JPS641252B2 - - Google Patents

Info

Publication number
JPS641252B2
JPS641252B2 JP5386980A JP5386980A JPS641252B2 JP S641252 B2 JPS641252 B2 JP S641252B2 JP 5386980 A JP5386980 A JP 5386980A JP 5386980 A JP5386980 A JP 5386980A JP S641252 B2 JPS641252 B2 JP S641252B2
Authority
JP
Japan
Prior art keywords
electrode
difference
gap
machining
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5386980A
Other languages
Japanese (ja)
Other versions
JPS56152527A (en
Inventor
Tetsuro Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5386980A priority Critical patent/JPS56152527A/en
Priority to CH6279/81A priority patent/CH659416A5/en
Priority to DE3134443T priority patent/DE3134443C2/en
Priority to US06/302,480 priority patent/US4510364A/en
Priority to PCT/JP1981/000014 priority patent/WO1981002127A1/en
Publication of JPS56152527A publication Critical patent/JPS56152527A/en
Publication of JPS641252B2 publication Critical patent/JPS641252B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply
    • B23H7/18Electric circuits specially adapted therefor, e.g. power supply for maintaining or controlling the desired spacing between electrode and workpiece

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 本発明は電極の最進位置と現在位置の差を検出
し、この差に応動して極間状態を良好な状態に回
復させるように電気的加工条件を自動的に切換え
られるようにした放電加工装置に関するものであ
る。
[Detailed Description of the Invention] The present invention detects the difference between the most advanced position of the electrode and the current position, and automatically adjusts the electrical processing conditions in response to this difference to restore the gap state to a good state. The present invention relates to a switchable electrical discharge machining device.

第1図は従来の放電加工装置を示し、電極1は
加工槽2内に置かれた被加工物3と絶縁性の加工
液4を極間Gに介して対向している。加工電源
P/Sは直流電源Eと、加工電源の断続を行なう
ためのスイツチング素子SWと、電流制限抵抗R
と、上記スイツチング素子の断続を制御するため
の発振器OSCとで構成され、断続電流Iを電極
1と被加工物3の間に供給する。断続電流IはI
=E−Vg/Rの式であらわされ、アーク放電中は、 極間電圧Vgは20〜30V、短絡時は0V、無放電中
はEとなり、スイツチング素子SWがオフ状態の
とき極間電圧Vgは0Vとなる。よつて、このVg
を検出して平滑回路5によつて平均化すれば、こ
の値から極間間隙制御を行なうことができる。す
なわち、極間間隙が広いとき放電が起りずらくな
り、平均電圧VSは高くなり、極間間隙が狭いと
短絡したり、容易に放電するため平均電圧は低下
する。よつて、この電圧VSを基準電圧Vrと比較
して、この差を極間サーボ回路に入力すれば、す
なわち増幅器6で増幅し、油圧サーボコイル7に
入力すれば電極送り装置すなわち油圧発生ポンプ
Pと、油圧シリンダー8で構成される油圧サーボ
機構は、極間間隙Gがほぼ一定になるように制御
される。
FIG. 1 shows a conventional electric discharge machining apparatus, in which an electrode 1 faces a workpiece 3 placed in a machining tank 2 and an insulating machining fluid 4 with a machining gap G interposed therebetween. The machining power supply P/S consists of a DC power supply E, a switching element SW for switching on and off the machining power supply, and a current limiting resistor R.
and an oscillator OSC for controlling the on/off of the switching element, and supplies an intermittent current I between the electrode 1 and the workpiece 3. Intermittent current I is I
It is expressed by the formula =E-Vg/R, and during arc discharge, the voltage between electrodes Vg is 20 to 30V, when short-circuited it is 0V, during no discharge it is E, and when the switching element SW is in the OFF state, the voltage between electrodes Vg is 20 to 30V. becomes 0V. So this Vg
If this value is detected and averaged by the smoothing circuit 5, the interpole gap can be controlled from this value. That is, when the inter-electrode gap is wide, it is difficult for discharge to occur and the average voltage VS becomes high, whereas when the inter-electrode gap is narrow, short circuits occur and discharge occurs easily, resulting in a decrease in the average voltage. Therefore, if this voltage VS is compared with the reference voltage Vr and this difference is input to the inter-electrode servo circuit, that is, it is amplified by the amplifier 6, and input to the hydraulic servo coil 7, the electrode feeding device, that is, the hydraulic pressure generating pump P. The hydraulic servo mechanism constituted by the hydraulic cylinder 8 is controlled so that the gap G between the poles is approximately constant.

