JPS637227A - Servo feed system for electric discharge machining - Google Patents

Servo feed system for electric discharge machining

Info

Publication number
JPS637227A
JPS637227A JP14966486A JP14966486A JPS637227A JP S637227 A JPS637227 A JP S637227A JP 14966486 A JP14966486 A JP 14966486A JP 14966486 A JP14966486 A JP 14966486A JP S637227 A JPS637227 A JP S637227A
Authority
JP
Japan
Prior art keywords
voltage
servo
gain
machining
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14966486A
Other languages
Japanese (ja)
Other versions
JPH0579444B2 (en
Inventor
Gotaro Gamo
蒲生 剛太郎
Haruki Obara
小原 治樹
Mitsuo Kinoshita
木下 三男
Yuji Okuyama
奥山 祐二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP14966486A priority Critical patent/JPS637227A/en
Publication of JPS637227A publication Critical patent/JPS637227A/en
Publication of JPH0579444B2 publication Critical patent/JPH0579444B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain stable electric discharge and a uniform machined surface as a servo gain for a succeeding cycle by counting an output pulse from a voltage-frequency converter for every predetermined cycle, obtaining a deviation gain between a counted value and a set value, and adding the deviation value to a servo gain outputted in the concerned cycle for a servo feed system. CONSTITUTION:When means machining voltage has given a drop with an increase in machining quantity, there is a drop in frequency from a voltage- frequency converter 5. In this case, a deviation gain between an output pulse read by a counter 10 and a pulse so far applied for machining turns into a negative value in an arithmetic processing part 8 and a servo gain for the next cycle drops. This drop causes reduction in relative feed rate between a workpiece 2 and an electrode 1 via a dividing means 7, pulse distributions 14 and 15, and servo motors 18 and 19. As a result, a gap between the workpiece 2 and the electrode 1 increases, the mean machining voltage gives a rise and operation contrary to the aforementioned operation is carried out, thereby making constant the mean machining voltage automatically. According to the aforesaid constitution, a constant machining quantity per hour is obtained and a remarkably improved finish surface becomes available.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ワイヤカット放電加工別におけるサーボ送り
方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a servo feed system for wire cut electrical discharge machining.

従来の技術 ワイヤカット放電加工機におけるワークとワイヤ電極間
の相対的な送り速度を制御する方式として、サーボ送り
方式が従来から採用されている。
BACKGROUND OF THE INVENTION A servo feed method has conventionally been adopted as a method for controlling the relative feed speed between a workpiece and a wire electrode in a wire-cut electrical discharge machine.

このサーボ送り方式は、ワークとワイヤ電極間に印加さ
れる平均加工電圧の分圧1直から設定電圧を差引き、そ
の差引いた1直に比例した送りパルスを出力し、1パル
ス当りの重みは常に一定としてテーブルを送っていた。
This servo feeding method subtracts the set voltage from the partial pressure of the average machining voltage applied between the workpiece and the wire electrode (1 cycle), and outputs a feed pulse proportional to the subtracted 1 cycle, and the weight per pulse is Always sent the table as constant.

発明が解決しようとする問題点 上記従来のサーボ送り方式であると、仕上げ加工のよう
な1回当りの放電エネルギーが少ない加工時において、
理由は明らかではないが、直線加工からコーナ加工等に
移り加工徊が増加したとき送りが早いことによりワーク
とワイヤ電極がショートし、ハンチングを起こすことが
ある。又、加1母が少なくなったときには、送りが遅く
なりすぎて加工量を増大させ加工精度を落とす原因とな
っていた。
Problems to be Solved by the Invention With the above-mentioned conventional servo feeding method, during machining such as finishing machining where the discharge energy per run is small,
Although the reason is not clear, when moving from straight line machining to corner machining, etc., and the machining wander increases, the fast feed may cause a short circuit between the workpiece and the wire electrode, causing hunting. Furthermore, when the number of machining bases decreases, the feed rate becomes too slow, which increases the amount of machining and reduces machining accuracy.

そこで、本発明の目的はサーボ送りのサーボゲインを調
整することによって、安定した放電と均一な加工面が得
られる放電加工サーボ送り方式を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a servo feed system for electric discharge machining that can obtain stable electric discharge and a uniform machined surface by adjusting the servo gain of servo feed.

