovery equipment, there is no need to worry about garden debris clogging the equipment. There is no need to worry about deterioration of product purity.

実施例 1 活性炭g当り硫酸165の夕を吸着した活性炭を内径1
02柳、有効充填高さ1000肋の向流形移動床吸着器
に充填し、S0215%、弦030%、C029%、S
030.08%、NH30.2%、N245.72%の
高濃度S02ガスを反応温度270oo、流量刈れ/時
で供給した。
Example 1 Activated carbon that adsorbed 165 sulfuric acid per g of activated carbon was
02 willow, packed in a counter-current moving bed adsorber with an effective filling height of 1000 ribs, S0215%, Chord 030%, C029%, S
Highly concentrated S02 gas containing 030.08%, NH30.2%, and N2 45.72% was supplied at a reaction temperature of 270 oo and a flow rate of 1 hour.

この時の触媒の吸着器内での滞留時間を3斑時間と設定
した。吸着器出口ガス中のNH3及びS03を分析した
所、NH3の濃度は0.0003%、S03は検出され
なかった。尚、各ガス濃度は湿基準表示である。実施例
2 図面に示した再生器に、ボイラー排ガスの脱硫・脱硝に
使用された活性炭(SO葦‐吸着量107の9/g活性
炭、N比+吸着量11.8の9/g活性炭)を223k
9/時で供給して再生した。
At this time, the residence time of the catalyst in the adsorber was set to 3 hours. When NH3 and S03 in the adsorber outlet gas were analyzed, the concentration of NH3 was 0.0003% and S03 was not detected. Note that each gas concentration is expressed on a wet basis. Example 2 Activated carbon used for desulfurization and denitrification of boiler exhaust gas (SO reed - 9/g activated carbon with an adsorption amount of 107, N ratio + 9/g activated carbon with an adsorption amount of 11.8) was added to the regenerator shown in the drawing. 223k
It was supplied and regenerated at 9/hour.

伝熱管内での活性炭の滞留時間は1加持間とし、最終的
に得られる再生活性炭の温度を400℃とした。また、
ライン3からの不活性ガスの供給量は3側め/時とした
。この時、ライン8に得られる脱着ガスの組成は、S〇
210‐0%、C〇28‐8%、C〇〇.5%、日2〇
32‐3%、S030.05%、NH30.30%、N
248.05%であり、ガス量は5洲で/時であった。
このガスを再生器の上段の移動床2(活性炭充填容積0
.232の)に通過させた。その結果、ラィン10‘こ
出るガス中のNH3は0.0002%、S03は検出さ
れなかった。尚、各ガス濃度は、湿基準表示である。
The residence time of the activated carbon in the heat transfer tube was 1 period, and the temperature of the regenerated activated carbon finally obtained was 400°C. Also,
The amount of inert gas supplied from line 3 was 3/hour. At this time, the composition of the desorption gas obtained in line 8 is S〇210-0%, C〇28-8%, C〇〇. 5%, 2032-3%, S030.05%, NH30.30%, N
It was 248.05%, and the gas amount was 5 s/hour.
This gas is transferred to the upper moving bed 2 of the regenerator (activated carbon filling volume 0
.. 232). As a result, NH3 in the gas leaking out from line 10' was 0.0002%, and S03 was not detected. Note that each gas concentration is expressed on a wet basis.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施に通した再生器の縦断面図である。 The drawing is a longitudinal cross-sectional view of a regenerator through which the invention is implemented.

Claims (1)