このように従来の放電加工装置で、加工の状態
の良否を判別する最も一般的なのは、平均極間電
圧Vgを観測することであつて、これが低い時に
は極間インピーダンスが低い場合であり、この状
態は短絡、連続的アーク放電、極間における加工
粉、スラツジの滞留などが考えられる。しかしな
がら、放電加工において最も危険な異常アーク放
電は、一旦発生すると加工液の熱分解によるカー
ボン発生のために、カーボンと被加工物の間の放
電となり、極間インピーダンスが高くなつたよう
な状態になるため、平均電圧による極間状態悪化
の検出は不可能になつてしまうという不具合があ
つた。
As described above, the most common way to determine whether the machining condition is good or bad with conventional electrical discharge machining equipment is to observe the average machining voltage Vg, and when this is low, the machining impedance is low, and this state Possible causes include short circuits, continuous arc discharge, and accumulation of machining powder and sludge between the machining plates. However, the most dangerous abnormal arc discharge in electric discharge machining is that once it occurs, carbon is generated due to thermal decomposition of the machining fluid, resulting in an electric discharge between the carbon and the workpiece, resulting in a state where the impedance between the electrodes becomes high. Therefore, there was a problem in that it became impossible to detect the deterioration of the gap state based on the average voltage.

本発明は上記のような従来のものの欠点を除去
するためになされたもので、極間間隙長を検出し
て、極間状態を判別できるようにした装置を備
え、この装置の判別に基づいて上記極間状態に適
合した電気加工条件すなわち放電ピーク電流値、
放電持続時間、休止時間、印加電圧等の値を自動
的に設定できるようにし、最適な放電エネルギー
の制御を行なうようにした装置を提供することを
目的としている。
The present invention has been made in order to eliminate the drawbacks of the conventional ones as described above, and includes a device that can detect the gap length between poles and determine the state of the gap, and based on the determination by this device. Electrical machining conditions that are compatible with the above gap condition, i.e. discharge peak current value,
The object of the present invention is to provide a device that can automatically set values such as discharge duration, pause time, applied voltage, etc., and can optimally control discharge energy.

