JPS61111835A - Wire-cut electric discharge machinine - Google Patents
Wire-cut electric discharge machinineInfo
- Publication number
- JPS61111835A JPS61111835A JP23118184A JP23118184A JPS61111835A JP S61111835 A JPS61111835 A JP S61111835A JP 23118184 A JP23118184 A JP 23118184A JP 23118184 A JP23118184 A JP 23118184A JP S61111835 A JPS61111835 A JP S61111835A
- Authority
- JP
- Japan
- Prior art keywords
- gap
- discharge
- state
- wire
- machining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/02—Wire-cutting
- B23H7/04—Apparatus for supplying current to working gap; Electric circuits specially adapted therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、ワイヤ電極ケ用いて被加工物の切削を電気
的に行う加工装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a processing device that electrically cuts a workpiece using a wire electrode.
電気的エネルギによって被加工物音加工することは従来
広く行われており、周知であるが、最近の技術として注
目をあびている加工装#にワイヤ状の電極を用いて、あ
たかも[糸のこ1のようK。Processing the sound of a workpiece using electrical energy has been widely practiced and is well known, but it is now possible to use wire-shaped electrodes in processing equipment, which has been attracting attention as a recent technology. Yo K.
被加工物を電気的エネルギで加圧−lるいわゆ4)ワイ
ヤカット放電加工装置がある。4) There is a wire-cut electric discharge machining apparatus in which a workpiece is pressurized with electrical energy.
第7図は、上記ワイヤカット放電加工装置m ?示す構
成図である。1は被加工物で、予じめドリルなどで明け
られた紡孔1aにワイーヤ嵜、極2を通し、この孔壁と
ワイヤ電極2との間に絶縁性の液3全介在させてbる。FIG. 7 shows the above-mentioned wire cut electric discharge machining apparatus m? FIG. Reference numeral 1 denotes a workpiece, in which a wire hole and a pole 2 are passed through a spinning hole 1a that has been drilled in advance with a drill, etc., and an insulating liquid 3 is entirely interposed between the hole wall and the wire electrode 2. .
上記絶縁性の液3を以下加工液と記述する。加工液は、
タンク4からポンプ5で、被加工物1とワイヤ電極2の
間隙にノズル6により噴射芒れる。The above-mentioned insulating liquid 3 will be hereinafter referred to as a processing liquid. The processing fluid is
A nozzle 6 injects the liquid from the tank 4 into the gap between the workpiece 1 and the wire electrode 2 using the pump 5 .
被加工物1とワイヤ電極2との間の相対運動は、被加工
物1全載せているテーブル11の移動により行われる。The relative movement between the workpiece 1 and the wire electrode 2 is performed by moving the table 11 on which the workpiece 1 is entirely placed.
テーブル11は、Y軸駆動モータ13とX軸モータ】2
により駆動される。以上の構成により、被加工物1と電
極2の相対運動は前述のX1Y軸平面内に於て2次元平
面の運動となる。The table 11 has a Y-axis drive motor 13 and an X-axis motor】2
Driven by. With the above configuration, the relative movement between the workpiece 1 and the electrode 2 becomes a two-dimensional plane movement within the aforementioned X1Y axis plane.
ワイヤ電極2は、ワイヤ供給リール7により供給され、
下部ワイヤガイド8A、被加工物1中を通過して上部ガ
イド8Bに達し、電気エネルギ給電、s9i介して、ワ
イヤ巻取り兼テンションローラ10により巻取られる。The wire electrode 2 is supplied by a wire supply reel 7,
The wire passes through the lower wire guide 8A, the workpiece 1 and reaches the upper guide 8B, where it is wound up by the wire winding and tension roller 10 via the electrical energy supply s9i.
土filjX、Y軸の駆動モータ12.13の駆動及び
制御會行う制御装置14は、数値制御装置(NC制御装
装置)f−倣い装置あるいは、電算機を用いた制御装置
が用いられている。The control device 14 that drives and controls the drive motors 12 and 13 for the X and Y axes is a numerical control device (NC control device) f-copying device or a control device using a computer.
電気エネルギ全供給する加工電源15Fi、、例えば、
直流電源15a、スイッチング素子15b1電流制限抵
抗15c及び前記スイッチング素子15bi制御する制
御回路15dによって構成されている。A processing power source 15Fi that supplies all electrical energy, for example,
It is composed of a DC power supply 15a, a switching element 15b1, a current limiting resistor 15c, and a control circuit 15d that controls the switching element 15bi.
次に従来装置の動作について説明する。加工電源15か
らは高周波パルス電圧が被加工物1とワイヤ電極2間に
印加され、1つのパルスによる放電爆発により被加工物
1の一部を溶融飛散させる。Next, the operation of the conventional device will be explained. A high-frequency pulse voltage is applied between the workpiece 1 and the wire electrode 2 from the machining power supply 15, and a part of the workpiece 1 is melted and scattered by a discharge explosion caused by one pulse.