問題点を解決するための手段 本発明は、ワークとワイヤ電極間の平均加工電圧の分圧
値と基準電圧とを比較し、その差電圧を電圧周波数変換
器でパルス列に変換し、該出力パルス列によって、各軸
を送りワークとワイヤ電極とを相対的に移動させる放電
加工サーボ送りにおいて、一定周期毎に上記電圧周波数
変換器の出力パルスを計数し、該計数値と設定値との差
による偏差ゲインを求め、当該周期に出力したサーボ送
り系のサーボゲインに該偏差ゲインを加算して出力して
次周期のサーボゲインを調整することによって、上記問
題点を解決した。
Means for Solving the Problems The present invention compares the partial pressure value of the average machining voltage between the workpiece and the wire electrode with a reference voltage, converts the difference voltage into a pulse train using a voltage frequency converter, and converts the output pulse train into a pulse train. In electrical discharge machining servo feeding, in which each axis is fed and the workpiece and wire electrode are moved relative to each other, the output pulses of the voltage frequency converter are counted at regular intervals, and the deviation due to the difference between the counted value and the set value is calculated. The above problem was solved by calculating the gain, adding the deviation gain to the servo gain of the servo feed system output in the relevant cycle, and outputting the result to adjust the servo gain in the next cycle.

作  用 上記電圧周波数変換器からの一定周期内の出力パルス数
をPi、設定送り速度に対する設定値をPとし、上記偏
差ゲインをへGi、当該周期におけるサーボゲインをG
i1次周期におけるサーボゲインをQi−mlとすると
、偏差ゲインΔQiは第1式に示す値となる。
Function The number of output pulses from the voltage frequency converter within a certain period is Pi, the setting value for the set feed rate is P, the deviation gain is Gi, and the servo gain in the period is G.
If the servo gain in the i-1st period is Qi-ml, the deviation gain ΔQi will be the value shown in the first equation.

△Oi =K (Pi −P)     ・・・(1)
なお、Kは定数である。そして、この偏差ゲインを当該
周期のゲインGiに加算して、次周期のサーボゲインG
1+1は次の第2式のようになる。
△Oi = K (Pi - P) ... (1)
Note that K is a constant. Then, this deviation gain is added to the gain Gi of the current cycle to obtain the servo gain G of the next cycle.
1+1 is expressed as the following second equation.

Gi +1 =Gi+△Qi     ・・・(2)−
方、−周期内に出力される電圧周波数変換器からのパル
ス数P1は平均加工電圧と基準電圧との差に比例して出
されるものであるから、上記パルス数Piはワークとワ
イヤ電極間の平均加工電圧を示すものであり、今、コー
ナ等で加工量が増加し平均加工電圧が低下し、電圧周波
数変換器から出力される一周期内のパルス数P1が減少
して設定値Pより小さくなると、第1式より偏差ゲイン
ΔGiは負となり、第2式より次周期のサーボゲインG
i+1は減少することとなる。サーボゲインQi+1が
減少すると、ワークとワイヤ14fの相対的な送り速度
は減少し、その結果ワークとワイヤ電極間のギャップが
大きくなり、平均加工電圧は増大し一周期内のパルス数
Piは増大し、設定値Pと等しくなると、第1式より偏
差ゲイン△Giは0となり、第2式より次周期のサーボ
ゲインQi+1は前の周期と同じ値となり、パルス数P
1が設定IPと等しいかぎりサーボゲインは変動せず一
定に保持される。又、加工量が減少して平均加工電圧が
増大し電圧周波数変換器からの一周明内の出力パルスP
iが設定値を超えると偏差ゲインΔQiは正の値となり
、第2式より次周期のサーボゲインGi +1を増大さ
せ、ワークとワイヤ電極の相対的送り速度を増大させ、
その結果、ワークとワイヤ電極間のギャップが小さくな
り平均加工電圧は減少し、−周期内の電圧周波数変換器
からの出力パルス数Piは減少する。そして、該パルス
数Piが設定fifiPと等しくなると、前述同様サー
ボゲインは変動せず一定に保持される。
Gi +1 = Gi + △Qi ... (2) -
On the other hand, the number of pulses P1 from the voltage frequency converter output within a - period is proportional to the difference between the average machining voltage and the reference voltage, so the number of pulses Pi is the number of pulses between the workpiece and the wire electrode. This indicates the average machining voltage, and as the amount of machining increases at corners etc., the average machining voltage decreases, and the number of pulses P1 in one cycle output from the voltage frequency converter decreases, becoming smaller than the set value P. Then, according to the first formula, the deviation gain ΔGi becomes negative, and according to the second formula, the servo gain G of the next cycle is
i+1 will decrease. When the servo gain Qi+1 decreases, the relative feed speed between the workpiece and the wire 14f decreases, and as a result, the gap between the workpiece and the wire electrode increases, the average machining voltage increases, and the number of pulses Pi within one cycle increases. , becomes equal to the set value P, the deviation gain △Gi becomes 0 according to the first formula, and the servo gain Qi+1 of the next cycle becomes the same value as the previous cycle according to the second formula, and the pulse number P
As long as 1 is equal to the set IP, the servo gain does not change and is held constant. In addition, the amount of machining decreases, the average machining voltage increases, and the output pulse P within one round from the voltage frequency converter increases.
When i exceeds the set value, the deviation gain ΔQi becomes a positive value, and according to the second equation, the servo gain Gi +1 of the next cycle is increased, and the relative feed speed of the workpiece and the wire electrode is increased.
As a result, the gap between the workpiece and the wire electrode becomes smaller, the average machining voltage decreases, and the number of output pulses Pi from the voltage frequency converter within a period decreases. Then, when the number of pulses Pi becomes equal to the setting fifiP, the servo gain does not vary and is held constant as described above.