以下、本発明の一実施例を第2図及び第3図を
用いて詳述する。第2図における9はデイジタル
スケールであつて、電極支持棒10に取りつけら
れており、電極1が下方に向かうとプラス方向パ
ルスSpを発生し、上方に向かうとマイナス方向
パルスSnを発生する。極間間隙長を正確に知る
ために、1パルスあたり10μm以下のパルス発生
を行なう。本例では5μm/パルスとして説明す
る。11は極間の判別装置となる可逆カウンタ
で、13bitあり5μm×(214−1)すなわち82mm相
当の電極上昇量を記憶できる。可逆カウンタ11
の各ビツトの出力にはデイジタルアナログ変換器
D/Aが接続され、この出力はVoである。D/
Aの出力はコンパレータ12によつて、0Vと比
較され、0Vであればすなわちカウンタ内容が0
であると、パルス発振器13の出力パルスを
ANDゲートを介して、加算パルスLpとしてOR
ゲート15を介して可逆カウンタに加えるので、
可逆カウンタ11は上昇量と、加算パルスを加算
し、下降量を減算する。よつて可逆カウンタ11
の内容は最進位置と、電極現在位置の差となる。
すなわち、加算パルスLpの合計が最進位置であ
り、これから下降と上昇の差の合計である現在値
を引くので、可逆カウンタ11の内容は最進位置
と現在位置の差であることになる。よつて、デイ
ジタルアナログ変換器D/Aの出力は、上記の差
に比例した電圧であるために、この出力V0を検
出処理すれば、実際の極間間隙状態の良否を知る
ことができる。すなわち上記V0が大であれば、
極間状態は最進値より戻つた状態にあることから
何等の不具合、例えば加工粉の滞留にスラツジが
たまつているとか、異常アークによつて加工液が
熱分解してカーボンが発生しているとか、電極の
一部が破損してそのかけらが極間に存在すると
か、が容易に検出できる。しかし、ごく短時間で
あれば極間インピーダンスは断えず変化してお
り、短時間上記の差があつても必ずしも極間状態
が悪いとは判断できないので、所定値以上のV0
の存在が、ある時間続いたことを検出して、判断
する必要がある。第2図における16は電圧比較
器で、差の電圧V0が所定値V1よりも大か小かを
判別している。V0がV1より大になると電圧比較
器16の出力は負となり、トランジスタTrはベ
ース抵抗r1を介してオフ状態となる。時間計測用
コンデンサCは抵抗r2を通して充電され、コンデ
ンサ両端の電圧V3は次式のようにあらわされる。
Hereinafter, one embodiment of the present invention will be described in detail using FIGS. 2 and 3. Reference numeral 9 in FIG. 2 is a digital scale, which is attached to the electrode support rod 10, and generates a positive direction pulse Sp when the electrode 1 moves downward, and a negative direction pulse Sn when it moves upward. In order to accurately determine the gap length between the poles, pulses of 10 μm or less are generated per pulse. In this example, the explanation will be made assuming 5 μm/pulse. Reference numeral 11 denotes a reversible counter serving as a discriminating device between electrodes, which has 13 bits and can store the amount of electrode rise equivalent to 5 μm×(2 14 −1), that is, 82 mm. Reversible counter 11
A digital-to-analog converter D/A is connected to the output of each bit, and this output is Vo. D/
The output of A is compared with 0V by the comparator 12, and if it is 0V, that is, the counter content is 0.
Then, the output pulse of the pulse oscillator 13 is
OR as addition pulse Lp via AND gate
Since it is added to the reversible counter via gate 15,
The reversible counter 11 adds the amount of increase and the addition pulse, and subtracts the amount of decrease. Yotsutte reversible counter 11
The content of is the difference between the most advanced position and the current electrode position.
That is, the sum of the addition pulses Lp is the most advanced position, and since the current value, which is the sum of the difference between the descent and the ascent, is subtracted from this, the content of the reversible counter 11 is the difference between the most advanced position and the current position. Therefore, since the output of the digital-to-analog converter D/A is a voltage proportional to the above-mentioned difference, by detecting and processing this output V0 , it is possible to know whether the actual state of the gap between the poles is good or bad. In other words, if the above V 0 is large,
Since the machining gap condition has returned from the most advanced value, there may be some kind of problem, such as sludge accumulating in the processing powder, or carbon generation due to thermal decomposition of the processing fluid due to abnormal arcing. It is easy to detect whether a part of the electrode is damaged and its fragments are present between the electrodes. However, the inter-electrode impedance changes constantly over a very short period of time, and even if the above difference exists for a short time, it cannot necessarily be determined that the inter-electrode condition is bad .
It is necessary to detect and make a judgment that the existence of has continued for a certain period of time. Reference numeral 16 in FIG. 2 is a voltage comparator, which determines whether the difference voltage V 0 is larger or smaller than a predetermined value V 1 . When V 0 becomes larger than V 1 , the output of the voltage comparator 16 becomes negative, and the transistor Tr is turned off via the base resistor r 1 . The time measurement capacitor C is charged through the resistor r2 , and the voltage V3 across the capacitor is expressed as follows.

よつて電圧比較器17は基準電圧V2にコンデ
ンサ電圧V3が達するまでの間出力が負にならな
いため、発光ダイオード18は点灯しない。そし
て、基準電圧V2できまる所定時間の間、差を示
す電圧V0が上記V1より大であり続けると、電圧
比較器17の出力は負となり、発光ダイオード1
8が点灯し、極間状態の異常発生を知ることがで
きる。
Therefore, the output of the voltage comparator 17 does not become negative until the capacitor voltage V 3 reaches the reference voltage V 2 , so the light emitting diode 18 does not light up. If the voltage V 0 indicating the difference continues to be greater than the above V 1 for a predetermined time determined by the reference voltage V 2 , the output of the voltage comparator 17 becomes negative, and the light emitting diode 1
8 lights up, and it is possible to know that an abnormality has occurred in the gap state.