この場合、極間は高温によってガス化及びイオン化して
いるため、次のパルス電圧全印加するまでには一定の休
止時間を必要とし、この休止時間が短か過ぎると極間が
充分に絶縁回復しないうちに、再び同一場所に放電が集
中してワイヤ電極2の溶断を発生させる。In this case, the gap between the electrodes is gasified and ionized by the high temperature, so a certain pause time is required before the next full pulse voltage is applied. If this pause time is too short, the insulation between the electrodes will not recover sufficiently. Before this occurs, the discharge concentrates again at the same location, causing the wire electrode 2 to melt.
従って、通常の加工電源では被加工物の種類、板厚等に
依り加工電源15の休止時間等の電気条件全ワイヤ切れ
を生じさせない程度の充分余裕を持った条件で加工する
のが普通である。従って、加工速度は理論的限界値より
相当低くならざるを得ない。更にワイヤ電極2が均一で
なく太さが変化する場合、もしくはワイヤ電極の一部に
突起やキズ等があり放電が集中した場合にはワイヤ電極
2の溶断は避けられない。Therefore, with a normal machining power source, depending on the type of workpiece, plate thickness, etc., the machining power source 15 is normally operated under electrical conditions such as downtime that have enough margin to prevent wire breakage. . Therefore, the machining speed must be considerably lower than the theoretical limit value. Furthermore, if the wire electrode 2 is not uniform and its thickness changes, or if a portion of the wire electrode has protrusions or scratches and discharge is concentrated, fusing of the wire electrode 2 is unavoidable.
〔発明が解決しようとする問題点3
以上のように従来のワイヤカット放電加工装置では、ワ
イヤ電極2の断線を引き起さないようにするため、加工
電源15の出力エネルギーを少くする等、仮に放電の集
中がワイヤ電極2の一点に集中l、ても断線【、ないよ
うにしていたため、加工速度が著しく低いという問題点
があった。[Problem to be solved by the invention 3 As described above, in the conventional wire-cut electric discharge machining apparatus, in order to prevent the wire electrode 2 from breaking, the output energy of the machining power source 15 is reduced, etc. Since the electric discharge was concentrated at one point on the wire electrode 2, there was a problem that the machining speed was extremely low because the wire was not broken even if it was concentrated at one point.
そこで、従来は極間から各種信号成分を取り出して極間
状警音検出するこころみも行われている。Therefore, conventional attempts have been made to extract various signal components from between the poles and detect the warning sound between the poles.
しかし、ワイヤ電極2は弦振動(ワイヤガイド間の定在
波振動)により被加工物内で振動し、加工中に極間開放
→放電→短絡→放電→開放の状態を数KIIzの周波数
で繰り返えすため、これが、外乱となって正確な極間状
態の検出がきわめて困難であるという問題点があった。However, the wire electrode 2 vibrates within the workpiece due to string vibration (standing wave vibration between the wire guides), and during machining, the state of gap open → discharge → short circuit → discharge → open is repeated at a frequency of several KIIz. Therefore, there is a problem in that this causes a disturbance, making it extremely difficult to accurately detect the state between the poles.
この発明はかかる問題点を解決するためになされたもの
であり、正確な極間状態の検出ができ該検出結果を利用
E〜てワイヤ電極の断線事故の発生を確実に防止するこ
とのできるワイヤカット放電加工装置tを得ること全目
的とする。This invention has been made to solve these problems, and provides a wire that can accurately detect the state of the gap between electrodes and utilize the detection results to reliably prevent wire electrode breakage accidents. The overall purpose is to obtain a cut electric discharge machining device t.
この発明にかかるワイヤカット放電加工装置は、ワイヤ
電極と被加工物との対向する極間間隙における該ワイヤ
電極の弦振動に起因する開放状態と短絡状態を除去、つ
まり、ワイヤ電極の弦振動における放電発生のある時間
のみ周期的にサンプリングして上記極間々隙で放電しt
際の電圧印加後の時間の分布状態を検知する検知手段と
、この検知手段により検知さする電圧印加から放電発生
までの時間の分布状態を予め設定した極間々隙状態の良
否を示す分布状態と比較し、極間状態を判断して信号を
出力する極間状態判別手段と、この極間状態判別手段の
出力に基づいて上記絶縁性加工液の噴出圧力を制御する
制御手段會備えたものである。The wire-cut electric discharge machining apparatus according to the present invention eliminates the open state and short-circuit state caused by the string vibration of the wire electrode in the gap between the opposing poles of the wire electrode and the workpiece. Periodically sample only the time when discharge occurs and discharge in the gap between the electrodes.
a detection means for detecting a time distribution state after the voltage is applied; and a distribution state indicating the quality of the electrode gap state, which is a preset time distribution state detected by the detection means from the voltage application to the occurrence of the discharge. The apparatus is equipped with a gap condition determining means for comparing the gap condition, determining the gap condition and outputting a signal, and a control means for controlling the ejection pressure of the insulating machining fluid based on the output of the gap condition determining means. be.