即ち、平均加工電圧が一定になるよう(電圧周波数変換
器からの一周期内での出力パルスPiが設定値Pになる
よう)サーボゲインを変えてすばやくワークとワイヤ電
極の相対的な送り速度を変えることとなる。
In other words, the servo gain is changed so that the average machining voltage is constant (so that the output pulse Pi within one cycle from the voltage frequency converter is equal to the set value P), and the relative feed speed between the workpiece and the wire electrode is quickly adjusted. It will change.

実施例 第7図は、本発明を実施する一実施例のブロック図で、
1はワイヤ電極、2はワーク、R,Rはワイヤ電極1と
ワーク2間の電圧を分圧する抵抗、3は抵抗R,Rによ
って分圧したワイヤ電極1とワーク2間の電圧を平滑化
して平均加工電圧を取出す積分器、4は該積分器3の出
力である平均加工電圧と基準電圧Voとの差を増幅する
差動増幅器、5は差動増幅器4の出力電圧をパルス列の
周波数に変える電圧周波数変換器、6は数値制御装置で
電圧周波数変換器5からパルス列の周波数を分周する分
周手段7.サーボゲインとしての上記分周手段7の分周
率を調整すると共に加ニブログラムにより、ワイヤ放電
加工機の各軸(X軸とY軸のみを図示する)のインクレ
メンタル値の移動量を算出して各軸のパルス分配器に出
力するマイクロプロセッサで構成された演算処理部8.
制御プログラムやデータの一時記憶のためのメモリ部9
、電圧周波数変換器5の出力を一周期毎に計数するカウ
ンタ10.NC加ニブログラムを記憶するテープ12よ
りプログラムを読取るテープリーダ11.各種指令やデ
ータを入力する手動データ入力装置13.さらに、演算
処理部8から出力される各軸に対する移動量を分周手段
7から出力される速度指令としてのパルス列によって各
軸のサーボ回路16.17に出力するパルス分配器14
゜15を有している。16はX軸のサーボ回路、17は
Y軸のサーボ回路、18はX軸を駆動するサーボモータ
、19はY軸を駆動するサーボモータである。
Embodiment FIG. 7 is a block diagram of an embodiment of the present invention.
1 is a wire electrode, 2 is a workpiece, R and R are resistors that divide the voltage between wire electrode 1 and workpiece 2, and 3 is a voltage that smoothes the divided voltage between wire electrode 1 and workpiece 2 by resistors R and R. An integrator that takes out the average machining voltage; 4 a differential amplifier that amplifies the difference between the average machining voltage output from the integrator 3 and a reference voltage Vo; 5 converts the output voltage of the differential amplifier 4 into the frequency of a pulse train. A voltage frequency converter 6 is a numerical control device, and frequency dividing means 7 divides the frequency of the pulse train from the voltage frequency converter 5. While adjusting the frequency division ratio of the frequency dividing means 7 as a servo gain, the amount of movement of the incremental value of each axis of the wire electric discharge machine (only the X axis and Y axis are shown) is calculated by using the Ni program. Arithmetic processing section 8 consisting of a microprocessor that outputs to the pulse distributor of each axis.
Memory section 9 for temporary storage of control programs and data
, a counter 10 that counts the output of the voltage frequency converter 5 every cycle. A tape reader 11 that reads a program from a tape 12 that stores an NC program. Manual data input device 13 for inputting various commands and data. Furthermore, a pulse distributor 14 outputs the movement amount for each axis output from the arithmetic processing unit 8 to the servo circuits 16 and 17 of each axis by a pulse train as a speed command output from the frequency dividing means 7.
It has an angle of 15°. 16 is an X-axis servo circuit, 17 is a Y-axis servo circuit, 18 is a servo motor that drives the X-axis, and 19 is a servo motor that drives the Y-axis.