スイツチ19は時間の関数だけで、極間状態を
判断するか、差の電圧V0の大きさと時間の積の
関数として判断するかを切換える切換手段として
のスイツチで、第2図に示す位置に切換えること
により、単に時間だけの検出では困難な加工、例
えば銅又は銀とタングステンの粉末合金電極と
鉄、超硬合金の加工のように、一瞬にしてアーク
による割れや、タングステンの欠落が発生する場
合には、差の電圧と時間の積の関数として、異常
の発生をすみやかに知ることができる。すなわち
短時間であつても、差が大であればコンデンサC
の充電電流が増え、ただちにコンデンサ電圧V3
がV2に達するからである。すなわち、粉末合金
は、粉(20μ〜50μ径)の脱落により急激に状態
が悪化するので、差の電圧と時間の積の関数とし
て判断する事が有効である。
The switch 19 is a switch that serves as a switching means for determining whether to judge the state between poles only as a function of time or as a function of the product of the magnitude of the difference voltage V 0 and time, and is located at the position shown in Fig. 2. By switching, arc cracking or tungsten chipping can occur instantaneously in machining that is difficult to detect by simply detecting time, such as machining copper or silver and tungsten powder alloy electrodes with iron and cemented carbide. In some cases, the occurrence of an abnormality can be immediately known as a function of the product of differential voltage and time. In other words, if the difference is large even for a short time, capacitor C
The charging current increases and immediately the capacitor voltage V 3
This is because it reaches V 2 . That is, since the condition of powder alloys deteriorates rapidly due to the falling of powder (20μ to 50μ diameter), it is effective to judge the condition as a function of the product of the differential voltage and time.

また、グラフアイト電極対鉄の加工でも、電流
が局部的に集中して流れると、加工液(軽油、ケ
ロシン等)が炭化して、グラフアイトに付着し、
電流集中を防がないと瞬時に極間間隙状態が悪化
するので、差の電圧と時間の積の関数として判断
する事が有効である。
In addition, when machining graphite electrodes versus iron, if the current flows in a locally concentrated manner, the machining fluid (light oil, kerosene, etc.) carbonizes and adheres to the graphite.
If current concentration is not prevented, the interelectrode gap condition will deteriorate instantly, so it is effective to judge it as a function of the product of the difference voltage and time.

一方、スイツチ19を第2図の+V側に切換え
れば、時間の関数だけで極間状態を判断でき、例
えば次のような場合有効である。
On the other hand, if the switch 19 is switched to the +V side as shown in FIG. 2, the state between poles can be determined only by a function of time, which is effective in the following cases, for example.

すなわち、銅電極対鉄の加工では、10〜15m
sec程度連続して検出しないと真の不具合かどう
か判別不能である。また、鉄電極対鉄、ステンレ
スの加工でも、加工の際被加工物の溶出物が橋絡
(ブリツジ)を発生、0.1〜0.3secで判断を要する
ので、時間の関数だけで極間状態を判断する事が
有効である。
In other words, when processing copper electrodes versus iron, the distance is 10 to 15 m.
It is impossible to determine whether it is a true defect unless it is detected continuously for about sec. In addition, when machining iron electrodes versus iron or stainless steel, eluates from the workpiece generate bridges during machining, and judgment is required in 0.1 to 0.3 seconds, so the state of the gap between the electrodes can be determined only as a function of time. It is effective to do so.

また、差の電圧V0を直接電圧計で観測するこ
とにより、最進値と現在値の差を直接観測するこ
とができ、極間状態のモニターとして使用できる
ことは明らかである。
Furthermore, by directly observing the voltage difference V 0 with a voltmeter, the difference between the most advanced value and the current value can be directly observed, and it is clear that it can be used as a monitor of the state between the poles.

そして、上記の極間異常発生検出装置の出力
V5は、最進位置と現在位置の差を検出するカウ
ンタ11の出力20〜213の2進デイジタル値とと
もに、加工電源P/Sに送られ、これらの信号に
より、加工電源P/Sの制御を行なうようにして
いる。
Then, the output of the above-mentioned inter-pole abnormality occurrence detection device
V5 is sent to the machining power source P/S together with the binary digital values of outputs 20 to 213 of the counter 11 that detect the difference between the most advanced position and the current position, and these signals cause the machining power source P/S to I am trying to control this.

第3図は加工電源P/Sの詳細図であつて、本
実施例では、上記信号によつて、放電休止時間と
印加電圧を制御した例を示している。放電休止時
間と印加電圧は放電間隙に影響力を持つが、加工
面の粗さや、電極の消耗に多大な影響を与えない
という特徴があり、本実施例ではこれらを取り上
げたが、他の電気条件であつても加工目的に応じ
て同様な制御を行ないうるのは当然のことであ
る。
FIG. 3 is a detailed diagram of the machining power source P/S, and this embodiment shows an example in which the discharge pause time and the applied voltage are controlled by the above-mentioned signals. Although the discharge pause time and the applied voltage have an influence on the discharge gap, they have the characteristic that they do not have a large effect on the roughness of the machined surface or the wear of the electrode. It goes without saying that similar control can be performed depending on the processing purpose regardless of the conditions.

第3図における30は多桁一致判別回路であつ
て、位置差検出用の可逆カウンタ11の値と休止
時間設定カウンタ19が等しくなることを判別
し、一致するとANDゲート20、ORゲート21
を介してR−Sフリツプフロツプ22をリセツト
する。ただし、上記休止時間設定カウンタ19は
極間状態検出信号V5がない時、すなわち論理
「1」の時には手動プリセツトロータリスイツチ
23により設定することができる。この際は
ANDゲート20は閉である。上記R−Sフリツ
プフロツプ22の出力は増幅器AMPにより最終
段スイツチング素子SWを駆動して、極間に直流
電源Eの電圧のオンオフパルスを供給する。パル
ス持続時間はパルス幅設定用カウンタ25と、こ
の値を所定値に選択するためのスイツチ26によ
り任意に設定される。発振器27の出力は互いに
R−Sフリツプフロツプ22の出力Q,と、
ANDゲート28,29により交互に選択されて、
休止幅、パルス幅の設定に用いられる。
Reference numeral 30 in FIG. 3 is a multi-digit coincidence determination circuit, which determines whether the value of the reversible counter 11 for position difference detection is equal to the pause time setting counter 19, and if they match, an AND gate 20 and an OR gate 21 are used.
The R-S flip-flop 22 is reset via the RS flip-flop 22. However, the rest time setting counter 19 can be set by the manual preset rotary switch 23 when the gap state detection signal V5 is not present, that is, when the logic is "1". In this case
AND gate 20 is closed. The output of the R-S flip-flop 22 drives the final stage switching element SW by the amplifier AMP, and supplies on/off pulses of the voltage of the DC power source E between its poles. The pulse duration is arbitrarily set by a pulse width setting counter 25 and a switch 26 for selecting this value to a predetermined value. The output of the oscillator 27 is connected to the output Q of the R-S flip-flop 22, and
are alternately selected by AND gates 28 and 29,
Used to set pause width and pulse width.

第3図の動作について詳述する。先ず、極間状
態検出信号V5ない時はANDゲート24が開とな
り、ある時、即ち異常時はANDゲート20が開
となる。従つて、休止時間は通常時は手動プリセ
ツトロータスイツチ23により設定した値とな
り、異常時は可逆カウンタ11の値となる。
The operation shown in FIG. 3 will be explained in detail. First, the AND gate 24 is open when the gap state detection signal V5 is not present, and the AND gate 20 is open when there is an abnormality. Therefore, the rest time is the value set by the manual preset rotor switch 23 in normal times, and the value of the reversible counter 11 in abnormal times.

そして、休止時間のカウントがカウンタ19に
より終了すると、R−Sフリツプフロツプ22が
リセツトされ出力によりスイツチング素子SW
がオンとなり、極間にパルスの供給を開始する。
また、出力によりカウンタ25がカウント開始
し、スイツチ26により設定された値に達する
と、R−Sフリツプフロツプ22をセツトし、
出力がなくなることによりスイツチング素子SW
をオフして休止時間となる。
When the counter 19 finishes counting the rest time, the R-S flip-flop 22 is reset and the output switches the switching element SW.
turns on and starts supplying pulses between the poles.
Further, the counter 25 starts counting by the output, and when it reaches the value set by the switch 26, the R-S flip-flop 22 is set.
Due to the loss of output, the switching element SW
Turn it off and it's time for a break.

このように、極間異常状態検出信号V5が論理
「0」になると、休止幅は最進値と現在値の差に
対応する値が自動的に選択され、その差が大きな
ほど休止幅は長くなり、加工量が減少して加工粉
の生成が減り極間の正常化がなされる。逆に差が
小さい時には所定の設定値になる。
In this way, when the abnormal state detection signal V 5 becomes logic "0", a value corresponding to the difference between the most advanced value and the current value is automatically selected as the pause width, and the larger the difference, the shorter the pause width is. This increases the length, reduces the amount of processing, reduces the production of processed powder, and normalizes the machining distance. Conversely, when the difference is small, the predetermined set value is reached.

また、印加電圧Eは極間異常のため極間が拡が
ると、低圧になるように電圧調整器31により調
節され、加工粉の影響等により放電しやすくなつ
て拡がつてしまつた間隙長を、再び正常な値に近
づけるようになつている。このように、電極が被
加工物に対して送り込まれる最進位置と電極の現
在位置との差を検出し、極間の異常量に相応して
電気条件を上記差が少なくなるように制御してい
るため、常に最適な極間間隙長にすることができ
るものであるから、高精度加工の実現が図れる。
In addition, the applied voltage E is adjusted by the voltage regulator 31 so that when the gap widens due to an abnormality in the gap, it becomes a low voltage, and the gap length that has widened due to easy discharge due to the influence of machining powder etc. It is starting to get closer to normal values again. In this way, the difference between the most advanced position at which the electrode is fed into the workpiece and the current position of the electrode is detected, and the electrical conditions are controlled in accordance with the amount of abnormality between the electrodes so that the above difference is reduced. Therefore, the optimum gap length between the poles can be maintained at all times, and high-precision machining can be achieved.

さらに、極間状態の判断は、切換手段により時
間の関数だけで判断するか、上記差の大きさと時
間の積の関数として判断するかを選択することが
できるから、電極の種類、被加工物の種類に応じ
て適切に極間異常状態を判断できる。
Furthermore, the state of the gap between the electrodes can be determined by the switching means, either as a function of time alone or as a function of the product of the magnitude of the difference and time. It is possible to appropriately determine the abnormal state between poles depending on the type.

なお、上記した実施例以外にも、目的とする加
工内容に悪影響を与えない範囲で、放電ピーク電
流値、電流波形、電圧波形、パルス幅等を同様の
方法で制御することができることは明らかであ
る。
In addition to the above embodiments, it is clear that the discharge peak current value, current waveform, voltage waveform, pulse width, etc. can be controlled in a similar manner within the range that does not adversely affect the intended processing content. be.

以上のように、この発明では、電極と被加工物
とを絶縁性加工液を介在させて対向させ、上記電
極と被加工物との極間間隙を所定値に保つように
サーボ制御を行ない、上記電極と被加工物との対
向極間内に放電を発生させて上記被加工物を加工
する放電加工装置において、電極が被加工物に対
して送り込まれる最進位置と電極の現在位置との
差を検出する電極位置検出手段と、上記電極の最
進位置と現在位置の差が所定値より大きくなつて
いる時間、または上記電極の最進位置と現在位置
の差が所定値より大きくなつている時間とその差
の積の値とを択一的に選択する選択手段、この選
択手段により選択された上記電極の最進位置と現
在位置の差が所定値より大きくなつている時間、
またはその時間とその差の積の値が所定値を上回
ると極間状態が悪い状態にあると判断して信号を
出力する極間状態判別手段と、この極間状態判別
手段の信号が入力され、それに応動して極間状態
を良好な状態に回復させるために電気的加工条件
を制御する装置とを備えたので、極間状態を判別
して極間を良好な状態に回復でき、しかも電気加
工条件を制御するので応答が早いという効果があ
る。
As described above, in the present invention, the electrode and the workpiece are opposed to each other with an insulating working fluid interposed therebetween, and servo control is performed to maintain the gap between the electrode and the workpiece at a predetermined value. In an electric discharge machining device that processes the workpiece by generating an electric discharge between opposing electrodes between the electrode and the workpiece, the most advanced position at which the electrode is fed into the workpiece and the current position of the electrode are an electrode position detection means for detecting a difference; and a time period during which the difference between the most advanced position of the electrode and the current position is greater than a predetermined value, or a time period during which the difference between the most advanced position of the electrode and the current position is greater than a predetermined value. a selection means for selectively selecting the time at which the electrode is located and the value of the product of the difference; a time during which the difference between the most advanced position of the electrode selected by the selection means and the current position is greater than a predetermined value;
Alternatively, if the value of the product of the time and the difference exceeds a predetermined value, it is determined that the gap condition is in a bad condition and outputs a signal, and the signal of the gap condition discrimination means is inputted. , and a device that controls the electrical machining conditions in order to restore the machining gap to a good condition in response to this, it is possible to determine the machining gap condition and restore the machining gap to a good condition, and also to control the electrical machining conditions. Since the machining conditions are controlled, the response is quick.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の放電加工装置を示す原理図、第
2図は本発明になる放電加工装置の一実施例を示
す原理図、第3図はその加工電気条件の自動切換
装置の一実施例を示す原理図である。 なお、図中同一符号は同一または相当部分を示
し、1は電極、2は加工槽、3は被加工物、8は
油圧シリンダー、9はデイジタルスケール、11
は可逆カウンタ、13はパルス発振器、D/Aは
デイジタルアナログ変換器、16,17は電圧比
較器、P/Sは加工電源である。
Fig. 1 is a principle diagram showing a conventional electrical discharge machining device, Fig. 2 is a principle diagram showing an embodiment of the electrical discharge machining device according to the present invention, and Fig. 3 is an embodiment of an automatic switching device for machining electrical conditions. FIG. In addition, the same reference numerals in the figures indicate the same or equivalent parts, 1 is an electrode, 2 is a processing tank, 3 is a workpiece, 8 is a hydraulic cylinder, 9 is a digital scale, 11
13 is a reversible counter, 13 is a pulse oscillator, D/A is a digital-to-analog converter, 16 and 17 are voltage comparators, and P/S is a processing power source.

Claims (1)

【特許請求の範囲】[Claims] 1 電極と被加工物とを絶縁性加工液を介在させ
て対向させ、上記電極と被加工物との極間間隙を
所定値に保つようにサーボ制御を行ない、上記電
極と被加工物との対向極間内に放電を発生させて
上記被加工物を加工する放電加工装置において、
電極が被加工物に対して送り込まれる最進位置と
電極の現在位置との差を検出する電極位置検出手
段と、上記電極の最進位置と現在位置の差が所定
値より大きくなつている時間、または上記電極の
最進位置と現在位置の差が所定値より大きくなつ
ている時間とその差の積の値とを択一的に選択す
る選択手段、この選択手段により選択された上記
電極の最進位置と現在位置の差が所定値より大き
くなつている時間、またはその時間とその差の積
の値が所定値を上回ると極間状態が悪い状態にあ
ると判断して信号を出力する極間状態判別手段
と、この極間状態判別手段の信号が入力され、そ
れに応動して極間状態を良好な状態に回復させる
ために電気的加工条件を制御する装置とを備えた
ことを特徴とする放電加工装置。
1. The electrode and the workpiece are faced to each other with an insulating working fluid interposed between them, and servo control is performed to maintain the gap between the electrode and the workpiece at a predetermined value. In an electrical discharge machining device that processes the workpiece by generating electrical discharge between opposing poles,
an electrode position detection means for detecting a difference between the most advanced position at which the electrode is fed into the workpiece and the current position of the electrode; and a time period during which the difference between the most advanced position of the electrode and the current position is greater than a predetermined value. , or selection means for selectively selecting the time during which the difference between the most advanced position of the electrode and the current position is greater than a predetermined value and the value of the product of the difference; When the difference between the most advanced position and the current position is greater than a predetermined value, or the product of that time and the difference exceeds a predetermined value, it is determined that the gap between poles is in a bad state and a signal is output. The present invention is characterized by comprising: a gap condition determining means; and a device to which a signal from the gap condition determining means is input, and in response to the signal, controls electrical processing conditions in order to restore the gap condition to a good state. electrical discharge machining equipment.
JP5386980A 1980-01-22 1980-04-23 Electrode discharge machining device Granted JPS56152527A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5386980A JPS56152527A (en) 1980-04-23 1980-04-23 Electrode discharge machining device
CH6279/81A CH659416A5 (en) 1980-01-22 1981-01-21 APPARATUS FOR ELECTRICAL DISCHARGE PROCESSING.
DE3134443T DE3134443C2 (en) 1980-01-22 1981-01-21 Device for the electroerosive machining of a workpiece
US06/302,480 US4510364A (en) 1980-01-22 1981-01-21 Electric discharge machining apparatus
PCT/JP1981/000014 WO1981002127A1 (en) 1980-01-22 1981-01-21 Electrical discharge machining apparatus which detects gap status between electrode and workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5386980A JPS56152527A (en) 1980-04-23 1980-04-23 Electrode discharge machining device

Publications (2)

Publication Number Publication Date
JPS56152527A JPS56152527A (en) 1981-11-26
JPS641252B2 true JPS641252B2 (en) 1989-01-11

Family

ID=12954758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5386980A Granted JPS56152527A (en) 1980-01-22 1980-04-23 Electrode discharge machining device

Country Status (1)

Country Link
JP (1) JPS56152527A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH655032A5 (en) * 1982-06-30 1986-03-27 Mitsubishi Electric Corp ELECTRIC DISCHARGE MACHINE FOR ELECTRO-EROSION.
US4582974A (en) * 1982-08-02 1986-04-15 Mitsubishi Denki Kabushiki Kaisha Electric discharge machine including means for detecting abnormal discharge conditions

Also Published As

Publication number Publication date
JPS56152527A (en) 1981-11-26

Similar Documents

Publication Publication Date Title
US5869797A (en) Bipolar electrical discharge machine which adjusts voltage polarity based on short circuit detection
US4510364A (en) Electric discharge machining apparatus
JPS641252B2 (en)
JPS637890B2 (en)
JPS641251B2 (en)
JPS6029230A (en) Wire-cut electrical discharge machining device
JPS61159326A (en) Method of obtaining excellent machining surface on electrical discharge machining
JPS6158252B2 (en)
JPS6158254B2 (en)
JPS641254B2 (en)
US3510621A (en) Electrode positioning control for electric discharge machining apparatus and the like
JP2676283B2 (en) Control method of electrolytic processing machine
JPS563143A (en) Power source device for wirecut type electrospark machining
JPS641253B2 (en)
JPS61111831A (en) Wire-cut electric discharge machinine
US3679566A (en) Apparatus with stem overcurrent protection
JPS61111837A (en) Wire-cut electric discharge machinine
JPS61111841A (en) Wire-cut electric discharge machinine
JPH0276624A (en) Electric discharge machine
KR820002134B1 (en) Method of detecting gap conditions in edm process with monitoring pulses
JPH0661657B2 (en) Wire cut electrical discharge machine
JPS6195777A (en) Method and device for groove detection
JPS6029212A (en) Electric discharge machine
JPS61111836A (en) Wire-cut electric discharge machinine
JPH0757447B2 (en) Disconnection prediction device