この発明においては、極間に電圧印加後、放電発生に至
るまでの時間分布状態ケワイヤ電極の弦振動の影響を排
除して検知手段で検知し、この検知された時間分布状態
と予め設定した極間間隙状態の良否を示す分布状態とを
極間状態判別手段で比較l−1制御手段は極間状態判別
手段から異常判別信号を受けたときには、加工液の噴射
圧を増加してスラッジの排出能力を増加させ、スラッジ
要因によるインピーダンス低下にともなう放電集中を解
消1−て、ワイヤ電極の断線全防止するように制御する
。In this invention, after voltage is applied between the electrodes, the time distribution state up to the occurrence of discharge is detected by the detection means while eliminating the influence of string vibration of the cable wire electrode, and this detected time distribution state and the preset polarity are detected. The control means compares the distribution state indicating the quality of the gap state with the distribution state by the gap state discrimination means. When the control means receives an abnormality determination signal from the gap state discrimination means, the control means increases the injection pressure of the machining fluid and discharges the sludge. Control is performed to increase the capacity, eliminate discharge concentration caused by impedance reduction due to sludge factors, and completely prevent wire electrode disconnection.
以下、図面に基づいてこの発明の好適な実施例全説明す
る。第1図はこの発明における極間状態の検出原理全説
明するための極間の放電々圧波形と、七の各放電々圧波
形における電圧印加後放電開始までの無放電時間の分布
状態ケ示すもので、実験により得らn、た結果である。Hereinafter, preferred embodiments of the present invention will be fully explained based on the drawings. Figure 1 shows the discharge voltage waveform between the electrodes to fully explain the detection principle of the electrode gap state in this invention, and the distribution state of the no-discharge time from voltage application to the start of discharge in each of the seven discharge voltage waveforms. This is the result obtained by experiment.
尚、放′隠開始点は、電圧の立下りの時点を検出してい
るため、パルスのオン→オフ時も信号が出る。この分布
状態と極間状態との関係から以下のことが判明している
。Note that since the release start point is detected at the time when the voltage falls, a signal is also output when the pulse turns from on to off. The following has been found from the relationship between this distribution state and the interpolar state.
(A) 極間開放状態(電極、被加工物間が完全に離
れており加工していない状態)會除いては、電圧印加後
2μ秒以内に放電の開始する率が高い。(A) Except for the open electrode state (the state where the electrodes and workpiece are completely separated and are not being processed), the rate of discharge starting within 2 μs after voltage application is high.
(11) ワイヤ電極の断線直前状態の時には、上記
2μ秒以内に放電全開始する比率が70優を越す。(11) When the wire electrode is about to break, the rate of full discharge starting within 2 microseconds exceeds 70.
(C) 正常放電時は、電圧印加後2μ秒までの分布
が30%程度あり、その後はなだらかに減少する分布と
なる。(C) During normal discharge, the distribution is about 30% up to 2 μs after voltage application, and then the distribution gradually decreases.
(2) きわめて極間々隙を狭くl−た時、上記0のワ
イヤ断線の断線直前状態に似てくるが、それでも2〜1
0μ秒の間における分布は10チ以−ヒ存在する。(2) When the gap between the poles is made extremely narrow, it becomes similar to the state immediately before the wire breakage in 0 above, but still 2 to 1
There are more than 10 distributions during 0 μs.
[F] 極間々隙が開くように極間サーボを行うと、1
0〜20チは2μ秒以内で放電し、それ以後なだらかに
減少する。[F] When servoing between poles is performed so that the gap between poles is widened, 1
From 0 to 20 inches, the discharge occurs within 2 microseconds, and then it gradually decreases.
(ト)短絡時は放電が生じない。(g) No discharge occurs during short circuit.
なお、上記翰〜(ト)は第1図の囚〜■に対応する。Note that the above 翰~(g) corresponds to 翰~■ in Figure 1.
以上の結果より次のような状態であれば、極間々隙状態
は異常ではない、つまり、正常状態であるという判断が
できる。Based on the above results, it can be determined that the pole gap state is not abnormal, that is, it is a normal state, if the following conditions exist.
ワイヤ電極の弦振動による極間開放→放電→短絡→放電
→開放の周期中放電時のみについてサンプリングし、該
放電中における電圧印加後放電発生までの無負荷電圧印
加時間の分布状態において、(1)2〜10μ秒に放電
開始するパルスが10チ以ヒ存在する。During the period of opening → discharge → short circuit → discharge → open between the electrodes due to string vibration of the wire electrode, only the discharge time is sampled, and in the distribution state of the no-load voltage application time from voltage application to discharge occurrence during the discharge, (1 ) There are more than 10 pulses that start discharging in 2 to 10 μs.