次に本実施例の動作を説明する。Next, the operation of this embodiment will be explained.

まず、手動データ入力装置13よりサーボ送りにおける
ワーク2とワイヤ電極1の相対的な設定送り速度Pと、
分周手段の分周率と対応するサーボゲインの初期値Go
を設定する(分周手段の分周率をλとし、サーボゲイン
をGとすると、λ=1/Gの関係にある)。そして、テ
ープリーダ11よりNG加ニブログラムを読み加工開始
させると、ワイヤ電極1とワーク2間に印加された電圧
は抵抗R,Rで分圧されこの分圧電圧は積分器3で平滑
されて平均加工電圧として差動増幅器4に入力される。
First, from the manual data input device 13, the relative set feed speed P of the workpiece 2 and the wire electrode 1 during servo feeding is determined.
The initial value Go of the servo gain corresponding to the frequency division ratio of the frequency dividing means
(If the frequency division ratio of the frequency dividing means is λ and the servo gain is G, then there is a relationship of λ=1/G). When the tape reader 11 reads the NG program and starts machining, the voltage applied between the wire electrode 1 and the workpiece 2 is divided by the resistors R and R, and this divided voltage is smoothed by the integrator 3 and averaged. It is input to the differential amplifier 4 as a processing voltage.

差動増幅器4では基準電圧Voと比較されて、その差が
増幅して出力され電圧周波数変換器5でパルスよりの周
波数に変換される。該電圧周波数変換器5の出力はカウ
ンタ10に入力されその出力パルスが計数されると共に
分周手段7で分周されて送り速度指令としてX軸、Y@
のパルス分配器14.15に入力される。パルス分配器
14.15は演算処理部8からNG加ニブログラムに従
って各軸へ出力されたインクレメンタルな移動指令△×
、△Yがセットされるレジスタと、アキュームレータと
、分周手段7からパルスが発生する毎に該レジスタにセ
ットされたインクリメンタル値△X、△Yをアキューム
レータの内容に加え込む加算器を有している。そして、
かかるパルス分配器14.15においては各アキューム
レータから発生するオーバフローパルスが分配パルスと
なって次段の各軸サーボ回路16.17に印加されてX
軸及びY軸のサーボモータをそれぞれ駆動し、ワイヤ電
極をワークに対して相対的に指令加工通路に沿って移動
させることとなる。
The differential amplifier 4 compares it with the reference voltage Vo, and the difference is amplified and output, and the voltage-frequency converter 5 converts it to a pulse frequency. The output of the voltage frequency converter 5 is input to a counter 10, the output pulses are counted, and the frequency is divided by a frequency dividing means 7 to be sent as a feed rate command to the X axis, Y@
is input to the pulse distributor 14.15. The pulse distributors 14 and 15 receive incremental movement commands △
, △Y are set, an accumulator, and an adder that adds the incremental values △X, △Y set in the register to the contents of the accumulator every time a pulse is generated from the frequency dividing means 7. There is. and,
In such a pulse distributor 14.15, the overflow pulse generated from each accumulator becomes a distribution pulse and is applied to each axis servo circuit 16.17 at the next stage.
The servo motors for the axis and Y axis are respectively driven to move the wire electrode along the commanded machining path relative to the workpiece.

