JPS61125734A - Wire cut electric discharge processing device - Google Patents

Wire cut electric discharge processing device

Info

Publication number
JPS61125734A
JPS61125734A JP24805984A JP24805984A JPS61125734A JP S61125734 A JPS61125734 A JP S61125734A JP 24805984 A JP24805984 A JP 24805984A JP 24805984 A JP24805984 A JP 24805984A JP S61125734 A JPS61125734 A JP S61125734A
Authority
JP
Japan
Prior art keywords
electrode
tension
wire
inter
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24805984A
Other languages
Japanese (ja)
Inventor
Tetsuro Ito
哲朗 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24805984A priority Critical patent/JPS61125734A/en
Publication of JPS61125734A publication Critical patent/JPS61125734A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • B23H7/10Supporting, winding or electrical connection of wire-electrode

Abstract

PURPOSE:To improve a processing speed by controlling tension applied to a wire electrode based on a judgement result from inter-electrode judgement means, and preventing the electrode weakened in its tension resistance from being disconnected by reducing the tension upon abnormal while reducing short-circuit by increasing the tension upon normal. CONSTITUTION:Detected troubles such as concentrated electrical discharge or wire disconnection as a result of deterioration of inter-electrode condition as a result of deterioration of inter-electrode conditions, an output is provided to a counter 26, amplified through an amplifier 106, and delivered to a controlling transistor 107 as base voltage. Hereupon, a motor current satisfies:I=Vs/R. It is found from this expression that the current I is controlled by the base voltage Vs, but the Vs is reduced and hence a drive current for a tension motor 100 is reduced to permit wire tension to be reduced, whereby disconnection of the electrode weakened in its tension resistance due to wear of the electrode can be prevented, while the device can securely be allowed to escape from abnormal processing conditions by making use of a fact of current reduction and fact that the device is brought into a non-load due to back movement. Furthermore, with the inter-electrode state being returned to a normal state the tension of the wire electrode is gradually increased, whereby rigidity of the wire electrode is increased with reduced short-circuit for improving the processing speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ワイヤ電極と被加工物間(極間)で放電を発
生させ、この放電エネルギで被加工物の切削を電気的に
行うワイヤカット放電加工装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a wire that generates electrical discharge between a wire electrode and a workpiece (between electrodes), and electrically cuts the workpiece using this discharge energy. The present invention relates to a cut electrical discharge machining device.

〔従来の技術〕[Conventional technology]

電気的エネルギによって被加工物を加工することは、従
来広く行わGており、周知であるが、最近の技術として
注目をあびている加工装置にワイヤ状の電極を用いて、
あたかも「糸のこ」のように被加工物を電気的エネルギ
で加工するいわゆるワイヤカット放電加工装置がある。
Machining workpieces using electrical energy has been widely practiced and is well known, but it is a recent technology that has been attracting attention using wire-shaped electrodes in processing equipment.
There is a so-called wire-cut electric discharge machining device that processes a workpiece using electrical energy, as if using a ``spinning saw.''

第7図は、上記ワイヤカット放電加工装置を示す構成図
である。1は被加工物で、予めドリルなどで明けられた
切孔1aにワイヤ電極2を通し、この孔壁とワイヤ電極
2との間tこ絶縁性の液3を供給介在させている。
FIG. 7 is a configuration diagram showing the wire-cut electrical discharge machining apparatus. Reference numeral 1 denotes a workpiece, in which a wire electrode 2 is passed through a cut hole 1a made in advance with a drill or the like, and an insulating liquid 3 is supplied between the hole wall and the wire electrode 2.

上記絶縁性の液3を以下加工液と記述する。加工液は、
タンク4からポンプ5で、被加工物1とワイヤ電極2の
間隙にノズル6により噴射される。
The above-mentioned insulating liquid 3 will be hereinafter referred to as a processing liquid. The processing fluid is
The liquid is sprayed from the tank 4 by the pump 5 into the gap between the workpiece 1 and the wire electrode 2 through the nozzle 6 .

被加工物1とワイヤ電極2との間の相対運動(電波加工
物1を載せているテーブル11の移動により行われる。
Relative movement between the workpiece 1 and the wire electrode 2 (performed by movement of the table 11 on which the radio wave workpiece 1 is placed).

テーブル11は、Y軸駆動モータ13とX軸モータ12
により駆動される。以上の構成により、被加工物1と電
極2の相対運動は前述のX、Y軸平面内に於て2次元平
面の運動となる。
The table 11 is driven by a Y-axis drive motor 13 and an X-axis motor 12.
Driven by. With the above configuration, the relative movement between the workpiece 1 and the electrode 2 becomes a two-dimensional plane movement within the aforementioned X and Y axis planes.

ワイヤ電極2は、ワイヤ供給リール7により供給さn1
下部ワイヤガイド8A、被加工物1中を通過して上部ガ
イド8Blこ達し、電気エネルギ給電部9を介して、ワ
イヤ巻取り兼テンションローラ10により巻取らちる。
The wire electrode 2 is supplied by the wire supply reel 7 n1
The wire passes through the lower wire guide 8A and the workpiece 1, reaches the upper guide 8Bl, and is wound up by the wire winding/tension roller 10 via the electric energy feed section 9.

上記X、Y軸の駆動モータ12.13の駆動及び制御を
行う制御装置14は、数値制御装置(NC制御装置)や
倣い装置あるいは、電算機を用いた制御装置が用いられ
ている。
The control device 14 that drives and controls the drive motors 12 and 13 for the X and Y axes is a numerical control device (NC control device), a copying device, or a control device using a computer.

電気エネルギを供給する加工電源15は、例えば、直流
Tt源15a1スイッチング素子15b1電流制限抵抗
15C及び前記スイッチング素子15bを制御する制御
回路15dによって構成されている。
The processing power supply 15 that supplies electrical energy is composed of, for example, a DC Tt source 15a, a switching element 15b, a current limiting resistor 15C, and a control circuit 15d that controls the switching element 15b.

次(こ従来装置の動作について説明する。正常な加工状
態では、加工電源15からは高周波パルス電圧が印加さ
れ、1つのパルスによる放電爆発により被加工物1の一
部を溶融飛散させる。この場合、極間は高温のためガス
化及びイオン化しているため、次のパルス電圧を印加す
るまでには一定の休止時間を必要とし、この休止時間が
短か過ぎると極間が充分に絶縁回復しないうちに、再び
同一場所に放電が集中しワイヤ電極2の溶断を発生させ
る。
Next, the operation of this conventional device will be explained. Under normal machining conditions, a high-frequency pulse voltage is applied from the machining power source 15, and a part of the workpiece 1 is melted and scattered by a discharge explosion caused by one pulse. In this case Since the gap between the electrodes is gasified and ionized due to the high temperature, a certain pause time is required before applying the next pulse voltage, and if this pause time is too short, the insulation between the electrodes will not recover sufficiently. Before long, the discharge will again concentrate at the same location, causing the wire electrode 2 to melt.

従って、通常の加工電源では被加工物の種類、板厚等l
こ依り加工電源15の休止時間等の電気条件をワイヤ電
極切nを生じさせない程度の充分余裕を持った条件で加
工するのが普通である。故に、加工速度は理論的限界値
より相当低くならざるを得ず、更にワイヤ電極2が均一
でなく太さが変化する場合、もしくはワイヤの一部に突
起やキズ等があり放電が集中した場合にはワイヤ電極2
の溶断は避けられない。
Therefore, with a normal machining power source, the type of workpiece, plate thickness, etc.
Normally, electrical conditions such as the down time of the machining power source 15 are set to have sufficient margin to prevent wire electrode breakage. Therefore, the machining speed has to be considerably lower than the theoretical limit value, and furthermore, if the wire electrode 2 is not uniform and the thickness changes, or if there is a protrusion or scratch on a part of the wire and the discharge is concentrated. wire electrode 2
Melting is unavoidable.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように従来のワイヤカット放電加工装置では、ワ
イヤ電極2の断線を引き起さないようにするため、加工
電源15の出力エネルギを少くする等して、仮に放電の
集中がワイヤ電極2の一点に集中しても断線しないよう
にしていたため、加工速度が著しく低いという問題点が
あった。
As described above, in order to prevent the wire electrode 2 from breaking, in the conventional wire-cut electric discharge machining apparatus, the output energy of the machining power supply 15 is reduced, etc., so that if the concentration of electric discharge does not occur on the wire electrode 2. The problem was that the processing speed was extremely low because it was designed to prevent the wires from breaking even if they were concentrated at one point.

そこで、従来、加工状態の良否あるいは電極の損傷直前
状態を判別し、この判別結果に基づいて自動的に正常加
工状態に復帰させあるいは電極の損傷を回避させるよう
な安全対策を施して、加工速度を低下させないようにす
ることが行われている。
Therefore, in the past, safety measures were taken to determine whether the machining condition was good or not, or whether the electrode was about to be damaged, and based on the results of this determination, automatically return to the normal machining condition or avoid damage to the electrode, thereby increasing the machining speed. Efforts are being made to prevent this from decreasing.

この場合、加工状態の良否あるいはワイヤ電極の断線の
直前状態を判別するのEこ最も一般的な手段は、上記の
極間電圧値の平均値を観測することである。すなわち、
平均電圧値が低い時は、極間インピーダンスが低い場合
であって、短絡あるいはスラッジとか加工粉の滞留によ
り、放電のための絶熾破壊が起りやすくなり放電集中(
ワイヤ切断の最大要因)が発生していることを示す。
In this case, the most common means of determining whether the machining condition is good or not or whether the wire electrode is about to break is to observe the average value of the voltage between the electrodes. That is,
When the average voltage value is low, the impedance between the electrodes is low, and catastrophic breakdown due to discharge is likely to occur due to short circuit or accumulation of sludge or machining powder, resulting in discharge concentration (
This indicates that the main cause of wire breakage) has occurred.

しかし、狭ギャップでの加工(n度の良い加工に不可決
)においては、正常な極間状態でも短絡が頻発するので
、この短絡を検知して安全対策を施していたのでは、や
はり加工能率が著しく低下するという問題点があった。
However, when machining with a narrow gap (unsuitable for machining with good n-degrees), short circuits occur frequently even under normal machining conditions, so it would be difficult to detect short circuits and take safety measures. There was a problem in that the value decreased significantly.

この発明はかかる問題点を解決するためになされたもの
で、加工速度を低下させることなく適確に加工状態の良
否を判別し、電極の損傷事故を未然に防止することので
きる放電加工装置を得ることを目的とする。
This invention was made to solve these problems, and provides an electric discharge machining device that can accurately determine whether the machining condition is good or bad without reducing the machining speed, and can prevent electrode damage accidents. The purpose is to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかる放電加工装置は、ワイヤ電極と被加工
物間にパルス電圧を印加してから当該両者の対向する極
間に放電が発生するまでの漏n電流を検出する検出手段
およびこの検出出力に基づいて極間状態を判別する極間
状態判別手段を設け、この判別状態に基づいて上記ワイ
ヤ電標の張力を制御する制御手段を備えたものである。
The electric discharge machining apparatus according to the present invention includes a detection means for detecting a leakage current from the time when a pulse voltage is applied between a wire electrode and a workpiece until a discharge occurs between opposing electrodes, and the detection output thereof. The present invention is provided with a gap condition determining means for determining the condition of the gap based on the condition, and a control means for controlling the tension of the wire electric mark based on the determined condition.

〔作 用〕 この発明における制御手段は、極間状態判別手段から異
常判別信号を受けたときは、ワイヤ電極の張力を減じて
、消耗により耐張力の弱くなったワ、イヤitsの断線
を防止し、正常判別信号を受けたときには、徐々にワイ
ヤ電極の張力が増すように制御して短絡事故を減じ、加
工速度の向上を図る。
[Function] When the control means of the present invention receives an abnormality determination signal from the inter-electrode state determination means, it reduces the tension of the wire electrodes to prevent wires whose tension resistance has weakened due to wear and tear from breaking. However, when a normality determination signal is received, the tension of the wire electrode is controlled to gradually increase to reduce short-circuit accidents and improve processing speed.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す概要図であり、符号
!−15は上記従来装置と全く同一のものである。16
は加工電源15により極間に供給されるパルス電流を検
出するための電流検出器、17は制御指令信号発生装置
で、前記電流検出器16からの検出電流工および極間電
圧竜 を入力とし、制御装置14.加工電源15などに
制御指令信号を供給するようlこ構成さnている。
FIG. 1 is a schematic diagram showing an embodiment of the present invention, and the reference numeral ! -15 is exactly the same as the conventional device described above. 16
is a current detector for detecting the pulse current supplied between the machining power supply 15, and 17 is a control command signal generator, which receives the detected current from the current detector 16 and the voltage between the machining electrodes as input; Control device 14. It is configured to supply control command signals to the processing power source 15 and the like.

第2図は、タイムチャートであって、上記第1図記載の
回路中の電流検出器16より得られ7S:電流波彫工及
びこれより微少電流を含め電流の有無を検出し1.0の
ディジタル信号とした整形信号31 、極間電圧信号V
gをスレッショルド電圧v。
FIG. 2 is a time chart obtained from the current detector 16 in the circuit shown in FIG. Shaped signal 31 as signal, electrode voltage signal V
g is the threshold voltage v.

fこて、無負荷状態か放電中かに判別した信号Svおよ
び上記の信号Sx、Svより得た次の2信号Su。
f The signal Sv for determining whether the soldering iron is in a no-load state or during discharging, and the next two signals Su obtained from the above-mentioned signals Sx and Sv.

SDを示している。すなわち、電流が流れているが放電
していない信号Suは、論理式Sυ=SvaSXとあら
れされ、漏れ電流がパルス印加中に存在することを示す
。また、信号8Dは、論理式8n=Sマ・S!とあられ
され、パルス印加中に全く無電流状態であることを示し
ている。
SD is shown. That is, the signal Su in which current flows but is not discharged is expressed by the logical formula Sυ=SvaSX, indicating that leakage current exists during pulse application. Moreover, the signal 8D is expressed by the logical formula 8n=Sma・S! This indicates that there is no current at all during pulse application.

第3図は、第2図のタイムチャートに記載した信号群S
r、Sv、Su、Soを得るための漏れ電流検出手段1
8としての回路構成例である。電流検出器16の電流信
号は波形整形回路19により、整形信号Srとなって電
流の有無を示す信号となる。
Figure 3 shows the signal group S described in the time chart of Figure 2.
Leakage current detection means 1 for obtaining r, Sv, Su, So
8 is an example of a circuit configuration. The current signal from the current detector 16 is converted into a shaped signal Sr by a waveform shaping circuit 19, which is a signal indicating the presence or absence of current.

極間電圧Vgは、分圧回路rIr’2により分圧すれ、
レベルコンパレータ20で基準スレッショルド電圧VR
より大か小かが比較され、放電か無負荷状態であるかの
判別が行われる。
The interelectrode voltage Vg is divided by a voltage dividing circuit rIr'2,
The level comparator 20 sets the reference threshold voltage VR.
A comparison is made to see if it is larger or smaller, and it is determined whether it is a discharge or no-load state.

漏れ電流の存在を示す信号SUは、アンドゲート21に
より、前記の論理式8a==3y*8x  の形で出力
さn、無負荷信号8oは、アンドゲート22により論理
式8n=8vaSz の形で出力される。
The signal SU indicating the presence of leakage current is output by the AND gate 21 in the form of the above-mentioned logical formula 8a==3y*8x, and the no-load signal 8o is output by the AND gate 22 in the form of the logical formula 8n=8vaSz. Output.

実験によれば、上記信号Sυ=1 の時すなわち濁れ電
流が無負荷状態で流れていた場合には、以下に記述する
ような極間状態であることが判明した0 (1)漏れ電流が流れる時には、極間間隙におけるある
一点において、スラッジ、金属イオン等の濃度が異常に
高くなり、抵抗にして数百Ω以下になっている。
According to experiments, when the above signal Sυ = 1, that is, when the leakage current is flowing under no load, it has been found that the interpolation state is as described below. (1) The leakage current is When flowing, the concentration of sludge, metal ions, etc. becomes abnormally high at a certain point in the gap between the electrodes, and the resistance becomes less than several hundred ohms.

(2)数β秒〜1tn秒程度連続して信号Sυ=1であ
った場合、何等かの消イオン対策を行えば、填間状態の
回復は行いつるが、数10m秒以上連続した場合は、回
復不能でワイヤ断線にまで至る。
(2) If the signal Sυ = 1 continues for several β seconds to 1 tn seconds, the interpolation state can be recovered by taking some kind of deionization countermeasure, but if it continues for several tens of milliseconds or more, , leading to unrecoverable wire breakage.

(3)  ワイヤ電極上に突起物あるいはパリ等がある
と、その一点lこおける電界強度が極間内部で強くなり
、かつ信号5u=lとなり、しかも、放電の集中はその
一点が引きずったあとに発生する。
(3) If there is a protrusion or a hole on the wire electrode, the electric field strength at one point l will become stronger inside the gap between the electrodes, and the signal will become 5u=l, and the concentration of the discharge will only occur after that one point has receded. occurs in

(4)漏れ電流がなく信号5o=lの時には、イオンH
eは低く、極間における状態は良好で、集中放電、異常
アーク放電発生はない。ただし、異常状態番こなってい
る時でもたまに信号5D=1となる時もある。この場合
iこは持続しない(8D=1が数m秒間連続しない)。
(4) When there is no leakage current and the signal 5o=l, the ion H
e is low, the condition between the electrodes is good, and there is no concentrated discharge or abnormal arc discharge. However, even when an abnormal condition is occurring, the signal 5D may sometimes become 1. In this case, the current value does not last (8D=1 does not continue for several milliseconds).

以上のように、信号Sυと信号SDに基づいて、極間状
態の検出を行うことができる。すなわち、上記(2)(
4)のごとく、信号Sυと信号SDの連続量あるいは発
生のしかたを分析できるようにすれば、極間状態を検出
できる。
As described above, the gap state can be detected based on the signal Sυ and the signal SD. In other words, the above (2) (
As shown in 4), if the continuous amount or generation of the signal Sυ and the signal SD can be analyzed, the interpole state can be detected.

第4図は上記の信号SU、3Dをアンドゲート23.2
4を介して入力し、極間状態の良否判別を行う極間状態
判別回路の1例を示すものであって、入力された信号S
υ、SDはその数が可逆カウンタ25により計数される
。よって、信号Suが信号SDより発生頻度大であ几ば
、カウンタ25は積算され、その内容は次第に大となる
Figure 4 shows the AND gate 23.2 for the above signals SU and 3D.
4 shows an example of a gap condition determination circuit that determines whether the gap condition is good or bad by inputting the input signal S
The numbers of υ and SD are counted by a reversible counter 25. Therefore, if the signal Su occurs more frequently than the signal SD, the counter 25 is integrated and its contents gradually increase.

上記カウンタ25の積算値が所定値たとえば、100個
を越すと、ディジタルコンパレータ26は極間不良判別
信号(以下、8Aと称す)を出力(S人=1)する。こ
の信号8人はアンドゲート23の否定入力端子にも供給
印加されて該アンドゲートからの出力をなくし、それ以
上、カウンタ25の内容がJ’lえすぎてオーバーフロ
ーあるいはスケールオーバーしないようにしている。ま
た、上記信号8人は後記制御手段ζこ供給されて極間回
復制御Iこ供さnる。
When the integrated value of the counter 25 exceeds a predetermined value, for example, 100, the digital comparator 26 outputs a gap defect determination signal (hereinafter referred to as 8A) (S person=1). These signals are also applied to the negative input terminal of the AND gate 23 to eliminate the output from the AND gate, thereby preventing the contents of the counter 25 from increasing too much and overflowing or overscaling. . Further, the above-mentioned eight signals are supplied to the control means ζ to be described later to perform pole spacing recovery control I.

極間状態が正常となり、信号5D=1が続くと、カウン
タ25は減算され、最後には内容がΣ;0となるので、
それ以上、減算しないようにディジタルコンパレータ2
7の出力信号SBをアンドゲート24の否定入力端子に
供給印加して該アンドゲートからの出力をなくするよう
にする。
When the state between the poles becomes normal and the signal 5D=1 continues, the counter 25 is decremented and finally the content becomes Σ;0, so
Digital comparator 2 to prevent further subtraction.
The output signal SB of No. 7 is applied to the negative input terminal of the AND gate 24 to eliminate the output from the AND gate.

従って、上記カウンタ25の内容をディジタル→アナロ
グ変換器28でアナログ量に変換して測定すれば、この
変換器28の出力信号SMを用いて連続的に、極間状態
をモニターできる。
Therefore, if the contents of the counter 25 are converted into an analog quantity by the digital-to-analog converter 28 and measured, the state of the gap can be continuously monitored using the output signal SM of the converter 28.

第5図は前記第4図に示す極間状態判別回路の各信号S
u 、 Sry 、 SM (SM ハ7ナログtt5
カ)、3人と極間状態を示す極間電流信号Iおよび極間
電圧信号Vgのタイムチャートである。
FIG. 5 shows each signal S of the gap state discriminating circuit shown in FIG.
u, Sry, SM (SM ha7 analog tt5
F) is a time chart of the inter-electrode current signal I and the inter-electrode voltage signal Vg indicating the inter-electrode state of three people.

以下、上記カウンタ26の内容に基づいてワイヤ電極の
張力(テンション)を変化させる制御手段30の1例を
第6図を用いて説明する。第6図において、供給リール
7より送り出さnたワイヤ電極2はワイヤ張力発生のテ
ンションモータ100゜テンションリール101.補助
リール102によって所定テンションを付与され、被加
工物1を貫通して引っ張りキャプスタン103.キャプ
スタンローラ104.キャプスタンモータ105により
引き出され、巻取りリール10により巻き取られる。
An example of the control means 30 that changes the tension of the wire electrode based on the contents of the counter 26 will be described below with reference to FIG. In FIG. 6, the wire electrode 2 fed out from the supply reel 7 is connected to a tension motor 100° tension reel 101. A predetermined tension is applied by the auxiliary reel 102 and the capstan 103 . Capstan roller 104. It is pulled out by the capstan motor 105 and wound up by the take-up reel 10.

極間状態が悪化して放電集中やワイヤ断線のおそれが検
出されると、カウンタ26に出力が生じ、この出力電圧
が増幅器106で増幅され、制御トランジスタ107に
ベース電圧として出力される。
When the inter-electrode condition deteriorates and the possibility of discharge concentration or wire breakage is detected, an output is generated in the counter 26, this output voltage is amplified by the amplifier 106, and is outputted to the control transistor 107 as a base voltage.

ここで、エミッタ抵抗108をRとし、モータを流れる
電流をIとすると、 と表わされる。
Here, if the emitter resistance 108 is R and the current flowing through the motor is I, it is expressed as follows.

なお、Vsはカウンタ26によるモータ制御電圧であり
、制御トランジスタ107のペースエミツクI圧VII
Eは約0.6 Vと微弱で且つ一定であってほぼ無視で
き、モータの電流は上記ベース電rEVsにより制御さ
れるが、上記モータ制御電圧Vsは低下し、テンション
モータ100の駆動電流が減少して、ワイヤテンション
は減少し、消耗(放電集中による異常消耗)により耐張
力の弱まったワイヤ電極の切断事故を防止することがで
きるととも1こテンションの減少で短絡を生じしめ、ワ
イヤ電極の断線を防ぎつつ短絡バックを行わしめ、他の
放IE集中防止策(電流減少、バック運動による無負荷
化)により、より確実に異常加工状態からの脱出が可能
となる。
Note that Vs is the motor control voltage by the counter 26, and the pace emitter I voltage VII of the control transistor 107
E is weak and constant at about 0.6 V and can be almost ignored, and the motor current is controlled by the base voltage rEVs, but the motor control voltage Vs decreases and the drive current of the tension motor 100 decreases. As a result, the wire tension is reduced, and it is possible to prevent the wire electrode from breaking due to wear (abnormal wear due to discharge concentration), which has weakened its tensile strength. By performing short-circuit back while preventing wire breakage, and by taking other measures to prevent concentration of IE emissions (current reduction, no-load due to back movement), it becomes possible to escape from the abnormal machining state more reliably.

また、極間が正常状態になったら徐々にワイヤ電極の張
力を増加させるので、ワイヤ電極の剛性が増し、短絡は
少く加工速度も向上する。
Furthermore, since the tension of the wire electrode is gradually increased once the gap between the electrodes is in a normal state, the rigidity of the wire electrode is increased, short circuits are reduced, and processing speed is also improved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、被加工物と】wS間
にパルス電圧を印加した後、放電に至るまでの間におけ
る漏れ電流を検出し、この検出結果をもとにして正常放
電と異常放電の判別を行うものであるから、加工速度を
低下させることなく適確に極間状態の良否を正確に判別
できる。そして、判別された極間状態に応動してワイヤ
電極の張力を変化させるので、ワイヤ電極の断線事故を
確実に防止することができるとともに加工速度の向上を
図ることができるという効果がある。
As described above, according to the present invention, after a pulse voltage is applied between the workpiece and wS, the leakage current is detected until discharge occurs, and based on this detection result, normal discharge is determined. Since abnormal discharge is determined, it is possible to accurately determine whether the machining gap condition is good or bad without reducing the machining speed. Since the tension of the wire electrode is changed in response to the determined gap state, it is possible to reliably prevent wire electrode breakage accidents and improve the processing speed.

【図面の簡単な説明】[Brief explanation of drawings]

IIE1図はこの発明の一実施例を示す原理説明図、第
2図はその動作説明のためのタイムチャート、第3図は
極間状態検出のための漏nt流検出回路図、第4図は極
間状態判別回路図、第5図はその動作説明のためのタイ
ムチャート、第6図は制御手段の回路構成を示すブロッ
ク図、第7図は従来のワイヤカット放電加工装置を示す
原理図、である。 1は被加工物、2はワイヤ電極、18は漏れ電流検出手
段、29は極間状態判別手段、30は制御手段。 なお、図中同一符号は同一または相当部分を示す。 特許出顆人 三菱電機株式会社 −二   〇    ):     く−〉   の 
 C/’)   の   のL−−++−一一++−ノ
Fig. IIE1 is a principle explanatory diagram showing an embodiment of the present invention, Fig. 2 is a time chart for explaining its operation, Fig. 3 is a leakage current detection circuit diagram for detecting the gap state, and Fig. 4 is a diagram illustrating the leakage current detection circuit. FIG. 5 is a time chart for explaining its operation; FIG. 6 is a block diagram showing the circuit configuration of the control means; FIG. 7 is a principle diagram showing a conventional wire-cut electrical discharge machining device; It is. 1 is a workpiece, 2 is a wire electrode, 18 is a leakage current detecting means, 29 is a gap state determining means, and 30 is a control means. Note that the same reference numerals in the figures indicate the same or corresponding parts. Patent author Mitsubishi Electric Corporation-20): Ku-〉
C/')'s L--++-11++-ノ

Claims (1)

【特許請求の範囲】[Claims] ワイヤ電極と被加工物とを絶縁性加工液を介在させて対
向させ、その両者間にパルス電圧を印加して該両者が対
向する極間に放電を発生させ、その放電エネルギで上記
被加工物を加工するワイヤカット放電加工装置において
、上記ワイヤ電極と上記被加工物間に上記パルス電圧を
印加した後、放電に至るまでの間における漏れ電流を検
出する検出手段と、この検出手段の検出出力に基づいて
極間状態を判断して信号を出力する極間状態判別手段と
、この極間状態判別手段の出力に基づいて、上記ワイヤ
電極の張力を制御する制御手段とを具備したことを、特
徴とするワイヤカット放電加工装置。
A wire electrode and a workpiece are opposed to each other with an insulating machining fluid interposed between them, and a pulse voltage is applied between the two to generate an electric discharge between the opposing poles. A wire-cut electrical discharge machining apparatus for machining a wire-cut electric discharge machining device includes a detection means for detecting a leakage current after the pulse voltage is applied between the wire electrode and the workpiece until discharge occurs, and a detection output of the detection means. and a control means for controlling the tension of the wire electrode based on the output of the electrode spacing state determining means. Characteristic wire cut electrical discharge machining equipment.
JP24805984A 1984-11-26 1984-11-26 Wire cut electric discharge processing device Pending JPS61125734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24805984A JPS61125734A (en) 1984-11-26 1984-11-26 Wire cut electric discharge processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24805984A JPS61125734A (en) 1984-11-26 1984-11-26 Wire cut electric discharge processing device

Publications (1)

Publication Number Publication Date
JPS61125734A true JPS61125734A (en) 1986-06-13

Family

ID=17172585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24805984A Pending JPS61125734A (en) 1984-11-26 1984-11-26 Wire cut electric discharge processing device

Country Status (1)

Country Link
JP (1) JPS61125734A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124827A (en) * 1985-11-22 1987-06-06 Inoue Japax Res Inc Wire cut electric spark machine
JPS63300824A (en) * 1987-05-29 1988-12-08 Fanuc Ltd Wire electric discharge machine
US5166490A (en) * 1990-03-13 1992-11-24 Mitsubishi Denki K.K. Wire cut electric discharge machining apparatus
JPH0560729U (en) * 1991-04-22 1993-08-10 株式会社牧野フライス製作所 Wire tension controller for wire electric discharge machine
WO2012053568A1 (en) * 2010-10-19 2012-04-26 株式会社ソディック Wire electrical discharge machining device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124827A (en) * 1985-11-22 1987-06-06 Inoue Japax Res Inc Wire cut electric spark machine
JPS63300824A (en) * 1987-05-29 1988-12-08 Fanuc Ltd Wire electric discharge machine
US5166490A (en) * 1990-03-13 1992-11-24 Mitsubishi Denki K.K. Wire cut electric discharge machining apparatus
JPH0560729U (en) * 1991-04-22 1993-08-10 株式会社牧野フライス製作所 Wire tension controller for wire electric discharge machine
WO2012053568A1 (en) * 2010-10-19 2012-04-26 株式会社ソディック Wire electrical discharge machining device
JP2012086295A (en) * 2010-10-19 2012-05-10 Sodick Co Ltd Wire electric discharge machining device
CN103167925A (en) * 2010-10-19 2013-06-19 株式会社沙迪克 Wire electrical discharge machining device
US9833852B2 (en) 2010-10-19 2017-12-05 Sodick Co., Ltd. Wire electrical discharge machining device

Similar Documents

Publication Publication Date Title
KR920006506B1 (en) Wire electric discharge machine apparatus
JPS61125734A (en) Wire cut electric discharge processing device
JPS62287919A (en) Electric discharge machine
JPS61111841A (en) Wire-cut electric discharge machinine
JPS61125736A (en) Wire cut electric discharge processing device
JPS61125722A (en) Electric discharge machine
JPS61125721A (en) Electric discharge machine
JPS61125731A (en) Electric discharge machine
JPS61111813A (en) Spark erosion apparatus
JPS61125727A (en) Electric discharge machine
JPS61125729A (en) Electric discharge machine
JPS61125730A (en) Electric discharge machine
JPS61125725A (en) Electric discharge machine
JPS61111842A (en) Wire-cut electric discharge machinine
JPS61111819A (en) Spark erosion apparatus
JPS62287917A (en) Electric discharge machinine
JPS61125728A (en) Electric discharge machine
JPS61111843A (en) Electric discharge machinine
JPS61111812A (en) Spark erosion apparatus
JPH0661657B2 (en) Wire cut electrical discharge machine
JPS5930621A (en) Wire-cut electric discharge machining apparatus
JPS61164721A (en) Wire electric discharge machine
JPS61111811A (en) Spark erosion apparatus
JPS61111817A (en) Spark erosion apparatus
JPS61125726A (en) Electric discharge machine