(2)24秒以内に放電するパルスの比率が50チを越
さない。(2) The ratio of pulses discharged within 24 seconds does not exceed 50.
(3) τ、でも放電しない比率が50チを越さない
。(3) τ, but the ratio of no discharge does not exceed 50ch.
第2図は、この実施例を含む概要図であって、極間々隙
に電圧を印加し、放電電流を流すスイッチングトランジ
スタ15bは、スイッチングアンプ16により駆動芒れ
る。このスイッチングアンプ16に入力されるパルス休
止信号はパルス休止発生回路17によって作られる。こ
のパルス休止発生回路17の基本クロツクパルスはクロ
ックパルス発生器18によって発生される。クロックパ
ルスの周波数は極間印加電圧の放電までの時間のサンプ
リングにも使用する1こめI Ml−I2以上の周波数
ケ必要とする。FIG. 2 is a schematic diagram including this embodiment. A switching transistor 15b, which applies a voltage to the gap between poles and causes a discharge current to flow, is driven by a switching amplifier 16. A pulse pause signal input to this switching amplifier 16 is generated by a pulse pause generation circuit 17. The basic clock pulses of this pulse pause generation circuit 17 are generated by a clock pulse generator 18. The frequency of the clock pulse needs to be at least 1 I Ml - I2, which is also used for sampling the time until the discharge of the voltage applied between the electrodes.
第2図中、19は極間電圧の立下りを検出する回路で、
抵抗rl r ’tによって分圧され、コンパレータ
19aで基準電圧Vrより下った時点の信号音、抵抗r
1、コンデンサC,で構成される立下り微分回路によっ
て信号S、として取り出している。In Figure 2, 19 is a circuit that detects the fall of the voltage between electrodes,
The voltage is divided by the resistor rl r't, and the signal sound at the time when the voltage falls below the reference voltage Vr at the comparator 19a, the resistor r
1 and a falling differential circuit composed of a capacitor C, which extracts the signal S.
前記ワイヤ電極の弦振動による極間開放時と短絡時は、
極間tPi:、の立上りも立下りもないから、上記微分
回路により弦振動による外乱要素全敗り除くことができ
る。When the electrode gap is open and shorted due to string vibration of the wire electrode,
Since there is no rise or fall of the pole distance tPi:, all disturbance elements due to string vibration can be eliminated by the above-mentioned differential circuit.
極間状態判別回路20はクロックパルス発生器18から
クロックパルスCI、に、パルス休止発生回路17から
信号SI、微分回路から信号Stk受けて、極間の放電
状態を判断するもので、その回路構成および七の動作を
以下、第3図と第4図を用いて説明する。電圧が極間々
隙に印加されリングカウンタ21が動作し、ORゲ−)
22.〜22nは、各時間毎にゲート開の状態となる。The inter-electrode state determination circuit 20 receives the clock pulse CI from the clock pulse generator 18, the signal SI from the pulse pause generation circuit 17, and the signal Stk from the differentiation circuit, and determines the discharge state between the inter-electrode. The operations of steps 7 and 7 will be explained below using FIGS. 3 and 4. A voltage is applied to the gap between the poles, the ring counter 21 operates, and an OR game is performed.
22. ~22n is in a gate open state every time.
例えば、ORゲート22.は0〜5μ秒の間出力はII
I Hとなっている。この間に放電が発生1.て電圧
立下り信号S、が入力さ第121と、A N I)ゲ−
1・231〜23nk介してカウンタ24.〜24nに
所定時間における区間毎の放′#M1分布に沿ったパル
ス数が計数さtする。所定時間としては、極間々隙状態
変化の連間から鑑み、10〜30m秒が、実験結束から
も適切と考えられている。これらカウンタ241〜24
nの内容は、ディジタルコンパレータ25.〜25nに
よって判別され、所定時間において何個以上あるいは以
下のパルスがどのような無負荷電圧印加時間の分布で放
電したかが明らかとなる。For example, OR gate 22. The output is II for 0 to 5 μs.
It is IH. During this time, discharge occurs 1. A voltage falling signal S is input to the 121st and ANI) gates.
Counter 24.1 through 231-23nk. .about.24n, the number of pulses along the radiation #M1 distribution for each section in a predetermined period of time is counted. As the predetermined time, 10 to 30 msec is considered to be appropriate based on experimental results, in view of the continuous change in the state of the gap between the poles. These counters 241 to 24
The contents of n are determined by the digital comparator 25. .about.25n, and it becomes clear how many or fewer pulses are discharged in a predetermined period of time and with what kind of no-load voltage application time distribution.
前述のように、分布状況は異常と判別される分布と、正
常とされる分布に分類され、異常と判断さねた場合にこ
れをカウンタ26で更に計数する。As described above, the distribution status is classified into a distribution determined to be abnormal and a distribution determined to be normal, and if the distribution is not determined to be abnormal, the counter 26 further counts this distribution.