−方、演算処理部8のマイクロプロセッサは第2図に示
す処理を一定周期で行っており、まず、カウンタ10の
値Piを読取り、その後該カウンタ10をリレットする
(ステップS1)。次に第1式で示した演算、即ち読取
ったカウンタ10の値Piより、送り速度指令としての
設定値Pを差し引き定数Kを乗じてViM差ゲインΔG
を求める(゛ステプ32)。次に求められた偏差ゲイン
ΔGをメモリ9に記憶している当該周期のサーボゲイン
G(始めは初1111設定値Go )に加等し、サーボ
ゲインを記憶するメモリ9の番地の記憶内容をこの新し
いサーボゲインに書変え、かつ、この新しいサーボゲイ
ンを分周手段7に出力し分周率を変える。即、第2式の
演口を行って新しいサーボゲインを求め分周手段7の分
周率を変えることとなる(ステップ83.34)。
On the other hand, the microprocessor of the arithmetic processing unit 8 performs the process shown in FIG. 2 at regular intervals, first reading the value Pi of the counter 10, and then resetting the counter 10 (step S1). Next, the calculation shown in the first equation is carried out, that is, from the read value Pi of the counter 10, the set value P as the feed speed command is subtracted and multiplied by the constant K to obtain the ViM difference gain ΔG.
(Step 32). Next, the obtained deviation gain ΔG is added to the servo gain G (initially 1111 set value Go) of the cycle stored in the memory 9, and the stored contents of the address of the memory 9 where the servo gain is stored are added to this value. The servo gain is rewritten to a new servo gain, and this new servo gain is output to the frequency dividing means 7 to change the frequency division ratio. That is, a new servo gain is obtained by performing the second expression, and the frequency division ratio of the frequency dividing means 7 is changed (step 83.34).

演算処理部ではこの処理を一定周期毎に行っており、今
、加工量が増加して平均加工電圧が減少したとする。差
動増幅器4からの出力は小さくなり、電圧周波数変換器
5から出力される周波数は減少し、ステップS1で読取
ったカウンタ10の値P1は小さくなる。そのため、ス
テップS2で求められる偏差ゲインΔGは負の1直とな
る(今までは加工量が一定で、ΔG=Oの状態でサーボ
ゲインGは一定であったとする)。
The arithmetic processing section performs this process at regular intervals, and it is now assumed that the amount of machining has increased and the average machining voltage has decreased. The output from the differential amplifier 4 becomes smaller, the frequency output from the voltage frequency converter 5 decreases, and the value P1 of the counter 10 read in step S1 becomes smaller. Therefore, the deviation gain ΔG obtained in step S2 becomes a negative one (assuming that the amount of processing has been constant and the servo gain G has been constant in the state of ΔG=O).

その結果、ステップS3で求められる新しいサーボゲイ
ンGは減少し、分周手段7から出力されるパルス列は、
Pl ・Gであるので、その出力パルス数は減少しxl
NI、Y軸パルス分配器から出力される分配パルスの速
度は減少し、X@、Y軸のサーボモータの回転速度を落
し、ワーク2とワイヤ電極1の相対的な送り速度は低下
し、ワーク2とワイヤ電極1間のギャップが大きくなる
から平均加工電圧が上昇し、差動増幅器4からの出力電
圧は増大し電圧周波数変換器5の出力は増大して、カウ
ンタ10で計数する一周期内のパルスvlPiも増大し
て偏差ゲインΔGを上背させ、サーボゲインGを増大さ
せる。そして、−周期内のパスル数Piが設定値Pを超
えると、偏差ゲインΔGは正の値となりサーボゲインG
を大きくし、ワーク2とワイヤ電極1の相対的な送り速
度は増大することとなる。この動作が順次行われ、偏差
ゲインΔGがOになるようにすばやくサーボゲインGが
調整されることとなる。
As a result, the new servo gain G determined in step S3 decreases, and the pulse train output from the frequency dividing means 7 becomes
Since Pl ・G, the number of output pulses decreases and xl
The speed of the distribution pulse output from the NI and Y-axis pulse distributor decreases, the rotational speed of the X@ and Y-axis servo motors is reduced, and the relative feeding speed between the workpiece 2 and the wire electrode 1 decreases. 2 and the wire electrode 1 increases, the average processing voltage increases, the output voltage from the differential amplifier 4 increases, and the output of the voltage frequency converter 5 increases, within one period counted by the counter 10. The pulse vlPi also increases, increasing the deviation gain ΔG and increasing the servo gain G. Then, when the number of pulses Pi within the - period exceeds the set value P, the deviation gain ΔG becomes a positive value and the servo gain G
As a result, the relative feeding speed between the workpiece 2 and the wire electrode 1 increases. This operation is performed sequentially, and the servo gain G is quickly adjusted so that the deviation gain ΔG becomes O.

