JPS637890B2 - - Google Patents

Info

Publication number
JPS637890B2
JPS637890B2 JP5387280A JP5387280A JPS637890B2 JP S637890 B2 JPS637890 B2 JP S637890B2 JP 5387280 A JP5387280 A JP 5387280A JP 5387280 A JP5387280 A JP 5387280A JP S637890 B2 JPS637890 B2 JP S637890B2
Authority
JP
Japan
Prior art keywords
electrode
workpiece
gap
signal
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5387280A
Other languages
Japanese (ja)
Other versions
JPS56152529A (en
Inventor
Tetsuro Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5387280A priority Critical patent/JPS56152529A/en
Priority to PCT/JP1981/000014 priority patent/WO1981002127A1/en
Priority to CH6279/81A priority patent/CH659416A5/en
Priority to US06/302,480 priority patent/US4510364A/en
Priority to DE3134443T priority patent/DE3134443C2/en
Publication of JPS56152529A publication Critical patent/JPS56152529A/en
Publication of JPS637890B2 publication Critical patent/JPS637890B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply
    • B23H7/18Electric circuits specially adapted therefor, e.g. power supply for maintaining or controlling the desired spacing between electrode and workpiece

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 本発明は放電加工装置、特に電極と被加工物と
を絶縁性加工液を介在させて対向させ、その対向
極間内に放電を発生させて上記被加工物を加工す
る放電加工装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric discharge machining apparatus, in particular, an electric discharge machining apparatus, in which an electrode and a workpiece are opposed to each other with an insulating machining liquid interposed therebetween, and an electrical discharge is generated between the opposing electrodes to machine the workpiece. This invention relates to electrical discharge machining equipment.

第1図には従来の放電加工装置の概要構成図が
示されている。第1図において、電極10は加工
槽12内に置かれた被加工物14と絶縁性加工液
16を介して対向している。電極10と被加工物
14間には加工電源18が接続されている。この
加工電源18は直流電源18aと、加工電流の断
続を行なうためのスイツチング素子18bと、電
流制限抵抗18cと、上記スイツチング素子18
bの断続を制御するための発振器18dとによつ
て構成され、加工電流を断続的に電極10と被加
工物14との対向極間20に供給する。
FIG. 1 shows a schematic configuration diagram of a conventional electric discharge machining apparatus. In FIG. 1, an electrode 10 faces a workpiece 14 placed in a processing tank 12 with an insulating processing fluid 16 in between. A processing power source 18 is connected between the electrode 10 and the workpiece 14. This machining power source 18 includes a DC power source 18a, a switching element 18b for switching on and off the machining current, a current limiting resistor 18c, and the switching element 18.
The machining current is intermittently supplied to the gap 20 between the electrode 10 and the workpiece 14 facing each other.

上記の加工電流Iは、I=E−Vg/R(Eは直流 電源18aの電圧値、Rは電流制限抵抗18cの
抵抗値、Vgは極間電圧値)の式であらわされる。
極間電圧Vgは、アーク放電中は20〜30V、短絡
時は0V、無放電中はEVとなり、スイツチング素
子18bがオフ状態の時は0Vとなる。
The above machining current I is expressed by the formula I=E-Vg/R (E is the voltage value of the DC power supply 18a, R is the resistance value of the current limiting resistor 18c, and Vg is the voltage between electrodes).
The interelectrode voltage Vg is 20 to 30 V during arc discharge, 0 V during short circuit, EV during no discharge, and 0 V when switching element 18b is in the off state.

そこでこの極間電圧値Vgを検出して平滑回路
22で平均化すれば、この値で極間間隙制御を行
なうことができる。すなわち、極間間隙が広い時
は放電が起こりにくく平均電圧値Vsは高い。極
間間隙が狭い時は短絡したり、容易に放電するた
め平均電圧値Vsは低下する。従つて、この平均
電圧値Vsを基準電圧値Vrと比較して、この差を
増幅器24で増幅して油圧サーボコイル26に入
力すれば、油圧発生ポンプ28と油圧シリンダ3
0とで構成される油圧サーボ機構によつて、極間
間隙20がほぼ一定になるように電極10を制御
することができる。
Therefore, if this inter-electrode voltage value Vg is detected and averaged by the smoothing circuit 22, the inter-electrode gap can be controlled using this value. That is, when the gap between the electrodes is wide, discharge is difficult to occur and the average voltage value Vs is high. When the gap between the electrodes is narrow, short circuits and discharges occur easily, resulting in a decrease in the average voltage value Vs. Therefore, if this average voltage value Vs is compared with the reference voltage value Vr, and this difference is amplified by the amplifier 24 and inputted to the hydraulic servo coil 26, the hydraulic pressure generating pump 28 and the hydraulic cylinder 3
The electrode 10 can be controlled so that the inter-electrode gap 20 is approximately constant by the hydraulic servo mechanism configured with the servo mechanism 0 and 0.