−また正常と判断される分布の場合には、カウンタ26
ケリセツトするので、このカウンタ26は、異常状態と
判断される時、すなわち電圧印加後2μ秒以内に放電し
ている率が50俤以上あるいは20μ秒時点でも尚放電
しない率が50係以上の時はカウンタ自答が増加し、2
〜10μ秒で放電丁2)パルスがlO−以上存在する時
にはただちにカウンタ26がリセットされる。よって正
常であit r、r ’4 、異常であればカウンタ内
容増加という状態ケ〈ユかえすので、このカウンタ内容
tディジタルアナログ変換器27?r用いて、アJ−u
グミ用v0を観察することによつ−C4,極間々隙状帽
σ月贅否全判別できる。すなわちアリログ電、圧v0が
大であれば異常放電に近づいていることとなり、例えば
被加工粉の滞留によって極間々隙にスラッジがfcまっ
ている等のワイヤ電極の断線直前状態の不具合が容易に
検出できる。- Also, if the distribution is judged to be normal, the counter 26
Since the counter 26 is reset, when it is determined that an abnormal state exists, that is, when the rate of discharge within 2 μs after voltage application is 50 or more, or the rate of not discharging even after 20 μs is 50 or more, the counter 26 is set. Counter self-answer increases, 2
2) The counter 26 is reset as soon as more than 1O- pulses are present. Therefore, if it is normal, it r, r '4, and if it is abnormal, the counter content increases. Using r, AJ-u
By observing v0 for gummies, it is possible to distinguish between -C4, extremely gap-shaped cap, σ, and bulge. In other words, if the arithmetic voltage and pressure v0 are large, it means that abnormal discharge is approaching, and problems that occur immediately before the wire electrode breaks, such as sludge being trapped in the gap between the electrodes due to the accumulation of workpiece powder, can easily occur. Can be detected.
しかしごく短時間であれば極間々隙状態は断えず変化し
ており、短時間アナログ電圧v0があっても必ずしも極
間々隙状態が悪いとは判断できない。そこで、ディジタ
ルアナログ変換器27の出力X0の所定値以上の存在が
ある時間続いたことを検出して、極間々隙状態の良否全
判断する必要がある。However, in a very short period of time, the pole gap state is constantly changing, and even if the analog voltage v0 is present for a short time, it cannot necessarily be determined that the pole gap state is bad. Therefore, it is necessary to detect whether the output X0 of the digital-to-analog converter 27 has been greater than a predetermined value for a certain period of time, and to judge whether the gap state is good or bad.
第5図における電圧比較器28はディジタルアナログ変
換器27の出力Vaが所定値V 11よりも大か小かを
判別している。Vo>VoKなると、電圧比較器28の
出力は負となり、ペース抵抗29を介してスイッチング
用トランジスタ30をオフ状態にする。このため、時間
計測用コンデンサ31L1匿)M: 32 k介【−て
充電される。このコンデンサ31の両端電圧Vは次式の
ようにあられされる。The voltage comparator 28 in FIG. 5 determines whether the output Va of the digital-to-analog converter 27 is larger or smaller than a predetermined value V11. When Vo>VoK, the output of the voltage comparator 28 becomes negative, and the switching transistor 30 is turned off via the pace resistor 29. Therefore, the time measuring capacitor 31L1 is charged via the time measuring capacitor 31L1. The voltage V across this capacitor 31 is expressed by the following equation.
−ユ
Vs+ = V4111 exp )ただ1
〜「は抵抗32の抵抗値
Cはコンデンサ31の容量
tけ時間
このコンデンサ310両端電圧V□は基準電圧Vと電r
E比較器33で比較さね、る。V□〈Vllの期間は電
圧比較器33の出力が負にならないため、発光ダイオー
ド34は点灯しない。セしてVo>■3.の状態が所定
時間継続してV、I>vtIになると、電圧比較器33
の出力が負となり、発光ダイオード34ケ抵抗351に
介【−で点灯させて極間々隙状態の異常発生ケ表示する
ものである。-yuVs+ = V4111 exp) only 1
~ "The resistance value C of the resistor 32 is the capacitance t of the capacitor 31. The voltage V □ across the capacitor 310 is the reference voltage V and the current r.
Compare with E comparator 33. During the period of V□<Vll, the output of the voltage comparator 33 does not become negative, so the light emitting diode 34 does not light up. Set Vo>■3. When the state continues for a predetermined time and becomes V, I > vtI, the voltage comparator 33
The output becomes negative, and the 34 light emitting diodes are turned on through the resistors 351 to indicate the occurrence of an abnormality in the gap between the poles.
