JPS6034222A - Electric discharge machine - Google Patents

Electric discharge machine

Info

Publication number
JPS6034222A
JPS6034222A JP14072483A JP14072483A JPS6034222A JP S6034222 A JPS6034222 A JP S6034222A JP 14072483 A JP14072483 A JP 14072483A JP 14072483 A JP14072483 A JP 14072483A JP S6034222 A JPS6034222 A JP S6034222A
Authority
JP
Japan
Prior art keywords
voltage
gap
discharge
output
inter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14072483A
Other languages
Japanese (ja)
Other versions
JPH0355250B2 (en
Inventor
Tetsuro Ito
哲朗 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14072483A priority Critical patent/JPS6034222A/en
Publication of JPS6034222A publication Critical patent/JPS6034222A/en
Publication of JPH0355250B2 publication Critical patent/JPH0355250B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • B23H1/022Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges for shaping the discharge pulse train

Abstract

PURPOSE:To improve the working efficiency by controlling the rising time of pulse voltage to be applied across an inter-pole gap on the basis of the output from an inter-pole state decision means between an electrode and work. CONSTITUTION:When applying proper pulse voltage across an electrode 10 and a work 14, the output from a counter 67 is provided through D/A converter 40 to an inverter amplifier 100 to be controlled by a pulse width pause width control circuit 18d thus to control a transistor Tr101. Here, the voltage to be applied across the poles is such that Vg=VBXt/REXC, where, the emitter voltage of Tr101 is VE, base voltage is VB, elasped time after application of pulse voltage is t and the capacitance of capacitor 102 is C. The gradient of inter-pole applying voltage per unit time dV/dt is varied on the basis of the output from an abnormal state detection/decision circuit such that under bad inter-pole state, it is rised slowly to suppress discharge thus to prevent concentrated discharge while under good state, it is rised quickly to promote discharge resulting in improvement of working efficiency.

Description

【発明の詳細な説明】 本発明は放電加工装置、特に電極と被加工物とを絶縁性
加工液を介在させて対向させ、その極間(1) 間隙内に放電を発生させて上記被加工物を加工する放電
加工装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric discharge machining apparatus, in particular, an electric discharge machining apparatus, in which an electrode and a workpiece are opposed to each other with an insulating machining liquid interposed therebetween, and an electric discharge is generated in the gap (1) between the machining electrodes to machine the workpiece. This invention relates to electrical discharge machining equipment for machining objects.

第1図には従来の放電加工装置の概要構成図が示されて
いる。第1図において、電5i10は加工槽12内に置
かれた被加工物14と絶縁性加工液J6を介して対向し
ている。電極10と被加工物14間には加工電源18が
接続されている。乙の加工電源18は直流電源18aと
、加工電流の断続を行なうためのスイッチング素子18
bと、電流制限抵抗18cと、上記スイッチング素子1
8bの断続を制御するための発振器18dとによって構
成され、加工電流を断続的に電fIi10と被加工物1
4との極間間隙20に供給する。
FIG. 1 shows a schematic configuration diagram of a conventional electric discharge machining apparatus. In FIG. 1, the electric current 5i10 faces the workpiece 14 placed in the processing tank 12 with an insulating processing fluid J6 interposed therebetween. A processing power source 18 is connected between the electrode 10 and the workpiece 14. The machining power supply 18 of B includes a DC power supply 18a and a switching element 18 for intermittent machining current.
b, the current limiting resistor 18c, and the switching element 1
8b, and an oscillator 18d for controlling the on/off of the machining current fIi10 and the workpiece 1.
4 and the gap 20 between the poles.

上記の加工電流■ば、■=−L−yL(Eは直流型源1
8aの電圧値、Rは電流制限抵抗18cの抵抗値、V9
は極間電圧値)の式であられされる。極間電圧値v9は
、アーク放電中は20〜30v1短絡時はOV1無放電
中ばEVとなり、スイッチング素子18bがオフ状態の
時はOvとなる。
The above machining current ■ is, ■=-L−yL (E is the DC type source 1
8a voltage value, R is the resistance value of current limiting resistor 18c, V9
is the voltage between electrodes). The interelectrode voltage value v9 is 20 to 30v1 during arc discharge, OV1 during short circuit, EV during no discharge, and Ov when switching element 18b is in the off state.

そこでこの極間電圧値v9を検出して平滑回路(2) 22で平均化すれば、この値で極間間隙制御を行なうこ
とができる。すなわち、極間間隙20が広い時は放電が
起りにくく平均電圧値Vsは高い。極間間隙20が狭い
時は短絡したり、容易に放電するため平均電圧値Vsは
低下する。従って、この平均電圧値Vsを基準電圧値V
tと比較して、この差を増幅器24で増幅して油圧サー
ボコイル26に入力すれば、油圧発生ポンプ2Bと油圧
シリンダ30とで構成される油圧サーボ機構によって、
極間間隙20がほぼ一定になるように電極10を制御す
ることができる。
Therefore, if this inter-electrode voltage value v9 is detected and averaged by the smoothing circuit (2) 22, the inter-electrode gap can be controlled using this value. That is, when the inter-electrode gap 20 is wide, discharge is difficult to occur and the average voltage value Vs is high. When the inter-electrode gap 20 is narrow, short circuits or discharges occur easily, resulting in a decrease in the average voltage value Vs. Therefore, this average voltage value Vs is set as the reference voltage value V
t, and if this difference is amplified by the amplifier 24 and inputted to the hydraulic servo coil 26, the hydraulic servo mechanism composed of the hydraulic pressure generation pump 2B and the hydraulic cylinder 30 generates
The electrodes 10 can be controlled so that the interpolar gap 20 is approximately constant.

従来の放電加工装置で加工状態の良否を判別する際、最
も一般的なのは上記の極間電圧値v9の平均電圧値Vs
IewA測することである。すなわち、平均電圧値Vs
が低い時は極間インピーダンスが低い場合であって、短
絡、連続的アーク放電とな9、極間間隙20には加工粉
やスラッジの滞留等が考えられる。しかし放電加工にお
いて最も危険な異常アーク放電は、一度発生すると加工
液の熱分解によるカーボン発生のために、カーボンと被
加工(3) 物との間の放電となり、極間インピーダンスが高くなっ
たような状態になる。このため平均電圧値Vsの観測で
は異常アーク放電による極間間隙状態悪化の検出は不可
能であるという欠点があった。
When determining whether the machining condition is good or bad with a conventional electrical discharge machining device, the most common method is to use the average voltage value Vs of the machining voltage value v9 mentioned above.
It is to measure IewA. That is, the average voltage value Vs
When is low, the inter-electrode impedance is low, and short circuits, continuous arc discharge, etc. may occur, and machining powder and sludge may remain in the inter-electrome gap 20. However, the most dangerous abnormal arc discharge in electric discharge machining is that once it occurs, carbon is generated due to thermal decomposition of the machining fluid, resulting in an electric discharge between the carbon and the workpiece (3), and the impedance between the electrodes becomes high. It becomes a state. Therefore, observation of the average voltage value Vs has the disadvantage that it is impossible to detect deterioration of the inter-electrode gap condition due to abnormal arc discharge.

本発明は前述した従来の課題に鑑み為されたものであり
、その目的は放電発生時の極間間隙放電電圧波形゛の周
波数スペクトル解析を行って正常放電と異常放電の判別
をし極間間隙状態が正常となるように極間印加電圧の時
間あたりの上昇度dV/dtを変化させ、異常となるに
従って上記上昇度を減少させて印加電圧の立上りをゆる
やかにし、放電の発生を困難として放電の集中を防ぐよ
うにした放電加工装置を提供する乙とにある。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to analyze the frequency spectrum of the discharge voltage waveform of the gap between poles when a discharge occurs, to distinguish between normal discharge and abnormal discharge, and to determine the gap between poles. The rate of rise dV/dt of the voltage applied between the electrodes per hour is changed so that the condition becomes normal, and as the condition becomes abnormal, the rate of rise is decreased to make the rise of the applied voltage gradual, making it difficult to generate a discharge. The company provides electric discharge machining equipment that prevents the concentration of