従来の放電加工装置で加工状態の良否を判別す
る際、最も一般的なのは上記の極間電圧値Vgの
平均電圧値Vsを観測することである。すなわち
平均電圧値Vsが低い時は極間インピーダンスが
低い場合であつて、短絡、連続的アーク放電とな
り、極間には加工粉やスラツジの滞留等が考えら
れる。しかし放電加工において最も危険な異常ア
ーク放電は、一度発生すると加工液の熱分解によ
るカーボン発生のために、カーボンと被加工物と
の間の放電となり、極間インピーダンスが高くな
つたような状態になる。このため平均電圧値Vs
の観測では異常アーク放電による極間状態悪化の
検出及びその解消は不可能であるという欠点があ
つた。
When determining whether the machining state is good or bad using a conventional electrical discharge machining apparatus, the most common method is to observe the average voltage value Vs of the above-mentioned machining voltage value Vg. That is, when the average voltage value Vs is low, the impedance between the electrodes is low, and short circuits and continuous arc discharge may occur, and machining powder and sludge may accumulate between the electrodes. However, the most dangerous abnormal arc discharge in electric discharge machining is that once it occurs, carbon is generated due to thermal decomposition of the machining fluid, resulting in an electric discharge between the carbon and the workpiece, resulting in a state where the impedance between the electrodes becomes high. Become. Therefore, the average voltage value Vs
The drawback of this observation was that it was impossible to detect and eliminate the deterioration of the gap between electrodes due to abnormal arc discharge.

本発明は上述した従来の課題に鑑み為されたも
のであり、その目的は極間間隙長を検出して極間
状態を判別し、極間状態を良好な状態に回復させ
るように、電極の送りサーボ系の増幅度を増加さ
せて、極間間隙制御運動の速度及び振幅を増し、
間隙に滞留しているスラツジあるいは放電のさま
たげとなつているごみを排出できるようにした放
電加工装置を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to detect the gap length between electrodes, determine the gap condition, and improve the condition of the electrodes so as to restore the gap condition to a good condition. increasing the amplification of the feed servo system to increase the speed and amplitude of the pole gap control movement;
It is an object of the present invention to provide an electrical discharge machining device capable of discharging sludge staying in gaps or garbage obstructing electrical discharge.

上記の目的を達成するために、本発明は、電極
と被加工物とを絶縁性加工液を介在させて対向さ
せ、その対向極間内に放電を発生させて上記被加
工物を加工する放電加工装置において、電極が被
加工物に対して送り込まれる最進位置と電極の現
在位置との差を検出する電極位置検出手段と、上
記差の量が所定の量を越える持続時間、又は上記
差の量と上記持続時間の積が所定値以上になると
極間状態が異常にあると判断して信号を出力し、
上記の差の量が所定の量を越える持続時間、又は
上記差の量と上記持続時間の積が所定値を下回る
と極間状態が正常にあると判断して信号を出力す
る極間状態判別手段と、上記極間状態判別手段か
らの信号が、極間状態が異常にあると判断して出
力された場合、被加工物に対して電極を送り込む
電極送り制御装置の増幅度を増大させ、上記極間
状態判別手段からの信号が、極間状態が正常にあ
ると判断して出力された場合、被加工物に対して
電極を送り込む電極送り制御装置の増幅度を減少
させる手段とを備えたことを特徴とするものであ
る。
In order to achieve the above object, the present invention provides an electric discharge method for machining the workpiece by arranging an electrode and a workpiece to face each other with an insulating machining liquid interposed therebetween, and generating an electric discharge between the opposing electrodes. In the processing device, an electrode position detection means for detecting a difference between the most advanced position at which the electrode is sent to the workpiece and the current position of the electrode, and a duration for which the amount of the difference exceeds a predetermined amount, or a time period for which the amount of the difference exceeds a predetermined amount; When the product of the amount and the above duration exceeds a predetermined value, it is determined that the interpole condition is abnormal and a signal is output.
Interpole state determination that determines that the interpole state is normal and outputs a signal when the duration of the above difference exceeds a predetermined amount, or the product of the difference amount and the duration time falls below a predetermined value. and when the signal from the gap state determining means determines that the gap condition is abnormal and is output, increasing the amplification degree of an electrode feed control device that feeds the electrode to the workpiece; and means for reducing the amplification degree of the electrode feed control device that feeds the electrode to the workpiece when the signal from the gap state determining means is determined to indicate that the gap condition is normal and is output. It is characterized by:

以下、図面に基づいて本発明の好適な実施例を
説明する。第2図及び第3図は第1図と同一部分
に同一符号を付した本発明の一実施例の構成を示
す概要図である。第2図において、電極支持棒3
2に取付けられたデイジタルスケール34は、電
極10が図において下方に移動するとプラス方向
パルスSpを発生し、上方に移動するとマイナス
方向パルスSNを発生する。極間間隙長を正確に
知るために1パルス当たり10μm以下のパルス発
生を行なう。本例では5μm/パルスとして説明
する。
Hereinafter, preferred embodiments of the present invention will be described based on the drawings. 2 and 3 are schematic diagrams showing the structure of an embodiment of the present invention, in which the same parts as in FIG. 1 are denoted by the same reference numerals. In FIG. 2, the electrode support rod 3
A digital scale 34 attached to the electrode 2 generates a positive pulse Sp when the electrode 10 moves downward in the figure, and a negative pulse S N when the electrode 10 moves upward. In order to accurately know the gap length between the poles, pulses of 10 μm or less are generated per pulse. In this example, the explanation will be made assuming 5 μm/pulse.

上記のプラス方向パルスSpは直接可逆カウン
タ36のマイナス端子36aに、またマイナス方
向パルスSNはオアゲート38を介してプラス端
子36bに供給される。可逆カウンタ36は例え
ば13ビツトで構成され、5μm×(214−1)すなわ
ち82mm相当の電極上昇量を記憶できる。可逆カウ
ンタ36の各ビツトの出力側にはデイジタルアナ
ログ変換器40が接続されており、この出力は
V0であつてコンパレータ42により0Vと比較さ
れる。そして、上記出力V0が0Vすなわちカウン
タ内容が0であるとき、コンパレータ42の出力
によつてパルス発振器44の出力パルスをアンド
ゲート46、オアゲート38を介して、加算パル
スLPとして可逆カウンタ36のプラス端子36
bに供給する。
The above-mentioned positive direction pulse Sp is directly supplied to the negative terminal 36a of the reversible counter 36, and the negative direction pulse S N is supplied to the positive terminal 36b via the OR gate 38. The reversible counter 36 is composed of, for example, 13 bits, and can store the amount of electrode rise corresponding to 5 μm×(2 14 −1), that is, 82 mm. A digital-to-analog converter 40 is connected to the output side of each bit of the reversible counter 36, and this output is
V0 and is compared with 0V by the comparator 42. Then, when the output V 0 is 0V, that is, the counter content is 0, the output pulse of the pulse oscillator 44 is passed through the AND gate 46 and the OR gate 38 by the output of the comparator 42, and is used as the addition pulse L P of the reversible counter 36. Positive terminal 36
supply to b.

このため、可逆カウンタ36はデイジタルスケ
ール34からのマイナス方向パルスSNと上記の
加算パルスLPを加算し、デイジタルスケール3
4からのプラス方向パルスSPを減算する。この結
果、可逆カウンタ36の内容は電極10が被加工
物14に対して送り込まれる最進位置と電極10
の現在位置の差となる。すなわち、加算パルス
LPの数の合計が最進位置であり、これと、上記
マイナス方向パルスSNの数とプラス方向パルス
SPの数の差の合計である現在位置を引くので、可
逆カウンタ36の内容は最進位置と現在位置の差
であることになる。
Therefore, the reversible counter 36 adds the negative direction pulse S N from the digital scale 34 and the above-mentioned addition pulse L P ,
Subtract the positive direction pulse S P from 4. As a result, the contents of the reversible counter 36 are the most advanced position at which the electrode 10 is fed into the workpiece 14 and the position at which the electrode 10
This is the difference between the current positions of That is, the addition pulse
The sum of the numbers of L P is the most advanced position, and this, the number of minus direction pulses S N above, and the plus direction pulse
Since the current position, which is the sum of the differences in the numbers S P , is subtracted, the content of the reversible counter 36 is the difference between the most advanced position and the current position.

よつて、デイジタルアナログ変換器40の出力
は、上記の差に比例した電圧であるために、この
出力V0を検出処理すれば実際の極間間隙状態の
良否を知ることができる。すなわち、上記の出力
V0が大であれば極間間隙状態は最進位置より戻
つた状態にあることから、例えば加工粉の滞留に
よつて極間にスラツジがたまつているとか、異常
アークによつて加工液16が熱分解してカーボン
が発生しているとか、電極の一部が破損してその
かけらが極間20に存在するとか、等の不具合が
容易に検出できる。
Therefore, since the output of the digital-to-analog converter 40 is a voltage proportional to the above-mentioned difference, by detecting and processing this output V0 , it is possible to know whether the actual state of the gap between the electrodes is good or bad. i.e. the above output
If V 0 is large, the state of the gap between the machining poles has returned from the most advanced position, which means that, for example, sludge has accumulated between the machining poles due to the retention of machining powder, or machining fluid is flowing due to an abnormal arc. Problems such as thermal decomposition of the electrode 16 and generation of carbon, or a part of the electrode being damaged and its fragments being present in the gap 20 can be easily detected.

しかしごく短時間であれば極間インピーダンス
は断えず変化しており、短時間上記の差があつて
も必ずしも極間間隙状態が悪いとは判断できな
い。そこでデイジタルアナログ変換器40の出力
V0の所定値以上の存在がある時間続いたことを
検出して、極間間隙状態の良否を判断する必要が
ある。
However, the inter-electrode impedance changes constantly over a very short period of time, and even if the above-mentioned difference exists for a short time, it cannot necessarily be determined that the inter-electrode gap condition is poor. Therefore, the output of the digital-to-analog converter 40
It is necessary to determine whether the inter-electrode gap condition is good or bad by detecting that V 0 has been present for a certain period of time or more than a predetermined value.

第2図における電圧比較器48はデイジタルア
ナログ変換器40の出力V0が所定値V1よりも大
か小かを判別している。V0>V1になると、電圧
比較器48の出力は負となり、ベース抵抗50を
介してスイツチング用トランジスタ52をオフ状
態にする。このため時間計測用コンデンサ54は
抵抗56を介して充電され、コンデンサ54の両
端電圧V3は次式のようにあらわされる。
A voltage comparator 48 in FIG. 2 determines whether the output V 0 of the digital-to-analog converter 40 is larger or smaller than a predetermined value V 1 . When V 0 >V 1 , the output of voltage comparator 48 becomes negative, turning off switching transistor 52 via base resistor 50 . Therefore, the time measuring capacitor 54 is charged via the resistor 56, and the voltage V 3 across the capacitor 54 is expressed by the following equation.

ただしr2は抵抗56の抵抗値 cはコンデンサ54の容量 tは時間 このコンデンサ54の両端電圧V3は基準電圧
V2と電圧比較器58で比較される。V3<V2の期
間は電圧比較器58の出力が負にならないため、
発光ダイオード60は点灯しない。そしてV0
V1の状態が所定時間継続してV3>V2になると、
電圧比較器58の出力が負となり、発光ダイオー
ド60を抵抗62を介して点灯させて極間間隙状
態の異常発生を表示するものである。
However, r2 is the resistance value of the resistor 56, c is the capacitance of the capacitor 54, t is the time, the voltage across this capacitor 54, V3, is the reference voltage.
It is compared with V 2 by a voltage comparator 58 . During the period of V 3 <V 2 , the output of the voltage comparator 58 does not become negative, so
The light emitting diode 60 does not light up. And V 0 <
When the state of V 1 continues for a predetermined period of time and becomes V 3 > V 2 ,
The output of the voltage comparator 58 becomes negative, and the light emitting diode 60 is turned on via the resistor 62 to indicate the occurrence of an abnormality in the gap between the electrodes.

スイツチ64は、時間の関数だけで極間状態を
判断するか、デイジタルアナログ変換器40の出
力V0の大きさと時間の積の関数として判断する
かを切換えるためのスイツチである。すなわち単
に時間だけの検出では極間間隙状態の異常判別の
困難な加工、例えば超硬合金の加工のように一瞬
にしてアークによる割れや、タングステンの欠落
が発生する場合には、スイツチ64を図示例のよ
うに接点64a側に投入すると、デイジタルアナ
ログ変換器40の出力V0と時間の積の関数とし
て、極間間隙状態の異常発生をすみやかに知るこ
とができる。上記の出力V0が大であればコンデ
ンサ54の充電電流が増え、ただちにコンデンサ
54の両端電圧V3が基準電圧V2に達するからで
ある。
The switch 64 is a switch for determining whether to judge the interpole state only as a function of time or as a function of the product of the magnitude of the output V 0 of the digital-to-analog converter 40 and time. In other words, in machining where it is difficult to determine abnormalities in the gap between the poles by simply detecting time, for example, in the machining of cemented carbide, where arc cracking or tungsten chipping occurs instantaneously, the switch 64 should be turned off. When the contact 64a is turned on as shown in the example, the occurrence of an abnormal state of the gap between the poles can be immediately detected as a function of the product of the output V 0 of the digital-to-analog converter 40 and time. This is because if the output V 0 is large, the charging current of the capacitor 54 increases, and the voltage V 3 across the capacitor 54 immediately reaches the reference voltage V 2 .

また、上記の出力V0を直接電圧計で観測する
ことにより、電極10が被加工物14に対して送
り込まれる最進位置と電極10の現在位置の差を
直接観測することができ、極間間隙状態のモニタ
ーとして使用できることは明らかである。
In addition, by directly observing the above output V 0 with a voltmeter, it is possible to directly observe the difference between the most advanced position where the electrode 10 is fed into the workpiece 14 and the current position of the electrode 10, and It is clear that it can be used as a monitor of interstitial conditions.

なお、上記実施例では極間状態悪化時の時間計
測に、コンデンサ54と抵抗56による1次遅れ
回路を用いているが、時間測定をより正確にする
ために演算増幅器を用いた正確な積分回路を設け
て実施することは何等困難なことではない。
In addition, in the above embodiment, a first-order delay circuit made up of a capacitor 54 and a resistor 56 is used to measure time when the gap condition worsens, but in order to make time measurement more accurate, an accurate integration circuit using an operational amplifier is used. It is not difficult at all to establish and implement.

第3図は上記検出出力に基づいてサーボ系の増
幅度を制御する回路GCの詳細説明図であつて、
異常発生検出信号V5が「1」すなわち異常でな
い時には、アナログスイツチSW1が閉、SW2
はインバーター70を介しているため開状態とな
つている。
FIG. 3 is a detailed explanatory diagram of the circuit GC that controls the amplification degree of the servo system based on the above detection output,
When the abnormality detection signal V5 is "1", that is, when there is no abnormality, analog switch SW1 is closed and SW2 is closed.
is in an open state because it is connected to the inverter 70.

この時には極間サーボ信号Vaは、所定の増幅
度Kを有する増幅器71を介してサーボ増幅器2
4に印加され、通常のゲインで加工がなされる。
At this time, the pole-to-pole servo signal Va is sent to the servo amplifier 2 via an amplifier 71 having a predetermined amplification degree K.
4 and processing is performed with normal gain.

次に、極間に異常状態が発生して、V5が「0」
になるとアナログスイツチSW1は開、SW2は
閉状態となり、サーボ系の増幅度は乗算型デイジ
タルアナログ変換器72によつて制御される。す
なわち、このデイジタルアナログ変換器72は入
力電圧Vaと、可逆カウンタ36のデイジタル出
力の値との乗算値のアナログ出力V1を出力する
ので、サーボゲインは電極の最進値と現在値の差
に比例した値となる。これにより、上記の差が大
なる程すなわち異常であればある程サーボゲイン
が高くなり電極の送り速度が速くなるので、間隙
の応答が敏感になり、急速に電極が動いて、スラ
ツジの滞留や、よどみ、あるいは何等かのかけら
をすみやかに間隙から排除したり、散らすことが
可能になる。
Next, an abnormal condition occurs between the poles, and V5 becomes "0".
When this happens, the analog switch SW1 is opened and the analog switch SW2 is closed, and the amplification degree of the servo system is controlled by the multiplier type digital-to-analog converter 72. That is, this digital-to-analog converter 72 outputs an analog output V 1 that is the product of the input voltage Va and the digital output value of the reversible counter 36, so the servo gain is determined by the difference between the most advanced value of the electrode and the current value. It will be a proportional value. As a result, the larger the above difference, that is, the more abnormal, the higher the servo gain and the faster the electrode feed speed, which makes the response of the gap more sensitive and the electrode moves more rapidly, preventing sludge from accumulating. , stagnation, or any debris can be quickly removed from the gap or scattered.

なお、上記の乗算型デイジタルアナログ変換器
の具体例としては、アナログデバイス社(米国)
のAD7520などが公知である。
A specific example of the above-mentioned multiplication type digital-to-analog converter is manufactured by Analog Devices Inc. (USA).
AD7520 and the like are well known.

また、上記の説明では電極の最進値と現在値の
差に応動してサーボゲインを変えているが、より
簡単に異常を検出したら、ゲインを高くするだけ
でも効果は期待できる。ただし、最進値と現在値
が近づいて、短絡寸前でも高ゲインのままなので
突込み気味になる恐れがある。上記のデイジタル
アナログ変換器を用いた場合は、ゲインが自動的
に制御され、近づきすぎると減少するので、突込
みや、ハンチングは発生しない。
Further, in the above explanation, the servo gain is changed in response to the difference between the most advanced value and the current value of the electrode, but if an abnormality is detected more easily, the effect can be expected by simply increasing the gain. However, since the most advanced value and the current value are close to each other and the gain remains high even on the verge of a short circuit, there is a risk that the gain will be overrun. When the digital-to-analog converter described above is used, the gain is automatically controlled and decreases when it gets too close, so no bumps or hunting occur.

以上述べてきたように、本発明は、電極と被加
工物とを絶縁性加工液を介在させて対向させ、そ
の対向極間内に枚電を発生させて上記被加工物を
加工する放電加工装置において、電極が被加工物
に対して送り込まれる最進位置と電極の現在位置
との差を検出する電極位置検出手段と、上記の差
の量が所定の量を越える持続時間、又は上記差の
量と上記持続時間の積が所定値以上となると極間
状態が異常にあると判断して信号を出力し、上記
の差の量が所定の量を越える持続時間、又は上記
差の量と上記持続時間の積が所定値を下回ると極
間状態が正常にあると判断して信号を出力する極
間状態判別手段と、上記極間状態判別手段からの
信号が、極間状態が異常にあると判断して出力さ
れた場合、被加工物に対して電極を送り込む電極
送り制御装置の増幅度を増大させ、上記極間状態
判別手段からの信号が、極間状態が正常にあると
判断して出力された場合、被加工物に対して電極
を送り込む電極送り制御装置の増幅度を減少させ
る手段を備えたので、放電加工における極間間隙
状態の良否を正確に判断できると共に、積極的に
加工速度を低下させることなく極間状態の回復を
行なうことができるので、加工操作上、加工の失
敗を未然に防ぐことができるという効果が得られ
ることは勿論、更に、次の効果をも具備する。即
ち、放電加工装置においては、極間インピーダン
スは常に変化しており、ごく短時間での極間イン
ピーダンスの低下を極間状態の異常と判断してそ
の対策をほどこしていたのでは、加工能率が極め
て低下することになる。これを本発明に照らして
考察すれば、電極が被加工物に対して送り込まれ
る最進位置と電極の現在位置との差の量が、ごく
短時間、換言すれば、上記差の量が所定の量を越
える持続時間又は上記差の量と上記持続時間の積
が所定値を下回る時は、極間状態が異常と判断し
てはまずいのであり、本発明では、このような場
合は正常であるとの判断機能をも具備し、一層の
高能率加工が可能な放電加工装置を提供できるも
のである。
As described above, the present invention provides electrical discharge machining in which an electrode and a workpiece are opposed to each other with an insulating machining liquid interposed therebetween, and a sheet electric current is generated between the opposing electrodes to machine the workpiece. In the apparatus, an electrode position detection means for detecting the difference between the most advanced position at which the electrode is fed into the workpiece and the current position of the electrode, and a duration for which the amount of the difference exceeds a predetermined amount, or When the product of the amount and the above duration exceeds a predetermined value, it is determined that the state between the poles is abnormal and a signal is output, and the duration when the amount of the difference exceeds the predetermined amount, or the amount of the difference If the product of the above-mentioned duration is less than a predetermined value, it is determined that the gap condition is normal and outputs a signal, and the signal from the gap condition discrimination means is determined to indicate that the gap condition is abnormal. If it is determined that the gap is present and is output, the amplification degree of the electrode feed control device that sends the electrode to the workpiece is increased, and the signal from the gap condition determining means determines that the gap condition is normal. Since it is equipped with a means to reduce the amplification degree of the electrode feed control device that sends the electrode to the workpiece, it is possible to accurately judge the quality of the gap between the electrodes in electric discharge machining, and also to proactively Since the machining gap condition can be recovered without reducing the machining speed, not only can machining failures be prevented in advance, but also the following effects can be achieved: Be equipped. In other words, in electric discharge machining equipment, the gap impedance is constantly changing, and if a decrease in the gap impedance in a very short period of time is judged as an abnormality in the gap condition and countermeasures are taken, the machining efficiency will be reduced. This will result in a significant decline. Considering this in the light of the present invention, the amount of difference between the furthest position at which the electrode is fed into the workpiece and the current position of the electrode is very short, in other words, the amount of the difference is When the duration exceeds the above amount or when the product of the above difference and the above duration falls below a predetermined value, it is inappropriate to judge that the interpole state is abnormal, and in the present invention, in such cases, it is not normal. It is possible to provide an electric discharge machining apparatus which is also equipped with a function to determine whether there is a problem, and which enables even more highly efficient machining.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の放電加工装置の概要図、第2図
は本発明の一実施例である放電状態検出装置の概
要図、第3図は第2図の検出装置出力に基づいて
サーボゲインを制御する装置の概要図である。 なお、図中同一または相当部分には同一符号を
付し、10は電極、14は被加工物、18は加工
電源、20は極間、34はデイジタルスケール、
36は可逆カウンタ、40はデイジタルアナログ
変換器、42はコンパレータ、44はパルス発振
器、48,58は電圧比較器、60は発光ダイオ
ード、72は乗算型デイジタルアナログ変換器、
24はサーボ増幅器、Vaはサーボ信号である。
Fig. 1 is a schematic diagram of a conventional electric discharge machining device, Fig. 2 is a schematic diagram of a discharge state detection device which is an embodiment of the present invention, and Fig. 3 is a schematic diagram of a servo gain based on the output of the detection device shown in Fig. 2. FIG. 2 is a schematic diagram of a controlling device. In addition, the same reference numerals are given to the same or equivalent parts in the figure, 10 is an electrode, 14 is a workpiece, 18 is a processing power supply, 20 is a machining gap, 34 is a digital scale,
36 is a reversible counter, 40 is a digital to analog converter, 42 is a comparator, 44 is a pulse oscillator, 48 and 58 are voltage comparators, 60 is a light emitting diode, 72 is a multiplication type digital to analog converter,
24 is a servo amplifier, and Va is a servo signal.

Claims (1)

【特許請求の範囲】 1 電極と被加工物とを絶縁性加工液を介在させ
て対向させ、その対向極間内に放電を発生させて
上記被加工物を加工する放電加工装置において、
電極が被加工物に対して送り込まれる最進位置と
電極の現在位置との差を検出する電極位置検出手
段と、上記の差の量が所定の量を越える持続時間
が所定値以上になると極間状態が異常にあると判
断して信号を出力し、上記の差の量が所定の量を
越える持続時間が所定値を下回ると極間状態が正
常にあると判断して信号を出力する極間状態判別
手段と、上記極間状態判別手段からの信号が極間
状態が異常にあると判断して出力された場合、被
加工物に対して電極を送り込む電極送り制御装置
の増幅度を増大させ、上記極間状態判別手段から
の信号が極間状態が正常にあると判断して出力さ
れた場合、被加工物に対して電極を送り込む電極
送り制御装置の増幅度を減少させる手段とを備え
たことを特徴とする放電加工装置。 2 電極と被加工物とを絶縁性加工液を介在させ
て対向させ、その対向極間内に放電を発生させて
上記被加工物を加工する放電加工装置において、
電極が被加工物に対して送り込まれる最進位置と
電極の現在位置との差を検出する電極位置検出手
段と、上記の差の量とこの差の量が所定の量を越
える持続時間との積が所定値以上になると極間状
態が異常にあると判断して信号を出力し、上記の
差の量とこの差の量が所定の量を越える持続時間
との積が所定値を下回ると極間状態が正常にある
と判断して信号を出力する極間状態判別手段と、
上記極間状態判別手段からの信号が、極間状態が
異常にあると判断して出力された場合、被加工物
に対して電極を送り込む電極送り制御装置の増幅
度を増大させ、上記極間状態判別手段からの信号
が極間状態が正常にあると判断して出力された場
合、被加工物に対して電極を送り込む電極送り制
御装置の増幅度を減少させる手段とを備えたこと
を特徴とする放電加工装置。
[Scope of Claims] 1. An electric discharge machining device that processes the workpiece by arranging an electrode and a workpiece to face each other with an insulating machining fluid interposed therebetween, and generating electric discharge between the opposing electrodes,
an electrode position detection means for detecting the difference between the most advanced position at which the electrode is fed into the workpiece and the current position of the electrode; A pole that determines that the interpolation state is abnormal and outputs a signal, and determines that the interpolation state is normal and outputs a signal when the duration of the above difference exceeding a predetermined amount is less than a predetermined value. When the signal from the gap state determining means and the gap state determining means determines that the gap state is abnormal and is output, the amplification degree of the electrode feed control device that feeds the electrode to the workpiece is increased. and means for reducing the amplification degree of the electrode feed control device that feeds the electrode to the workpiece when the signal from the gap condition determining means is output indicating that the gap condition is normal. An electrical discharge machining device characterized by: 2. In an electrical discharge machining device that processes the workpiece by arranging an electrode and a workpiece to face each other with an insulating machining fluid interposed therebetween, and generating an electric discharge between the opposing electrodes,
electrode position detection means for detecting the difference between the most advanced position at which the electrode is fed into the workpiece and the current position of the electrode; When the product exceeds a predetermined value, it is determined that the interpole state is abnormal and a signal is output. an inter-electrode condition determining means that determines that the inter-electrode condition is normal and outputs a signal;
When the signal from the machining gap state determining means is output as a result of determining that the machining gap condition is abnormal, the amplification degree of the electrode feed control device that feeds the electrode to the workpiece is increased, and the It is characterized by comprising means for reducing the amplification degree of the electrode feed control device that feeds the electrode to the workpiece when the signal from the state determining means determines that the inter-electrode state is normal and is output. electrical discharge machining equipment.
JP5387280A 1980-01-22 1980-04-23 Electric discharge machining device Granted JPS56152529A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5387280A JPS56152529A (en) 1980-04-23 1980-04-23 Electric discharge machining device
PCT/JP1981/000014 WO1981002127A1 (en) 1980-01-22 1981-01-21 Electrical discharge machining apparatus which detects gap status between electrode and workpiece
CH6279/81A CH659416A5 (en) 1980-01-22 1981-01-21 APPARATUS FOR ELECTRICAL DISCHARGE PROCESSING.
US06/302,480 US4510364A (en) 1980-01-22 1981-01-21 Electric discharge machining apparatus
DE3134443T DE3134443C2 (en) 1980-01-22 1981-01-21 Device for the electroerosive machining of a workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5387280A JPS56152529A (en) 1980-04-23 1980-04-23 Electric discharge machining device

Publications (2)

Publication Number Publication Date
JPS56152529A JPS56152529A (en) 1981-11-26
JPS637890B2 true JPS637890B2 (en) 1988-02-18

Family

ID=12954834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5387280A Granted JPS56152529A (en) 1980-01-22 1980-04-23 Electric discharge machining device

Country Status (1)

Country Link
JP (1) JPS56152529A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH655032A5 (en) * 1982-06-30 1986-03-27 Mitsubishi Electric Corp ELECTRIC DISCHARGE MACHINE FOR ELECTRO-EROSION.
JPS61279426A (en) * 1985-06-03 1986-12-10 Mitsubishi Electric Corp Electric discharge machining controller
JPS61279427A (en) * 1985-06-03 1986-12-10 Mitsubishi Electric Corp Electric discharge machining controller
JPS637227A (en) * 1986-06-27 1988-01-13 Fanuc Ltd Servo feed system for electric discharge machining
JPS637226A (en) * 1986-06-27 1988-01-13 Fanuc Ltd Servo feed system for electric discharge machining
DE3644042A1 (en) * 1986-12-22 1988-06-30 Agie Ag Ind Elektronik METHOD AND DEVICE FOR RINSING THE ERODING ZONE AT ELECTROEROSIVE LOWERING

Also Published As

Publication number Publication date
JPS56152529A (en) 1981-11-26

Similar Documents

Publication Publication Date Title
WO1993001018A1 (en) Wirecut electric discharge machining system
GB1501809A (en) Electrical discharge machining
US4510364A (en) Electric discharge machining apparatus
JPS637890B2 (en)
JP2565906B2 (en) Electric discharge machine
US4510367A (en) Wire-cut electric discharge machine
JPS6158252B2 (en)
JP2005531417A (en) Method and apparatus for electrochemical machining
JPS641252B2 (en)
US4551809A (en) Apparatus and method for monitoring the machining conditions of an EDM apparatus
JPS641251B2 (en)
JPS641253B2 (en)
JPS641254B2 (en)
JPS6029230A (en) Wire-cut electrical discharge machining device
JPS6158254B2 (en)
JP2557929B2 (en) Electric discharge machine
US3679567A (en) Electrochemical spark detection system
SU1583235A1 (en) Method of electric discharge machining
JPS61159326A (en) Method of obtaining excellent machining surface on electrical discharge machining
JP2676283B2 (en) Control method of electrolytic processing machine
JPH0732217A (en) Workpiece thickness measuring device in wire electric discharge machine and machining condition changing method using this measuring device
JPS59205223A (en) Electric discharge machining device
JPS59205233A (en) Electric discharge machining device
JPS61125730A (en) Electric discharge machine
JPH0773812B2 (en) Electric discharge machine