スイッチ36は、時間の関数だけで極間々隙状態分判断
−「るか、ディジタルアナログ変換器27の出力y0の
大きさと時間の積の関数として判断するかを切換えるた
めのスイッチである。すなわち単に時間だけの検出では
極間々隙状態の異常判別の困難な加工の場合には、スイ
ッチ36を図示例のように接点36a側に投入すると、
ディジタルアナログ変換器27の出力v0と時間の積の
関数として、極間々隙状態の異常発生をすみやかに知る
ことができる。上記の出力V0が大であわばコンデンサ
31の充電電流が増t、ただちにコンデンサ31の両端
電FEVが基準1ぼ、1[v□に達するからである。The switch 36 is a switch for switching whether to judge the pole gap state only as a function of time or as a function of the product of the magnitude of the output y0 of the digital-to-analog converter 27 and time. In the case of machining in which it is difficult to determine abnormalities in the gap between poles by detecting only time, if the switch 36 is turned to the contact 36a side as shown in the example,
As a function of the product of the output v0 of the digital-to-analog converter 27 and time, the occurrence of an abnormality in the pole gap state can be immediately known. This is because when the above-mentioned output V0 is large, the charging current of the capacitor 31 increases by t, and the electric current FEV across the capacitor 31 immediately reaches the reference value of 1V, 1[V□.
また、上記の出力V。を山接璽、川口1で観測−rるこ
とにより、極間々隙状態のモニターとl−で使用できる
ことは明らかである。In addition, the above output V. It is clear that it can be used as a monitor of the polar gap state by observing -r at Yamaguchi and Kawaguchi 1.
以下、上記極間状態判別手段20の異常検出カウント2
6からの検出信号SAに応じて極間々隙への加圧液噴出
圧力を変化させる制御手段3701例を第6図について
説明する。第6図において、加工液タンク4から加工液
供給ポンプ5より吸い上げられた加工液3は、電磁パル
11011手動バルブ102を介してパイプ103を通
り、ノズル6に導かれる。この加工液圧は液圧メータリ
レー105により観測され、しかも所定圧力會越すと−
り記液圧メータリレー105からフィードバック信月S
Bがコントローラ106にフィードバックこれ、このコ
ントローラ106の出力で電磁バルブ101が制御され
て適切な設定圧力全維持する。Hereinafter, the abnormality detection count 2 of the gap state determining means 20 will be described below.
An example of a control means 3701 for changing the pressurized liquid ejection pressure to the gap between the poles in accordance with the detection signal SA from 6 will be described with reference to FIG. In FIG. 6, the machining fluid 3 sucked up from the machining fluid tank 4 by the machining fluid supply pump 5 passes through a pipe 103 via an electromagnetic pulse 11011 and a manual valve 102, and is guided to the nozzle 6. This machining fluid pressure is observed by the fluid pressure meter relay 105, and if it exceeds a predetermined pressure, -
Feedback from hydraulic pressure meter relay 105
B is fed back to the controller 106, and the output of the controller 106 controls the electromagnetic valve 101 to maintain the appropriate set pressure.
なお、手動バルブ102は、電磁バルブ101が動作【
〜ない時の最低圧力全維持するためのものである。Note that the manual valve 102 is operated by the electromagnetic valve 101 [
- This is to maintain the lowest pressure at all times.
加工状態が悪化【−1種間々隙に加工粉が滞留すると、
異常検出カウンタ26から出力された検出4W号SAが
バルブコントローラ106に入力されるため、電磁バル
ブ101は開放となり、液圧メータリレー105からフ
ィードバック信号SBが出力されるまで開き続ける。Processing conditions worsen [-1 If processing powder stays in the gaps,
Since the detected 4W SA output from the abnormality detection counter 26 is input to the valve controller 106, the electromagnetic valve 101 is opened and continues to be opened until the feedback signal SB is output from the hydraulic meter relay 105.
この強い噴出圧力によって、極間々隙に存在していた加
工粉はすみやかに除去されて極間状態は正常状態に回復
する。回復すると、検出信号8人は出力さn2なくなり
、電磁バルブ101は閉じ、手動バルブ102のみで設
定された弱い圧力に戻る。Due to this strong ejection pressure, the machining powder present in the gap between the mazes is quickly removed, and the state between the mazes is restored to its normal state. When the pressure is recovered, the detection signal 8 no longer outputs n2, the electromagnetic valve 101 closes, and the pressure returns to the weak pressure set only by the manual valve 102.