【特許請求の範囲】[Claims] 1 アンモニアを注入したイオウ酸化物含有排ガスとの
接触によつて疲弊した炭素質吸着剤を再生する方法に於
て、(a)前記の疲弊吸着剤を上下2段の移動床として
流下させ、(b)上段の移動床では後述する第1ガス流
と疲弊吸着剤とを約150〜350℃の温度で接触させ
て、第1ガス流中の三酸化イオウとアンモニアを疲弊吸
着剤に捕捉させ、三酸化イオウとアンモニアを実質的に
含まず、比較的高濃度で二酸化イオウを含有する第2ガ
ス流を当該移動床から回収すると共に、三酸化イオウと
アンモニアを捕捉した疲弊吸着剤を下段の移動床に移行
させ、(c)下段の移動床では前記の疲弊吸着剤を約3
00〜650℃の昇温下に不活性ガスと接触させて、疲
弊吸着剤を再生すると共にこの再生時に解放される二酸
化イオウ、三酸化イオウ及びアンモニアなどを前記の不
活性ガスで吸着剤からパージしてこのガス流を当該移動
床の上部から取り出し、(d)下段の移動床の上部から
取り出されたガス流を前記の第1ガス流として上段の移
動床に供給し、再生された吸着剤を下段の移動床の底部
から回収することを特徴とする疲弊炭素質吸着剤の再生
方法。
1. In a method for regenerating a carbonaceous adsorbent that has been exhausted by contact with a sulfur oxide-containing exhaust gas injected with ammonia, (a) the exhausted adsorbent is caused to flow down as a two-stage moving bed, ( b) in the upper moving bed, a first gas stream described below and an exhausted adsorbent are brought into contact at a temperature of about 150 to 350°C, and sulfur trioxide and ammonia in the first gas stream are captured by the exhausted adsorbent; A second gas stream substantially free of sulfur trioxide and ammonia and containing a relatively high concentration of sulfur dioxide is withdrawn from the moving bed, and the exhausted adsorbent having captured sulfur trioxide and ammonia is transferred to the lower stage. (c) In the lower moving bed, about 30% of the exhausted adsorbent was
The exhausted adsorbent is regenerated by bringing it into contact with an inert gas at an elevated temperature of 00 to 650°C, and sulfur dioxide, sulfur trioxide, ammonia, etc. released during this regeneration are purged from the adsorbent with the inert gas. and (d) supplying the gas stream taken out from the top of the lower moving bed as the first gas stream to the upper moving bed to remove the regenerated adsorbent. A method for regenerating exhausted carbonaceous adsorbent, which comprises recovering the carbonaceous adsorbent from the bottom of a lower moving bed.
JP54103397A 1979-08-14 1979-08-14 Method for regenerating carbonaceous adsorbent used for flue gas treatment Expired JPS6034413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54103397A JPS6034413B2 (en) 1979-08-14 1979-08-14 Method for regenerating carbonaceous adsorbent used for flue gas treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54103397A JPS6034413B2 (en) 1979-08-14 1979-08-14 Method for regenerating carbonaceous adsorbent used for flue gas treatment

Publications (2)

Publication Number Publication Date
JPS5628642A JPS5628642A (en) 1981-03-20
JPS6034413B2 true JPS6034413B2 (en) 1985-08-08

Family

ID=14352918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54103397A Expired JPS6034413B2 (en) 1979-08-14 1979-08-14 Method for regenerating carbonaceous adsorbent used for flue gas treatment

Country Status (1)

Country Link
JP (1) JPS6034413B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030135A (en) * 2008-11-28 2012-02-16 J-Power Entech Inc Regeneration tower for apparatus for dry discharge-gas treatment

Also Published As

Publication number Publication date
JPS5628642A (en) 1981-03-20

Similar Documents

Publication Publication Date Title
EP1308198B1 (en) Mercury removal method and system
CA2193638C (en) Exhaust gas treating systems
JPH0230290B2 (en)
JP2501716B2 (en) How to regenerate spent sulfuric acid
JPH0476727B2 (en)
JPS5845101A (en) Method of reducing total sulfur content of charge gas having high carbon dioxide content
JPS6317488B2 (en)
US5489421A (en) Process for preparing hydroxylamine from NOx -containing flue gases
JPS60220123A (en) Removal of sulfur compound from exhaust gas
JPH0154089B2 (en)
JPS6034413B2 (en) Method for regenerating carbonaceous adsorbent used for flue gas treatment
EP0375077B1 (en) Removing hydrogen sulphide from a gas mixture
CA2069267C (en) Process for the separation of sulphur oxides from offgases
US4855117A (en) Process for removing sulfur oxides from a gas by means of an absorption mass regenerable by reaction with elemental sulfur
CA2118120C (en) Process and apparatus for recovering sulphur from a gas stream containing hydrogen sulphide
US4781903A (en) Process for removing sulfur oxides from a gas by means of an absorption mass regenerable by reaction with elemental sulfur
JP3807634B2 (en) Carbonaceous catalyst regeneration method and regenerator
JPH06210139A (en) Waste gas treatment
JPH05238706A (en) Production of sulfuric acid from dilute hydrogen sulfide
JPS6034414B2 (en) Regeneration method of carbonaceous adsorbent for desulfurization
JPH0659408B2 (en) Regeneration method of desulfurization carbonaceous catalyst
JPS5841705A (en) Treatment of sulfur compound in gas
PL235604B1 (en) Method for desulfurization of gases
JPS6111654B2 (en)
JPS5936527A (en) Dry type stack gas desulfurization process