又、加工量が急に減少したときも同様に、偏差ゲインΔ
GがすばやくOになるようにサーボゲインGが調整され
るから、従来のように、ハンチングを生こしたり、加工
しすぎて加工精度を落とすようなことはなくなった。
Similarly, when the machining amount suddenly decreases, the deviation gain Δ
Since the servo gain G is adjusted so that G quickly reaches O, there is no longer any problem of hunting or excessive machining that degrades machining accuracy, as was the case in the past.

なお、サーボゲインを調整する方法として、分周手段7
の会同率を変える方法以外にも差動増幅器4の基準電圧
を微調整する方法もある。即ち、ステップ81〜S4で
得られたサーボゲインGが大きくなったときは、D/A
変換器によって基準電圧Voを下げサーボゲインを大き
くし、ステップ81〜S4で得られたサーボゲインが小
さくなったときは、基準電圧Voを上げてサーボゲイン
を小さくして、基準電圧を微調整することによって行っ
てもよい。
Note that as a method of adjusting the servo gain, the frequency dividing means 7
In addition to the method of changing the matching ratio, there is also a method of finely adjusting the reference voltage of the differential amplifier 4. That is, when the servo gain G obtained in steps 81 to S4 becomes large, the D/A
When the converter lowers the reference voltage Vo and increases the servo gain, and the servo gain obtained in steps 81 to S4 becomes small, the reference voltage Vo is increased to decrease the servo gain to finely adjust the reference voltage. You may do so by doing so.

発明の効果 以上述べたように、コーナ等の加工で加工量が増大した
ときには、すばやくサーボゲインを下げてワークとワイ
ヤ電極の相対的な送り速度を落し、加工量が減少したと
きには、すばやくサーボゲインを上げて送り速度を上げ
るようにしたから、ワークとワイヤ電極の相対的な送り
速度は、ワークの加工ωの増減に合わせて、自動的にす
ばやく変化し、平均加工電圧を一定にするよう作動する
から、仕上加工時等、ハンチングを起こすことなく常に
時間当りの加工量が一定で加工面が均一となり、仕上げ
而が著しく向上する。
Effects of the Invention As mentioned above, when the amount of machining increases when machining corners etc., the servo gain is quickly lowered to reduce the relative feed speed between the workpiece and the wire electrode, and when the amount of machining decreases, the servo gain is quickly increased. Since the feed rate is increased by increasing the feed rate, the relative feed rate between the workpiece and the wire electrode changes automatically and quickly in accordance with the increase or decrease in machining ω of the workpiece, and operates to keep the average machining voltage constant. Therefore, during finishing machining, hunting does not occur, the amount of machining per time is always constant, the machined surface is uniform, and the finishing quality is significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する一実施例のブロック図、第2
図はサーボゲインの調整処理のフローチャートである。 1・・・ワイヤ電極、2・・・ワーク、3・・・積分器
、4・・・差動増幅器、5・・・電圧周波数変換器、6
・・・数値制御装置、7・・・分周手段、8・・・演算
処理部、10・・・カウンタ。 第2図
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG.
The figure is a flowchart of servo gain adjustment processing. DESCRIPTION OF SYMBOLS 1... Wire electrode, 2... Work, 3... Integrator, 4... Differential amplifier, 5... Voltage frequency converter, 6
... Numerical control device, 7... Frequency dividing means, 8... Arithmetic processing unit, 10... Counter. Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)ワークとワイヤ電極間の平均加工電圧の分圧値と
基準電圧とを比較し、その差電圧を電圧周波数変換器で
パルス列により変換し、該出力パルス列によつて各軸を
送りワークとワイヤ電極とを相対的に移動させる放電加
工サーボ送りにおいて、一定周期毎に上記電圧周波数変
換器の出力パルスを計数し、該計数値と設定値との差に
よる偏差ゲインを求め、当該周期に出力したサーボ送り
系のサーボゲインに該偏差ゲインを加算して次周期のサ
ーボゲインにした放電加工サーボ送り方式。
(1) Compare the partial pressure value of the average machining voltage between the workpiece and the wire electrode with the reference voltage, convert the difference voltage by a pulse train using a voltage frequency converter, and use the output pulse train to feed each axis to the workpiece. In electrical discharge machining servo feed that moves the wire electrode relatively, the output pulses of the voltage frequency converter are counted at regular intervals, the deviation gain is determined by the difference between the counted value and the set value, and the output pulse is output at the relevant cycle. This is an electric discharge machining servo feed method in which the deviation gain is added to the servo gain of the servo feed system to obtain the servo gain for the next cycle.
(2)上記電圧周波数変換器の出力パルスを分周手段に
よつて分周し、該分周手段の出力により各軸を送り、上
記分周手段の分周率を変えることによつて上記サーボゲ
インを変える特許請求の範囲第1項記載の放電加工送り
方式。
(2) The output pulse of the voltage frequency converter is divided by the frequency dividing means, each axis is sent by the output of the frequency dividing means, and the frequency division ratio of the frequency dividing means is changed to control the servo control. The electric discharge machining feeding method according to claim 1, which changes the gain.
JP14966486A 1986-06-27 1986-06-27 Servo feed system for electric discharge machining Granted JPS637227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14966486A JPS637227A (en) 1986-06-27 1986-06-27 Servo feed system for electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14966486A JPS637227A (en) 1986-06-27 1986-06-27 Servo feed system for electric discharge machining