上記目的を達成するために、本発明は電極と被加工物と
を絶縁性加工液を介在させて対向させ、その対向間隙内
に放電を発生させて上記被加工物を加工する放電加工装
置において、電極と被加工物の間の放電電圧波形の周波
数スペクトルを分析し、異常放電状態と正常放電状態で
あるかを識別する異常放電検出手段と、上記分析によっ
て極間(4) 間隙状態に応じて信号を出力する極間状態判別手段と、
この判別手段の出力に基ずいて極間間隙に印加するパル
ス電圧の立上り時間の傾きを制御する制御手段とを備え
たことを特徴とする。
In order to achieve the above object, the present invention provides an electric discharge machining apparatus that machines the workpiece by arranging an electrode and a workpiece to face each other with an insulating machining liquid interposed therebetween, and generating electric discharge in the opposing gap. , an abnormal discharge detection means that analyzes the frequency spectrum of the discharge voltage waveform between the electrode and the workpiece and identifies whether it is an abnormal discharge state or a normal discharge state; an interpolation state determining means for outputting a signal;
The present invention is characterized by comprising a control means for controlling the slope of the rise time of the pulse voltage applied to the gap between the electrodes based on the output of the discrimination means.

以下、図面に基づいて本発明の好適な実施例を説明する
。第2図は本発明における検出原理を説明するための放
電電圧波形と、その周波数スペクトルを示すものであっ
て、無放電の際のように放電せずに単なる電圧パルスの
印加のみの場合には比較的容易に数式化でき、ちなみに
振幅E2周期T、パルス輻τの時のスペクトルは以下に
ように表わすことができる。(しかし、放電波形の場合
アトランダムであり式化は難しい。) ただし、ω=−八一 へ 第2図におけるスペクトル図はT=21の場合を例にし
て記載した。このスペクトル分布と放電状態かられかる
乙とは以下の項目である。
Hereinafter, preferred embodiments of the present invention will be described based on the drawings. Figure 2 shows a discharge voltage waveform and its frequency spectrum to explain the detection principle in the present invention. It can be expressed relatively easily, and the spectrum when the amplitude is E2, the period is T, and the pulse intensity is τ can be expressed as follows. (However, in the case of a discharge waveform, it is at random and is difficult to formulate.) However, the spectrum diagram in FIG. 2 for ω=−81 is described using the case of T=21 as an example. The following items can be determined from this spectral distribution and discharge state.

(1)いづれの状態のスペクトルであっても、周gll
T(5) の逆数にあたる周波数f。に高い出力を示す。ただし正
常放電の場合、他と比較してそのピーク値は低い。
(1) Regardless of the state of the spectrum, the surrounding gll
Frequency f is the reciprocal of T(5). shows high output. However, in the case of normal discharge, the peak value is low compared to others.

(2)アークに関連するような放電の場合、高周波fi
(約2M1(z以上)はほとんど存在せず正常放電の場
合200MH,付近にまで高周波成分が減衰しないで発
生している。
(2) In the case of discharges such as those related to arcs, high frequency fi
(Approximately 2M1 (above z) hardly exists, and in the case of normal discharge, high frequency components are generated up to around 200MH without attenuation.

(31foの時の出力が低く、flでの出力が十分あれ
ば正常放電しているとみなせる。
(If the output at 31fo is low and the output at fl is sufficient, it can be considered that normal discharge is occurring.

上記の結果より、(3)項のような状態にあることを判
別できれば放電状態の異常識別が可能となることがわか
る。
From the above results, it can be seen that if it can be determined that the state described in item (3) is present, abnormality in the discharge state can be identified.

第3図は、この実施例を示す概要図であって、基本的に
は周波数スペクトル分析器と同様の構成となっている。
FIG. 3 is a schematic diagram showing this embodiment, which basically has the same configuration as a frequency spectrum analyzer.

極間間隙の電圧信号F(t)は、FM変調蕗51の出力
信号Ht)と混合器によって混合されヘテロダイン検波
によって、F(t)とf(t)の和の周波数のうち中間
周波j (t)の周波数のみが取り出され差も出るが、
こればフィルターによって除去する中間周波数増幅N5
3により増幅され、検(6) 波型54により振幅分が検波されて低周波増幅器55に
よって増幅される。前述のFM変調晋51は、アナログ
電圧^すによって周波数変調されているので、このアナ
ログ電圧^νを時間に比例して変化させることにより時
間と周波数の関係が直線的となり、時間毎にF(t)の
うちのJ(t)の周波数分多いだけの周波数スペクトル
の振幅を低周波増幅器55の出力として取抄出すことが
できる。よってアナログ電圧^すが前記のfoSf、に
相当する電圧になる時間は正確な発振器56、及びこの
出力を数えていくカウンター57によって判別できる。
The voltage signal F(t) of the gap between the poles is mixed with the output signal Ht) of the FM modulation filter 51 by a mixer, and by heterodyne detection, an intermediate frequency j ( Only the frequency of t) is extracted and a difference is also produced, but
This is the intermediate frequency amplification N5 that is removed by the filter.
(6) The amplitude component is detected by the waveform 54 and amplified by the low frequency amplifier 55. The above-mentioned FM modulation signal 51 is frequency modulated by an analog voltage ^v, so by changing this analog voltage ^v in proportion to time, the relationship between time and frequency becomes linear, and F( It is possible to extract as the output of the low frequency amplifier 55 the amplitude of the frequency spectrum that is larger than the frequency of J(t) in t). Therefore, the time when the analog voltage ^ becomes a voltage corresponding to the aforementioned foSf can be determined by the accurate oscillator 56 and the counter 57 that counts the output.

581et toの判別器、59は輸の判別器である。581 is a classifier for etto, and 59 is a classifier for export.

カウンター57の内容はD/A変換@1i60によって
アナログ電圧^νとなり、前記FM変@@51を変調す
る。レベル比較@H61はfo判別器あるいはf、判別
器よりのタイミング信号に応答してそのタイミングにお
ける所定の基準値よりも低周波増幅された振幅、すなわ
ち周波数スペクトルが大か小かの判別をし、この結果に
基づいて異常放電の時は出力S^を出す。例えばfoが
3KIhfllが5MH,とする。また中間周波数10
.7MH2とすれば、f (t)が、10.693MH
z17)時ニf、が5,700 MH,17)時fHノ
各スベクトルが検出できる。FM変il器51が広帯域
のものであって、入力電圧Ovの時5MH2、IOVの
時10MH2のものとし、D/A変換が16bitタイ
プのものなら±80 H,程度の分解能のスペクトル分
析器となる。また、foに関しては常に加工の条件選択
の毎に変更されるのでfo−上下 (ただし、周期Tはオンタイムとオフタイムの和)の演
算制卸を行う必要がある。
The content of the counter 57 becomes an analog voltage ν by D/A conversion @1i60, which modulates the FM conversion @51. The level comparison @H61 responds to the timing signal from the fo discriminator or f discriminator and determines whether the amplitude amplified at a lower frequency, that is, the frequency spectrum, is larger or smaller than a predetermined reference value at that timing, Based on this result, an output S^ is output when an abnormal discharge occurs. For example, assume that fo is 3KIhfl is 5MH. Also, intermediate frequency 10
.. If it is 7MH2, f (t) is 10.693MH
z17) Time fH is 5,700 MH, 17) Time fH vector can be detected. If the FM converter 51 is of wide band type, 5 MH2 when the input voltage is Ov, 10 MH2 when the input voltage is IOV, and the D/A conversion is of 16 bit type, it is necessary to use a spectrum analyzer with a resolution of about ±80 H. Become. Further, since fo is always changed every time machining conditions are selected, it is necessary to perform calculation control of fo - up and down (however, the period T is the sum of on-time and off-time).

さて、上記出力SAについて、第4図のレベル比較器6
1の詳細説明図を用いてより詳しく説明する。低周波増
幅f!55の出力はアナログスイッチ62.63により
、各々fo判別とf、判別のタイミング以外に比較器6
4.65に接続されないようになっている。モしてN 
’b判別タイミングにおいて、スペクトル振幅鳩がvl
より大であると比較器64の出力は“INとなり、AN
Dゲート66を介してカウンター67をカウントアツプ
する。また、fH判別タイミングにおいて、上記voが
vlより(8) 大であると、比較器65の出力は“1″となり、AND
ゲート68を介してカウンタ67をリセットするので、
このカウンター67はf。タイミングでのスペクトル振
幅大の時内容が増加し、flタイミングでのvoが大の
時はただちにカウンタ内容が零になる。よって高周波成
分があれば零、’O酸成分大であると増加という状態を
くりかえすので、このカウンター内容をD/A変換器4
0を用いてアナログ電圧v6を観察する乙とによっても
、極間間隙状態の良否を判別できる。すなわち、voが
大であれば異常放電に近づいていることとなり、例えば
加工粉の滞留によって極間間隙スラッジがたまっている
とか、異常アークによって加工液16が熱分解してカー
ボンが発生しているとか、電極の一部が破損してそのか
けらが極間間隙20に存在するとか、等の不具合が賽易
に検出できる。
Now, regarding the above output SA, the level comparator 6 in FIG.
This will be explained in more detail using detailed explanatory diagram No. 1. Low frequency amplification f! The outputs of 55 are outputted by analog switches 62 and 63, respectively, to the comparator 6 in addition to the timing of fo discrimination and f discrimination.
4.65 is no longer connected. Do it N
At the 'b discrimination timing, the spectral amplitude pigeon is vl
If it is larger, the output of the comparator 64 will be “IN”, and the output of the comparator 64 will be “IN”,
Counter 67 is counted up via D gate 66. Further, at the fH determination timing, if the above vo is (8) larger than vl, the output of the comparator 65 becomes "1", and the AND
Since the counter 67 is reset via the gate 68,
This counter 67 is f. When the spectrum amplitude is large at the timing, the content increases, and when vo is large at the fl timing, the counter content immediately becomes zero. Therefore, if there is a high frequency component, the value becomes zero, and if the 'O acid component is large, the state increases.
It is also possible to determine whether the inter-electrode gap condition is good or bad by observing the analog voltage v6 using 0. In other words, if vo is large, it means that an abnormal discharge is approaching, and for example, sludge has accumulated in the gap between the poles due to the retention of machining powder, or carbon is generated due to thermal decomposition of the machining fluid 16 due to an abnormal arc. Problems such as a part of the electrode being damaged and its fragments being present in the interelectrode gap 20 can be easily detected.

しかしごく短時間であれば極間間隙状態は断えず変化し
ており、短時間前記のvoがあっても必ずしも極間間隙
状態が悪いとは判断できない。そこでディジタル1すp
グ変換@40の出力voの所定(9) 値以上の存在がある時間線いたことを検出して、極間間
隙状態の良否を判断する必要がある。
However, in a very short period of time, the state of the gap between the poles is constantly changing, and even if the above-mentioned vo exists for a short time, it cannot necessarily be determined that the state of the gap between the poles is bad. So digital 1sp
It is necessary to determine whether the state of the gap between the poles is good or not by detecting that there is a time line in which the output vo of the converter @40 has a predetermined (9) value or more.

第5図における電圧比較N148はディジタルアナログ
変換猪40の出力焉が所定値跳よりも大か小かを判別し
ている。V、>V、、になると、電圧比較N148の出
力は負となり、ペース抵抗150を介してスイッチング
用トランジスタ152をオフ状態にする。このため時間
計測用コンデンサ154は抵抗156を介して充電され
、コンデンサ154の両端電圧鴇は次式にょうにあられ
される一二虹 VJI = V41 (1−e、zp r2C/ )た
だし、r2は抵抗156の抵抗値 Cはコンデンサ154の賽量 tは時間 このコンデンサ1540両端電圧3−よ基準電圧Vと電
圧比較響158で比較される。%、>V2.の期間は電
圧比較N158の出力が負にならないため、発光ダイオ
ード160は点灯しない。モしてV。
A voltage comparison N148 in FIG. 5 determines whether the output of the digital-to-analog converter 40 is larger or smaller than a predetermined jump. When V, > V, the output of the voltage comparator N148 becomes negative, turning off the switching transistor 152 via the pace resistor 150. Therefore, the time measuring capacitor 154 is charged via the resistor 156, and the voltage across the capacitor 154 is expressed by the following equation: VJI = V41 (1-e, zp r2C/), where r2 is the resistance The resistance value C of the capacitor 156 is compared with the voltage 3- across the capacitor 1540 by the reference voltage V and the voltage comparison signal 158. %, >V2. During the period , the output of the voltage comparison N158 does not become negative, so the light emitting diode 160 does not light up. Mote V.

(10) 〉鴇の状態が所定時間継続して”Jl> V21になる
と、電圧比較w158の出力が負となり、発光ダイオー
ド160を抵抗162を介して点灯させて極間間隙状態
の異常発生を表示するものである。
(10) 〉When the condition of the tow continues for a predetermined period of time and reaches "Jl>V21," the output of the voltage comparison w158 becomes negative, and the light emitting diode 160 is turned on via the resistor 162 to indicate the occurrence of an abnormality in the gap between the electrodes. It is something to do.

スイッチ164は、時間の関数だけで極間間隙状態を判
断するか、ディジタルアナログ変換器40の出力Vの大
きさと時間の積の関数として判断するかを切換えるため
のスイッチである。すなわち単に時間t!けの検出では
極間間隙状態の異常判別の困難な加工、例えば超硬合金
の加工のように一瞬にしてアークによる割れや、タング
ステンの欠落が発生する場合には、差の電圧と時間の積
の関数として、異常の発生をすみやかに知ることができ
る。すなわち短時間であっても、差が大であればコンデ
ンサCの充電電流が増え、ただちにコンデンサ電圧v3
がv2に達するからである。
The switch 164 is a switch for switching between determining the pole gap state only as a function of time or as a function of the product of the magnitude of the output V of the digital-to-analog converter 40 and time. That is, simply time t! In machining where it is difficult to determine abnormalities in the gap between poles, for example, when cracking due to arcing or chipping of tungsten occurs instantaneously, such as when machining cemented carbide, the product of the voltage difference and time can be used to detect cracks. The occurrence of an abnormality can be immediately known as a function of In other words, if the difference is large even for a short time, the charging current of capacitor C increases, and the capacitor voltage v3 immediately increases.
This is because the value reaches v2.

また、差の電圧V、を直接電圧計で観測する乙とより、
最適値と現在値の差を直接g測することができ、極間間
隙状態のモニターとして使用できることは明らかである
In addition, by observing the difference voltage V directly with a voltmeter,
It is clear that the difference between the optimum value and the current value can be directly measured in g and can be used as a monitor of the interpolar gap condition.

(11) さて、上記検出回路によって得られた出力にもとずいて
極間印加電圧の時間あたりの傾きdV/dtを変化させ
ることにより、極間状態が悪い場合にはゆるく立上らせ
て放電をさせ難(することにより放電集中を防ぎ、良好
な状態の時には急速に立上らせて放電させやすくするこ
とにより加工能率を向上させることができる。このため
の実施例を第6図1=、動作説明を第7図のタイムチャ
ートを用いて説明する。第6図における100は反転増
幅器であって、カウンタ67の出力に応じたアナログ電
圧Vo (尚、該アナログ電圧Voは上記カウンタ67
のディジタル出力をD/Aコンバータ40に接続して得
られる。)を反転してPNP )ランジスタ101のペ
ースξζ加えるための回路である。さて極間間隙に印加
される電圧v9は以下のような値となる。
(11) Now, by changing the slope dV/dt per time of the voltage applied between the electrodes based on the output obtained by the above detection circuit, if the electrode gap condition is bad, it can be made to rise slowly. It is possible to improve machining efficiency by preventing discharge from concentrating, and by making it easier to start up the discharge when the condition is good.An example of this is shown in Fig. 6-1. The operation will be explained using the time chart of FIG. 7. Reference numeral 100 in FIG.
can be obtained by connecting the digital output of the D/A converter 40 to the D/A converter 40. ) is inverted and PNP) is added to the pace ξζ of the transistor 101. Now, the voltage v9 applied to the gap between the electrodes has the following value.

Vg= 1cX t / C−−11)尚、ICはトラ
ンジスタ101のコレクタ電流、tはパルス電圧印加後
の経過時間、Cはコンデンサ102の容量である。次に
、Icはトランジスタ(12) 101のエミッタフォロア負荷抵抗103に流れる電流
にほぼ等しく (99X程度)、このIcは抵抗103
の値がRI:とすれば以下のように表される。
Vg=1cXt/C--11) Note that IC is the collector current of the transistor 101, t is the elapsed time after the pulse voltage is applied, and C is the capacitance of the capacitor 102. Next, Ic is approximately equal to the current flowing through the emitter follower load resistor 103 of the transistor (12) 101 (about 99X), and this Ic is
If the value of is RI:, it is expressed as follows.

尚、vEはトランジスタ101のエミッタ電圧、v8は
ベース電圧である。よって極間印加電圧V91才式%式
%(2) とすると、電圧傾斜dV/dtl!、0〜200v/p
の範囲で変化するようになる。尚、反転増幅N100は
入力Ovの時出力10V1人力10Vの時Ovとなるよ
うに設計されているので、 Voが大となる程、すなわ
ち、極間状態が悪くなるほど、印加電圧の傾きdV/d
tは減少する。また、抵抗104はコンデンサ】02に
蓄積された電荷を放電時に、加工に影響しないように放
電するためのものであり、ダイ(1,d心 オード105は加工用のスイッチングトランジスタ18
bからの電流がコンデンサ102に逆流するのを防いで
いる。
Note that vE is the emitter voltage of the transistor 101, and v8 is the base voltage. Therefore, if the voltage applied between electrodes is V91, the voltage slope is dV/dtl! ,0~200v/p
It will change within the range of. In addition, since the inverting amplifier N100 is designed so that when the input is Ov, the output is 10V, and when the human power is 10V, it is Ov, so the larger Vo is, that is, the worse the gap condition is, the slope of the applied voltage is dV/d.
t decreases. The resistor 104 is for discharging the electric charge accumulated in the capacitor 02 so as not to affect machining, and the die 105 is for switching transistor 18 for machining.
This prevents the current from flowing backward into the capacitor 102.

さらに、トランジスタ18bは、極間間隙で放電が発生
してから所定時間オンとなる。反転増幅器100の内部
ゲートは、パルス幅休止幅制御回路18dの制御信号S
、によっても制御されており、休止時間中に、極間間隙
に電圧が印加される乙とを防いでいる。第7図のタイム
チャートは、上記の具体的説明をするもので、検出電圧
Voとコンデンサ充電電流1cの関係、及びトランジス
タ相互のオン・オフの状態が1.0のロジックレベルで
示されている。
Further, the transistor 18b is turned on for a predetermined period of time after discharge occurs in the gap between the electrodes. The internal gate of the inverting amplifier 100 receives the control signal S of the pulse width pause width control circuit 18d.
, which prevents voltage from being applied to the gap between the electrodes during the rest period. The time chart in FIG. 7 specifically explains the above, and shows the relationship between the detection voltage Vo and the capacitor charging current 1c, and the on/off states of the transistors at a logic level of 1.0. .

本実施例により放電の集中やアークの前駆状態となると
検出回路のカウンタ67の内容が増加し、反転増幅器の
出力は減少して印加電圧の傾きは鈍くなり、放電し難く
なって放電が集中することはなくなり、極間状態は回復
する。
According to this embodiment, when discharge is concentrated or an arc precursor state occurs, the content of the counter 67 of the detection circuit increases, the output of the inverting amplifier decreases, and the slope of the applied voltage becomes blunt, making it difficult to discharge and concentrating the discharge. This will no longer be the case, and the state of extremes will be restored.

なお上記実施例では検出回路のカウンタ67の内容に応
じて連続的に印加電圧の傾艶を制御して(14) いるが、必ずしも連続的にする必要はなく、折れ締約あ
るいは数段の切換あるいは級数的に変化させても本発明
実施の目的には合致している。
In the above embodiment, the gradient of the applied voltage is controlled continuously according to the contents of the counter 67 of the detection circuit (14), but it does not necessarily have to be continuous; Even if it is changed in a series, it still meets the purpose of implementing the present invention.

以上のように本発明では極間状態の異常を、既述の検出
方法で判別し、該判別結果をもとにして極間状態の回復
をはかるために、極間印加電圧の傾きを変化させて放電
発生のしやすさを制御し、放電が一点に集中したり、消
イオンされない状態で高電圧が連続的に印加される乙と
を防ぎ、極間状態を回復させるという従来にない放電加
工装置の提供を行うものである。
As described above, in the present invention, an abnormality in the contact gap state is determined by the detection method described above, and the slope of the voltage applied between the contacts is changed in order to recover the contact state based on the determination result. This is an unprecedented electrical discharge machining method that controls the ease with which electrical discharge occurs, prevents electrical discharge from concentrating on one point, prevents high voltage from being continuously applied without being deionized, and restores the gap state. The company provides equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の放電加工装置を示す原理図、第2図は本
発明になる原理の説明図、第3図は周波数スペクトル分
析回路説明図、第4図は、異常状態検出判別回路図、第
5図はその表示回路図、第6図は本発明の詳細な説明図
、第7図は第6図の装置の動作状態を示すタイムチャー
トである。図中10は電極、14は被加工物、18(よ
加工電源、67は異常検知カウンターである。 (15) なお、図中同一符号は同−又は相当部分を示す。 代理人 大暑 増雄 (16)
Fig. 1 is a principle diagram showing a conventional electrical discharge machining device, Fig. 2 is an explanatory diagram of the principle according to the present invention, Fig. 3 is an explanatory diagram of a frequency spectrum analysis circuit, and Fig. 4 is an abnormal state detection/discrimination circuit diagram. FIG. 5 is a display circuit diagram thereof, FIG. 6 is a detailed explanatory diagram of the present invention, and FIG. 7 is a time chart showing the operating state of the device shown in FIG. 6. In the figure, 10 is an electrode, 14 is a workpiece, 18 is a processing power source, and 67 is an abnormality detection counter. )

Claims (1)

【特許請求の範囲】[Claims] 電極と被加工物とを絶縁性加工液を介在させて対向させ
、その極間間隙内にパルス電圧を印加して放電を発生さ
せ上記被加工物を加工する放電加工装置において、電極
と被加工物の極間間隙で放電した際の極間間隙における
電気信号中の周波数成分の分布を検知する検知手段と、
この検知手段により検知される周波数成分の分布を予め
設定した周波数成分の分布を比較する比較手段と、上記
比較手段の出力信号に基づいて極間間隙状態を判断して
信号を出力する極間間隙状態判別手段と、この判別手段
の出力に基づいて上記パルス電圧の時間あたりの上昇度
を制御する制御手段を具備することを特徴とする放電加
工装置。
In an electric discharge machining device, an electrode and a workpiece are opposed to each other with an insulating machining liquid interposed therebetween, and a pulse voltage is applied in the gap between the electrodes to generate an electric discharge to machine the workpiece. Detection means for detecting the distribution of frequency components in an electrical signal in the gap between the poles when a discharge occurs in the gap between the poles of the object;
a comparison means for comparing the distribution of frequency components detected by the detection means with a preset distribution of frequency components; and an interpolar gap for determining the interpolar gap state based on the output signal of the comparison means and outputting a signal. An electrical discharge machining apparatus comprising: a state determining means; and a control means for controlling the rate of rise of the pulse voltage per time based on the output of the determining means.
JP14072483A 1983-08-01 1983-08-01 Electric discharge machine Granted JPS6034222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14072483A JPS6034222A (en) 1983-08-01 1983-08-01 Electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14072483A JPS6034222A (en) 1983-08-01 1983-08-01 Electric discharge machine

Publications (2)

Publication Number Publication Date
JPS6034222A true JPS6034222A (en) 1985-02-21
JPH0355250B2 JPH0355250B2 (en) 1991-08-22

Family

ID=15275229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14072483A Granted JPS6034222A (en) 1983-08-01 1983-08-01 Electric discharge machine

Country Status (1)

Country Link
JP (1) JPS6034222A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462594A (en) * 1977-10-26 1979-05-19 Mitsubishi Electric Corp Electrical discharge machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462594A (en) * 1977-10-26 1979-05-19 Mitsubishi Electric Corp Electrical discharge machine

Also Published As

Publication number Publication date
JPH0355250B2 (en) 1991-08-22

Similar Documents

Publication Publication Date Title
US4236057A (en) Apparatus for detecting gap conditions in EDM processes with monitoring pulses
KR20000071756A (en) power supply for the resistance welding
US4582974A (en) Electric discharge machine including means for detecting abnormal discharge conditions
JPS57156128A (en) Electric discharge machining device
US4322595A (en) Arc monitor for electrical discharge machining
US4346278A (en) Methods and apparatus for electrical discharge machining
JPS6034222A (en) Electric discharge machine
US3597570A (en) Device for detecting sustained arcing across electrospark machining gaps
JPS5924924A (en) Electric discharge machine
JPS6034221A (en) Electric discharge machine
CA2379639A1 (en) Method and apparatus for detecting slow and small changes of electrical signals including the sign of the changes, and circuit arrangement for the exact detection of the peak value of an alternating voltage
JPS6034220A (en) Electric discharge machine
JPS637890B2 (en)
JP2557929B2 (en) Electric discharge machine
JPH0319011B2 (en)
EP0009928A1 (en) Arc monitor for electrical discharge machining
JPS62201091A (en) Current detector of dc motor
JPS59205223A (en) Electric discharge machining device
JPS5937018A (en) Electric discharge machine
SU634897A1 (en) Pulse generator for electro-erosion working
KR820002134B1 (en) Method of detecting gap conditions in edm process with monitoring pulses
JPS57189724A (en) Electric discharge machining condition detector
JPS59205234A (en) Electric discharge machining device
JPS6057970B2 (en) Electric discharge machining equipment
JPS6158252B2 (en)