なお、何故2種の圧力が必要かについて述べると、一般
に、0.05呻/cIIi程度の圧力の時、最も極間イ
ンピーダンスが適切で(適度に汚れているほうが放電し
やすく、加工の安定性がよい。)、また0、5kt/−
以一ヒとなると、極間々隙のインピーダンスが高くなり
すぎて放電のための間隙長が狭くなりすぎ、短絡が発生
しやすくなって加工が不安定になる等の不具合があるた
め、通常は0.051w/c+J以下で加工しているの
が望ましく、極間が汚れすぎたり、加工のスラッジが一
部に滞留1.た時のみ、高圧の液流會必要とするのであ
る。Regarding why two types of pressure are necessary, in general, when the pressure is about 0.05 mm/cIIi, the impedance between the electrodes is most appropriate (moderately dirty ones are easier to discharge and improve machining stability). ), and 0.5kt/-
If this happens, the impedance of the gap between the poles will become too high and the gap length for discharge will become too narrow, making short circuits more likely to occur and machining becoming unstable. It is desirable to process at less than .051w/c+J, as the gap between the machining parts may become too dirty or sludge from processing may accumulate in some areas.1. Only when high-pressure fluid flow is required.
以上のように、この発明に11+げ、被加工物とワイヤ
′電極間に1111E印加後、故W発生に至るまて・の
時間分布状態全ワイヤ電極の弦振動の影II ?r J
JI除して検出し該検出結果をもとVこ1.てIE常i
ll 1!と異常放電の判別を行なうものであるから、
極間状態の良否を正確に判別できる。そして判別された
:極間々隙状態の良否に応動【−て加工液噴出圧力
音制御するため、極間々隙に生成する加工粉の排出が能
率的に行なわれることになり、加工能率會著L <改善
できる。すなわち、加工粉が極間々隙に存在すると放電
の火花は電極→加工粉→被加工物の経路で発生するため
、放電エネルギーのかなりの割合が加工粉と加工液の熱
分解に費やネれ、加工速度が低下するという現象ケ防止
でき、ワイヤ′fjL極の局部消耗や、放電集中による
断線を未然に防ぐことができるという効果がある。As described above, the present invention is based on the time distribution state of the string vibration of all wire electrodes after applying 1111E between the workpiece and the wire electrode, leading to the generation of W. r J
Detect by dividing JI, and based on the detection result, calculate V1. IE always
ll 1! and abnormal discharge is determined.
It is possible to accurately determine whether the gap condition is good or bad. It was determined that: Since the machining fluid ejection pressure sound is controlled in response to the quality of the machining gap, the machining powder generated in the machining gap can be efficiently discharged, and the machining efficiency group L <It can be improved. In other words, if machining powder is present in the gap between the machining plates, sparks from the discharge will be generated along the path of electrode → machining powder → workpiece, so a considerable proportion of the discharge energy will be spent on thermal decomposition of machining powder and machining fluid. This has the effect of preventing the phenomenon of a decrease in machining speed, and preventing local wear of the wire 'fjL pole and wire breakage due to concentration of electric discharge.
尚、本実施例では噴出、噴射の事例で説明してきたが、
吸引による加工の場も全く同様の効果會得ることは明ら
かである。In addition, although this example has been explained using examples of ejection and injection,
It is clear that exactly the same effect can be obtained in the case of machining using suction.
第1図はこの発明の原理説明図、第2図はこの発明の装
置構成の概要図、第3図は極間々隙状態判別手段の回路
構成図、第4図は第3図の回路動作ケ説明するためのタ
イムチャート、第5図は極間々隙状態判別結果の表示回
路図、第6図は判別信号に従って加工液の噴出圧力を制
御する制御手段の1例ヶ示す概略構成図、第7図は従来
のワイヤカット放電加工装置を示す原理図である。
1°゛°被加工物、 2・・・ワイヤ電極、 3・
・・加工液、 19・・・検知手段(極間電圧の立下
り検出回路)、 20・・・極間々隙状態判別手段、
37・・・制御手段。
なお、図中同一符号は同−又は相当部分を示す。FIG. 1 is an explanatory diagram of the principle of the present invention, FIG. 2 is a schematic diagram of the device configuration of the present invention, FIG. 3 is a circuit configuration diagram of the pole gap state determining means, and FIG. 4 is a diagram of the circuit operation of FIG. 3. A time chart for explanation, FIG. 5 is a display circuit diagram of the determination result of the pole gap state, FIG. 6 is a schematic configuration diagram showing one example of a control means for controlling the jetting pressure of machining fluid according to the determination signal, and FIG. The figure is a principle diagram showing a conventional wire-cut electric discharge machining device. 1°゛° workpiece, 2...wire electrode, 3.
... Machining fluid, 19... Detection means (fall detection circuit of inter-electrode voltage), 20... Inter-electrode gap state determination means,
37... Control means. Note that the same reference numerals in the figures indicate the same or equivalent parts.
Claims (1)
させ、そのワイヤ電極と被加工物間にパルス電圧を印加
して両者間に放電を発生させ、その放電エネルギで上記
被加工物を加工するワイヤカット放電加工装置において
、上記ワイヤ電極と被加工物との対向する極間間隙にお
ける該ワイヤ電極の弦振動に起因する開放状態と短絡状
態を除去して、上記極間々隙で放電した際の電圧印加後
の時間の分布状態を検知する検知手段と、この検知手段
により検知される電圧印加から放電発生までの時間の分
布状態を予め設定した極間々隙状態の良否を示す分布状
態と比較し、極間状態を判断して信号を出力する極間状
態判別手段と、この極間状態判別手段の出力に基づいて
上記絶縁性加工液の噴出圧力を制御する制御手段とを具
備したことを特徴とするワイヤカット放電加工装置。A wire electrode and a workpiece are placed facing each other with an insulating machining fluid interposed between them, and a pulse voltage is applied between the wire electrode and the workpiece to generate an electric discharge between them, and the discharge energy is used to drive the workpiece. In a wire-cut electric discharge machining device for machining, an open state and a short-circuit state caused by string vibration of the wire electrode in the gap between opposing poles between the wire electrode and the workpiece are removed, and electric discharge is performed in the gap between the poles. a detection means for detecting a distribution state of time after voltage application at the time of the discharge; and a distribution state indicating the quality of the electrode gap state, which is a preset distribution state of the time detected by the detection means from the voltage application to the occurrence of discharge. A gap condition determining means for comparing the gap condition to determine the gap condition and outputting a signal, and a control means for controlling the ejection pressure of the insulating machining fluid based on the output of the gap condition determining means. Wire cut electrical discharge machining equipment featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59231181A JPH0661658B2 (en) | 1984-11-05 | 1984-11-05 | Wire cut electrical discharge machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59231181A JPH0661658B2 (en) | 1984-11-05 | 1984-11-05 | Wire cut electrical discharge machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61111835A true JPS61111835A (en) | 1986-05-29 |
JPH0661658B2 JPH0661658B2 (en) | 1994-08-17 |
Family
ID=16919588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59231181A Expired - Lifetime JPH0661658B2 (en) | 1984-11-05 | 1984-11-05 | Wire cut electrical discharge machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0661658B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103658891A (en) * | 2013-12-28 | 2014-03-26 | 哈尔滨工业大学 | Long-short circuit restraining device used in discharge process of computer numerical control wire-cut electric discharge machine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5439331A (en) * | 1978-04-14 | 1979-03-26 | Mitsubishi Electric Corp | Discharge processing device |
JPS58109230A (en) * | 1981-12-22 | 1983-06-29 | Mitsubishi Electric Corp | Wire cut electric spark machining device |
-
1984
- 1984-11-05 JP JP59231181A patent/JPH0661658B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5439331A (en) * | 1978-04-14 | 1979-03-26 | Mitsubishi Electric Corp | Discharge processing device |
JPS58109230A (en) * | 1981-12-22 | 1983-06-29 | Mitsubishi Electric Corp | Wire cut electric spark machining device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103658891A (en) * | 2013-12-28 | 2014-03-26 | 哈尔滨工业大学 | Long-short circuit restraining device used in discharge process of computer numerical control wire-cut electric discharge machine |
CN103658891B (en) * | 2013-12-28 | 2015-08-12 | 哈尔滨工业大学 | The length road restraining device of NC wirecut EDM machine in discharge process |
Also Published As
Publication number | Publication date |
---|---|
JPH0661658B2 (en) | 1994-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4798929A (en) | Wire electric discharge machining apparatus | |
JPS61111835A (en) | Wire-cut electric discharge machinine | |
JPS61111836A (en) | Wire-cut electric discharge machinine | |
JPS63318211A (en) | Electric discharge machine | |
JPS61109622A (en) | Wire cut electric spark machine | |
JPS61111834A (en) | Wire-cut electric discharge machinine | |
JPS61111837A (en) | Wire-cut electric discharge machinine | |
JPS61125734A (en) | Wire cut electric discharge processing device | |
JPS61111831A (en) | Wire-cut electric discharge machinine | |
JPS61111840A (en) | Wire-cut electric discharge machinine | |
JPS61111833A (en) | Wire-cut electric discharge machinine | |
JPS61109618A (en) | Wire out electric spark machine | |
JPS61111839A (en) | Wire-cut electric discharge machinine | |
JPS61111832A (en) | Wire-cut electric discharge machinine | |
JPS61111838A (en) | Wire-cut electric discharge machinine | |
JPS61125731A (en) | Electric discharge machine | |
JPS61111841A (en) | Wire-cut electric discharge machinine | |
JPS61125721A (en) | Electric discharge machine | |
JPS61111829A (en) | Wire-cut electric discharge machinine | |
JPS61111813A (en) | Spark erosion apparatus | |
JPS61111845A (en) | Wire-cut electric discharge machinine | |
JPS61111842A (en) | Wire-cut electric discharge machinine | |
JPS62287917A (en) | Electric discharge machinine | |
JPS62287919A (en) | Electric discharge machine | |
JPS61111812A (en) | Spark erosion apparatus |