Publications (2)

Publication Number Publication Date
JPS637227A true JPS637227A (en) 1988-01-13
JPH0579444B2 JPH0579444B2 (en) 1993-11-02

Family

ID=15480148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14966486A Granted JPS637227A (en) 1986-06-27 1986-06-27 Servo feed system for electric discharge machining

Country Status (1)

Country Link
JP (1) JPS637227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011161764A1 (en) * 2010-06-22 2011-12-29 三菱電機株式会社 Electro-discharge machining control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218292A (en) * 1975-08-01 1977-02-10 Shinko Seisakusho:Kk Electrode operating control device for electrospark machining
JPS56152529A (en) * 1980-04-23 1981-11-26 Mitsubishi Electric Corp Electric discharge machining device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218292A (en) * 1975-08-01 1977-02-10 Shinko Seisakusho:Kk Electrode operating control device for electrospark machining
JPS56152529A (en) * 1980-04-23 1981-11-26 Mitsubishi Electric Corp Electric discharge machining device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011161764A1 (en) * 2010-06-22 2011-12-29 三菱電機株式会社 Electro-discharge machining control device
JP5372252B2 (en) * 2010-06-22 2013-12-18 三菱電機株式会社 Electric discharge machining control device

Also Published As

Publication number Publication date
JPH0579444B2 (en) 1993-11-02

Similar Documents

Publication Publication Date Title
US7274165B2 (en) Numerical controller
US4810945A (en) Numerical control feed device for machine tool
EP0012620A2 (en) Closed loop type numerical-controlled machine tool
JPH03260708A (en) Position error correcting method
JPH08179831A (en) Quadrant projection correcting method for full-closed loop system
JP6290619B2 (en) Motor control device
JPH0569275A (en) Numerical control device
US4837415A (en) Wire electrode type electric discharge machining apparatus
KR910008244B1 (en) Wire cut electrical discharge machine
JPH03166604A (en) Position correcting system for machine position fluctuation
KR0164629B1 (en) Method and apparatus for discharge machining control
JP2000322105A (en) Servo controller and method for stabilizing and adjusting servo controller
JP2558252B2 (en) Home position return method
JPS637227A (en) Servo feed system for electric discharge machining
JP3628119B2 (en) Servo motor control method
US4667079A (en) Electrode retraction control system of electric discharge machine
JPH03157704A (en) Position correcting system for mechanical position fluctuation
JPH0229453B2 (en)
JPS637226A (en) Servo feed system for electric discharge machining
JP2826391B2 (en) Backlash acceleration control method
KR930001582B1 (en) Reference-point return method
JPS6351809B2 (en)
JPH04117506A (en) Position correcting system by acceleration control
JPH06126536A (en) Wire electric discharge machining device
JPS5939250B2 (en) Thread cutting method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees