JPH0319011B2 - - Google Patents
Info
- Publication number
- JPH0319011B2 JPH0319011B2 JP57153510A JP15351082A JPH0319011B2 JP H0319011 B2 JPH0319011 B2 JP H0319011B2 JP 57153510 A JP57153510 A JP 57153510A JP 15351082 A JP15351082 A JP 15351082A JP H0319011 B2 JPH0319011 B2 JP H0319011B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency component
- discharge
- voltage
- machining
- gap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000003754 machining Methods 0.000 claims description 22
- 238000001514 detection method Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 4
- 230000002159 abnormal effect Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 238000001228 spectrum Methods 0.000 description 9
- 238000010891 electric arc Methods 0.000 description 7
- 238000009760 electrical discharge machining Methods 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/14—Electric circuits specially adapted therefor, e.g. power supply
- B23H7/18—Electric circuits specially adapted therefor, e.g. power supply for maintaining or controlling the desired spacing between electrode and workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H1/00—Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
- B23H1/10—Supply or regeneration of working media
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Description
【発明の詳細な説明】
本発明は放電加工装置、特に電極と被加工物と
を絶縁性加工液を介在させて対向させ、その極間
間隙にパルス電圧を印加して上記被加工物を加工
する放電加工装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric discharge machining apparatus, in particular, an electric discharge machining apparatus, in which an electrode and a workpiece are opposed to each other with an insulating machining liquid interposed therebetween, and a pulse voltage is applied to the gap between the electrodes to process the workpiece. This invention relates to electrical discharge machining equipment.
第1図には従来の放電加工装置の概要構成図が
示されている。第1図において、電極10は加工
槽12内に置かれた被加工物14と絶縁性加工液
16を介して対向している。電極10と被加工物
14間には加工電源18が接続されている。この
加工電源18は直流電源18aと、加工電流の断
続を行なうためのスイツチング素子18bと、電
流制限抵抗18cと、スイツチング素子18bの
断続を制御するための発振器18dとによつて構
成され、加工電流を断続的に電極10と被加工物
14との極間間隙20に供給する。 FIG. 1 shows a schematic configuration diagram of a conventional electric discharge machining apparatus. In FIG. 1, an electrode 10 faces a workpiece 14 placed in a processing tank 12 with an insulating processing fluid 16 in between. A processing power source 18 is connected between the electrode 10 and the workpiece 14. This machining power supply 18 is composed of a DC power supply 18a, a switching element 18b for controlling the machining current on and off, a current limiting resistor 18c, and an oscillator 18d for controlling the on/off of the switching element 18b. is intermittently supplied to the gap 20 between the electrode 10 and the workpiece 14.
加工電流Iは、I=E−Vg/R(Eは直流電源1
8aの電圧値、Rは電流制限抵抗18cの抵抗
値、Vgは極間電圧値)の式であらわされる。極
間電圧値Vgは、アーク放電中は20〜30V、短絡
時は0V、無放電中はEVとなり、スイツチング素
子18bがオフ状態の時は0Vとなる。 The machining current I is expressed by the formula: I=E-V g /R (E is the voltage value of the DC power supply 18a, R is the resistance value of the current limiting resistor 18c, and V g is the voltage between electrodes). The interelectrode voltage value V g is 20 to 30 V during arc discharge, 0 V during short circuit, EV during no discharge, and 0 V when switching element 18b is in the off state.
そこで、この極間電圧値Vgを検出して平滑回
路22で平均化すれば、この値で極間間隙制御を
行なうことができる。すなわち、極間間隙20が
広い時は放電が起りにくく平均電圧値Vsは高い。
極間間隙20が狭い時は短絡したり、容易に放電
するため平均電圧値Vsは低下する。従つて、こ
の平均電圧値Vsを基準電圧値Vtと比較して、こ
の差を増幅器24で増幅して油圧サーボコイル2
6に入力すれば、油圧発生ポンプ28と油圧シリ
ンダ30とで構成される油圧サーボ機構によつ
て、極間間隙20がほぼ一定になるように電極1
0を制御することができる。 Therefore, if this inter-electrode voltage value V g is detected and averaged by the smoothing circuit 22, the inter-electrode gap can be controlled using this value. That is, when the inter-electrode gap 20 is wide, discharge is difficult to occur and the average voltage value V s is high.
When the inter-electrode gap 20 is narrow, short circuits or discharges occur easily, and the average voltage value V s decreases. Therefore, this average voltage value V s is compared with the reference voltage value V t and this difference is amplified by the amplifier 24 and the hydraulic servo coil 2
6, a hydraulic servo mechanism consisting of a hydraulic pressure generating pump 28 and a hydraulic cylinder 30 will control the electrode 1 so that the inter-electrode gap 20 is approximately constant.
0 can be controlled.
従来の放電加工装置で加工状態の良否を判別す
る際、最も一般的なのは極間電圧値Vgの平均電
圧値Vsを観測することである。すなわち、平均
電圧値Vsが低い時は極電インピーダンスが低い
場合であつて、短絡、連続的アーク放電となり、
極間間隙20には加工粉やスラツジの滞留等が考
えられる。しかし、放電加工において最も危険な
異常アーク放電は、一度発生すると加工液の熱分
解によるカーボン発生のために、カーボンと被加
工物との間の放電となり、極間インピーダンスが
高くなつたような状態になる。このため平均電圧
値Vsの観測では異常アーク放電による極間間隙
状態悪化の検出は不可能であるという欠点があつ
た。 When determining whether the machining state is good or bad using a conventional electric discharge machining apparatus, the most common method is to observe the average voltage value V s of the machining voltage value V g . In other words, when the average voltage value V s is low, the electrode impedance is low, resulting in short circuit and continuous arc discharge.
Processing powder, sludge, etc. may remain in the gap 20 between the poles. However, the most dangerous abnormal arc discharge in electric discharge machining is that once it occurs, carbon is generated due to thermal decomposition of the machining fluid, resulting in an electric discharge between the carbon and the workpiece, resulting in a state where the impedance between the electrodes becomes high. become. For this reason, observation of the average voltage value V s has the disadvantage that it is impossible to detect deterioration of the inter-electrode gap condition due to abnormal arc discharge.
本発明は上述した従来の課題に鑑み為されたも
のであり、その目的は放電発生時の極間電圧のう
ち、極間間隙に印加するパルス電圧の周波数に対
応する低周波数成分及び所定の高周波数成分を検
知して、正常放電と異常放電の判別を行ない、極
間間隙状態が正常となるように電極と被加工物の
極間間隙に印加されるパルス電圧の印加値を制御
するようにした放電加工装置を提供することにあ
る。 The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to reduce the low frequency component corresponding to the frequency of the pulse voltage applied to the gap between the electrodes and the predetermined high frequency component of the voltage between the electrodes when a discharge occurs. The frequency component is detected to distinguish between normal discharge and abnormal discharge, and the applied value of the pulse voltage applied to the gap between the electrode and the workpiece is controlled so that the gap between the electrodes and the workpiece becomes normal. The object of the present invention is to provide an electrical discharge machining device that has the following features.
上記目的を達成するために、本発明は電極と被
加工物とを絶縁性加工液を介在させて対向させ、
その対向間隙にパルス電圧を印加して上記被加工
物を加工する放電加工装置において、電極と被加
工物の間の放電電圧の極間電圧のうち、極間間隙
に印加するパルス電圧の周波数に対応する低周波
数成分及び所定の高周波数成分を検知し、異常放
電状態と正常放電状態であるかを識別する異常放
電検出手段と、この分析によつて極間間隙状態に
応じて信号を出力する極間状態判別手段と、この
判別手段の出力に基づいてパルス電圧の印加値を
制御する制御手段とを備えたことを特徴とする。 In order to achieve the above object, the present invention makes an electrode and a workpiece face each other with an insulating working fluid interposed therebetween,
In an electrical discharge machining device that processes the workpiece by applying a pulse voltage to the opposing gap, the frequency of the pulse voltage applied to the gap is determined by the voltage between the electrodes and the workpiece. Abnormal discharge detection means detects corresponding low frequency components and predetermined high frequency components and identifies whether it is an abnormal discharge state or a normal discharge state, and outputs a signal according to the inter-electrode gap state based on this analysis. The present invention is characterized in that it comprises a gap state determining means and a control means for controlling the applied value of the pulse voltage based on the output of the determining means.
以下、図面に基づいて本発明の好適な実施例を
説明する。 Hereinafter, preferred embodiments of the present invention will be described based on the drawings.
第2図は本発明における検出原理を説明するた
めの放電電圧波形と、その周波数スペクトルを示
すものであつて、無放電の際のように放電せずに
単なる電圧パルスの印加のみの場合には比較的容
易に数式化でき、ちなみに振幅E、周期T、パル
ス幅τの時のスペクトルは以下のように表わすこ
とができる。(しかし、放電波形の場合アトラン
ダムであり式化は難しい。)
f(t)=τ/TE+∞
〓n=1
2τ/TE×sinnωr/2/nωr/2・cosnωt
ただし、ω=2π/T
第2図におけるスペクトル図はT=2τの場合を
例にして記載した。このスペクトル分布と放電状
態からわかることは以下の項目である。 Figure 2 shows the discharge voltage waveform and its frequency spectrum to explain the detection principle in the present invention. This can be expressed relatively easily, and the spectrum when the amplitude is E, the period is T, and the pulse width is τ can be expressed as follows. (However, the discharge waveform is atrandom and difficult to formulate.) f (t) = τ/TE+∞ 〓 n=1 2τ/TE×sinnωr/2/nωr/2・cosnωt However, ω=2π/T The spectrum diagram in FIG. 2 is illustrated using the case of T=2τ as an example. The following items can be understood from this spectral distribution and discharge state.
(1) いずれの状態のスペクトルであつても、周期
Tの逆数にあたる周波数f0に高い出力を示す。
ただし正常放電の場合、他と比較してそのピー
ク値は低い。(1) Regardless of the state of the spectrum, a high output is shown at the frequency f 0 which is the reciprocal of the period T.
However, in the case of normal discharge, the peak value is low compared to others.
(2) アークに関連するような放電の場合、高周波
fH(約2MHz以上)はほとんど存在せず正常放電
の場合200MHz付近にまで高周波成分が減衰し
ないで発生している。(2) In the case of discharges such as those associated with arcs, high frequency
f H (approximately 2 MHz or more) hardly exists, and in normal discharge, high frequency components occur up to around 200 MHz without attenuation.
(3) f0の時の出力が低く、fHでの出力が十分あれ
ば正常放電しているとみなせる、
上記の結果より、(3)項のような状態にあること
を判別できれば放電状態の異常識別が可能となる
ことがわかる。また、アーク放電に至る直前であ
ることを検知できるので、放電加工の失敗を防ぐ
ことができる。(3) If the output at f 0 is low and the output at f H is sufficient, it can be considered normal discharging. From the above results, if it can be determined that the state is as described in (3), then it is discharged. It can be seen that it is possible to identify abnormalities. Further, since it is possible to detect that the process is just before arc discharge occurs, it is possible to prevent failures in electric discharge machining.
第3図は、この実施例を示す概要図であつて、
基本的には周波数スペクトル分析器と同様の構成
となつている。 FIG. 3 is a schematic diagram showing this embodiment,
Basically, it has the same configuration as a frequency spectrum analyzer.
発振器56は所定周波数のパルス信号を出力す
る。カウンター57はこのパルス信号のパルス数
を計数して、計数値をD/A変換器60に出力す
る。D/A変換器60はカウンター57の計数値
をアナログ電圧AVに変換する。さらに、FM変調
器51はアナログ電圧AVに対応する信号f(t)
を混合器52に出力する。次いで、混合器52が
極間間隙の電圧信号F(t)とFM変調器51の出力
信号f(t)とを混合して、その差の周波数の信号j(t)
を出力する。中間周波数増幅器53が信号j(t)を
増幅し、検波器54が信号j(t)の振幅に対応する
電圧を出力し、低周波増幅器55がこれを増幅す
る。 The oscillator 56 outputs a pulse signal of a predetermined frequency. The counter 57 counts the number of pulses of this pulse signal and outputs the counted value to the D/A converter 60. The D/A converter 60 converts the count value of the counter 57 into an analog voltage AV . Furthermore, the FM modulator 51 generates a signal f(t) corresponding to the analog voltage A V
is output to the mixer 52. Next, the mixer 52 mixes the voltage signal F (t) of the gap between the poles and the output signal f (t) of the FM modulator 51, and generates a signal j (t) at the frequency of the difference.
Output. An intermediate frequency amplifier 53 amplifies the signal j (t) , a detector 54 outputs a voltage corresponding to the amplitude of the signal j (t) , and a low frequency amplifier 55 amplifies this.
FM変調器51はアナログ電圧AVを周波数に変
換して出力するので、アナログ電圧AVを時間に
比例して変化させることにより、時間と周波数と
の関係が直線的になり、極間間隙の電圧信号F(t)
から周波数f0及びfHに対応する電圧になる時刻は
発振器56及び発振器56の出力をカウントする
カウンター57によつて判別できる。58はf0の
判別器、59はfHの判別器である。カウンター5
7の内容はD/A変換器60によつてアナログ電
圧AVとなり、前記FM変調器51を変調する。レ
ベル比較器61はf0判別器あるいはfH判別器より
のタイミング信号に応答してそのタイミングにお
ける所定の基準値よりも低周波増幅された振幅、
すなわち周波数スペクトルが大か小かの判別を
し、この結果に基づいて、加工状態に対応した出
力V3を出力する。例えばf0が3KHz,fHが5MHz、
中間周波数が10.7MHzとすると、f(t)が10.703MHz
のときにf0,f(t)が15.7MHzのときにfHがそれぞれ
検出できる。FM変調器51が広帯域のものであ
つて、入力電圧0Vの時5MHz,10Vの時10MHzの
ものとし、D/A変換が16bitタイプのものなら
±80Hz程度の分解能のスペクトル分析器となる。
また、f0に関しては常に加工の条件選択の毎に変
更されるのでf0=1/T(ただし、周期Tはオンタ
イムとオフタイムの和)の演算制御を行う必要が
ある。 The FM modulator 51 converts the analog voltage A V into a frequency and outputs it, so by changing the analog voltage A V in proportion to time, the relationship between time and frequency becomes linear, and the gap between the poles is reduced. Voltage signal F (t)
The time when the voltage becomes the voltage corresponding to the frequencies f 0 and f H can be determined by the oscillator 56 and the counter 57 that counts the output of the oscillator 56 . 58 is a discriminator for f 0 , and 59 is a discriminator for f H . counter 5
The content of 7 becomes an analog voltage A V by the D/A converter 60, and modulates the FM modulator 51. The level comparator 61 responds to the timing signal from the f 0 discriminator or the f H discriminator, and outputs an amplitude amplified at a lower frequency than a predetermined reference value at that timing.
That is, it is determined whether the frequency spectrum is large or small, and based on this result, an output V 3 corresponding to the processing state is output. For example, f 0 is 3KHz, f H is 5MHz,
If the intermediate frequency is 10.7MHz, f (t) is 10.703MHz
When f 0 and f (t) are 15.7MHz, f H can be detected. If the FM modulator 51 is wideband, 5 MHz when the input voltage is 0 V, and 10 MHz when the input voltage is 10 V, and the D/A conversion is 16 bit type, the spectrum analyzer has a resolution of about ±80 Hz.
Furthermore, since f 0 is always changed every time machining conditions are selected, it is necessary to perform calculation control of f 0 =1/T (however, period T is the sum of on-time and off-time).
さて、出力V3について、第4図のレベル比較
器61の詳細説明図を用いて、より詳しく説明す
る。低周波増幅器55の出力はアナログスイツチ
62,63により、各々f0判別とfH判別のタイミ
ング以外に比較器64,65に接続されないよう
になつている。そして、f0判別タイミングにおい
て、スペクトル振幅V0が設定低周波数成分V1よ
り大であると比較器64の出力は“1”となり、
ANDゲート66を介してカウンター67をカウ
ントアツプする。また、fH判別タイミングにおい
て、V0が設定高周波数成分V2より大であると、
比較器65の出力は“1”となり、ANDゲート
68を介してカウンター67をリセツトするの
で、このカウンター67はf0タイミングでのスペ
クトル振幅大の時内容が増加し、fHタイミングで
のV0が大の時はただちにカウンタ内容が零にな
る。よつて高周波成分があれば零、f0成分が大で
あると増加という状態をくりかえすので、このカ
ウンター内容をD/A変換器40を用いてアナロ
グ電圧V0を観察することによつても、極間間隙
状態の良否を判別できる。すなわち、V0が大で
あれば異常放電に近づいていることとなり、例え
ば加工粉の滞留によつて極間間隙にスラツジがた
まつているとか、異常アーク放電が発生しつつあ
ることが判別できる。放電の事故ともいうべき連
続アークは、放電が一点に集中する場合であり、
放電の集中を防ぎ分散させるためには、放電をし
ずらくするのが最も良好な手段である。 Now, the output V3 will be explained in more detail using the detailed explanatory diagram of the level comparator 61 in FIG. The output of the low frequency amplifier 55 is configured by analog switches 62 and 63 so that it is not connected to the comparators 64 and 65 except at the timing of f 0 determination and f H determination, respectively. Then, at the f 0 determination timing, if the spectral amplitude V 0 is larger than the set low frequency component V 1 , the output of the comparator 64 becomes "1",
Counter 67 is counted up via AND gate 66. Also, at the fH determination timing, if V 0 is larger than the set high frequency component V 2 ,
The output of the comparator 65 becomes "1" and the counter 67 is reset via the AND gate 68, so the content of this counter 67 increases when the spectrum amplitude is large at the f 0 timing, and the content of the counter 67 increases when the spectral amplitude is large at the f 0 timing . When is large, the counter contents immediately become zero. Therefore, if there is a high frequency component, the value becomes zero, and if the f0 component is large, the value increases. Therefore, by observing the analog voltage V0 using the D/A converter 40, the contents of this counter can be expressed as follows: It is possible to determine whether the inter-electrode gap condition is good or bad. In other words, if V 0 is large, it means that abnormal discharge is approaching, and it can be determined that, for example, sludge is accumulating in the gap between the poles due to the retention of machining powder, or that abnormal arc discharge is occurring. . A continuous arc, which can also be called a discharge accident, is when the discharge is concentrated in one point.
In order to prevent the concentration of discharge and disperse it, the best means is to make the discharge slow.
第5図の実施例は、出力信号V3に基づいて極
間間隙への印加電圧を変化させる例であつて、放
電開始電圧を低下させれば放電はしずらくなり、
同一放電ギヤツプでの放電集中を防ぐことができ
る。また、放電集中がない場合には極間間隙への
印加電圧を上げることにより、同一放電ギヤツプ
における放電のしやすさを増すことができる。 The embodiment shown in FIG. 5 is an example in which the voltage applied to the gap between the electrodes is changed based on the output signal V 3 , and if the discharge starting voltage is lowered, the discharge becomes harder.
Concentration of discharge in the same discharge gap can be prevented. Furthermore, when there is no discharge concentration, by increasing the voltage applied to the gap between the electrodes, it is possible to increase the ease of discharge in the same discharge gap.
この第5図における41は、カウンター67の
出力に応じたアナログ電圧V3をトランジスタ5
1の制御を司る発振器100に増幅して印加する
ための増幅器である。さて極間間隙に印加される
電圧Vgは、以下のごとくにあらわされる。 Reference numeral 41 in FIG.
This is an amplifier for amplifying the signal and applying it to the oscillator 100 that controls the signal. Now, the voltage V g applied to the gap between the electrodes is expressed as follows.
Vg=IcR1 …(1)
またIcはトランジスタ51のエミツタフオロア
負荷R2に流れる電流にほぼ等しく(99%程度)
このIcは
Ic=VE/R2≒VB/R2 …(2)
と表される。よつてVgは、式(1)と(2)より
Vg=R1/R2VB …(3)
となる。ここでR1=30KΩ,R2=1KΩ,E=
300Vとすると、VBは0〜10Vの変化により0〜
300Vの変化をする。これにより、放電の集中が
あつてカウンター67の内容が増加するとD/A
変換器40の出力V3が増加し、極間間隙電圧Vg
は減少することになり放電の集中はなくなる。 V g = I c R 1 ...(1) Also, I c is almost equal to the current flowing through the emitter follower load R 2 of the transistor 51 (about 99%)
This I c is expressed as I c =V E /R 2 ≒V B /R 2 (2). Therefore, V g becomes V g = R 1 /R 2 V B (3) from equations (1) and (2). Here R 1 = 30KΩ, R 2 = 1KΩ, E =
Assuming 300V, V B changes from 0 to 10V due to a change of 0 to 10V.
Makes a change of 300V. As a result, when the content of the counter 67 increases due to concentration of discharge, the D/A
The output V 3 of the converter 40 increases and the pole gap voltage V g
decreases, and the concentration of discharge disappears.
なお、上記実施例では異常放電検出カウンター
67の内容に応じて連続的に極間間隙への印加電
圧を変化させているが、必ずしもカウンター内容
と電圧は比例関係を持たせる必要はなく、指数的
に変化させるほうがアーク放電移行を防ぐ効果が
あることも実験で確められている。 In the above embodiment, the voltage applied to the gap between the electrodes is continuously changed according to the contents of the abnormal discharge detection counter 67, but the counter contents and the voltage do not necessarily have to have a proportional relationship, but have an exponential relationship. It has also been confirmed through experiments that changing the temperature to 1 is more effective in preventing arc discharge transfer.
以上のように、本発明によれば放電の異常を放
電波形の周波数スペクトルで判別し、しかも放電
状態の正常化をはかるために極間間隙に印加する
パルス電圧の印加値を制御する従来にない放電加
工装置が実現される。 As described above, according to the present invention, an abnormality in discharge is determined based on the frequency spectrum of the discharge waveform, and in addition, in order to normalize the discharge state, the applied value of the pulse voltage applied to the gap between the electrodes is controlled. An electrical discharge machining device is realized.
第1図は従来の放電加工装置を示す原理図、第
2図は本発明になる原理の説明図、第3図は周波
数スペクトル分析回路説明図、第4図は異常状態
検出判別回路図、第5図は極間間隙への印加電圧
制御回路図である。
図中、10は電極、14は被加工物、18は加
工電源、67は異常検知カウンターである。な
お、図中同一符号は同一又は相当部分を示す。
Fig. 1 is a principle diagram showing a conventional electric discharge machining device, Fig. 2 is an explanatory diagram of the principle according to the present invention, Fig. 3 is an explanatory diagram of a frequency spectrum analysis circuit, Fig. 4 is an abnormal state detection and discrimination circuit diagram, FIG. 5 is a circuit diagram for controlling the voltage applied to the gap between the electrodes. In the figure, 10 is an electrode, 14 is a workpiece, 18 is a processing power source, and 67 is an abnormality detection counter. Note that the same reference numerals in the figures indicate the same or equivalent parts.
Claims (1)
て対向させ、該電極と該被加工物とによつて形成
される極間間〓に所定周波数のパルス電圧を印加
することにより、該極間間〓に放電を発生させ
て、前記被加工物を加工する放電加工装置におい
て、所定のタイミングで前記極間間〓で放電した
際の極間電圧を検波することにより、該極間電圧
のうち、少なくとも前記パルス電圧の周波数に対
応する低周波数成分及び所定の高周波数成分を検
知する検知手段と、前記低周波数成分及び高周波
数成分を予め設定した設定低周波数成分及び設定
高周波数成分とそれぞれ比較する比較手段と、前
記比較手段の比較結果が前記低周波数成分が設定
低周波数成分よりも小さく、かつ前記高周波数成
分が設定高周波数成分よりも大きい場合に正常放
電として前記極間間〓の状態を判断する極間間〓
状態判別手段と、前記極間間隙の状態に基づい
て、前記パルス電圧の印加値を制御する制御手段
とを具備することを特徴とする放電加工装置。1. By placing an electrode and a workpiece facing each other with an insulating working fluid interposed therebetween, and applying a pulse voltage of a predetermined frequency to the gap formed by the electrode and the workpiece, In an electric discharge machining device that processes the workpiece by generating an electric discharge between the machining parts, the machining voltage can be determined by detecting the machining voltage when a discharge is generated between the machining parts at a predetermined timing. Among them, a detection means for detecting at least a low frequency component and a predetermined high frequency component corresponding to the frequency of the pulse voltage, and a set low frequency component and a set high frequency component that preset the low frequency component and the high frequency component. If the comparison result of the comparing means and the comparing means is that the low frequency component is smaller than the set low frequency component and the high frequency component is larger than the set high frequency component, the discharge is determined to be normal and the distance between the electrodes is determined as normal discharge. Between poles to judge the state of
An electric discharge machining apparatus comprising: a state determining means; and a control means for controlling the applied value of the pulse voltage based on the state of the inter-electrode gap.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15351082A JPS5942219A (en) | 1982-09-03 | 1982-09-03 | Electric discharge machine |
CH4202/83A CH661228A5 (en) | 1982-08-02 | 1983-08-02 | SPARK EDM MACHINE WITH AN ELECTRODE TO MACHINE A WORKPIECE. |
DE19833327900 DE3327900A1 (en) | 1982-08-02 | 1983-08-02 | ELECTRICAL DISCHARGE DEVICE |
US06/519,643 US4582974A (en) | 1982-08-02 | 1983-08-02 | Electric discharge machine including means for detecting abnormal discharge conditions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15351082A JPS5942219A (en) | 1982-09-03 | 1982-09-03 | Electric discharge machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5942219A JPS5942219A (en) | 1984-03-08 |
JPH0319011B2 true JPH0319011B2 (en) | 1991-03-14 |
Family
ID=15564115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15351082A Granted JPS5942219A (en) | 1982-08-02 | 1982-09-03 | Electric discharge machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5942219A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2547055Y2 (en) * | 1991-05-28 | 1997-09-03 | 芥川製菓株式会社 | Elastic mold |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5094596A (en) * | 1973-12-04 | 1975-07-28 |
-
1982
- 1982-09-03 JP JP15351082A patent/JPS5942219A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5094596A (en) * | 1973-12-04 | 1975-07-28 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2547055Y2 (en) * | 1991-05-28 | 1997-09-03 | 芥川製菓株式会社 | Elastic mold |
Also Published As
Publication number | Publication date |
---|---|
JPS5942219A (en) | 1984-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bartnikas et al. | A simple pulse-height analyzer for partial-discharge-rate measurements | |
EP1048388A2 (en) | Resistance welding power supply apparatus | |
US4582974A (en) | Electric discharge machine including means for detecting abnormal discharge conditions | |
JPS57156128A (en) | Electric discharge machining device | |
JPH0319011B2 (en) | ||
US4322595A (en) | Arc monitor for electrical discharge machining | |
JPS5924924A (en) | Electric discharge machine | |
JPH0355250B2 (en) | ||
JPS6034221A (en) | Electric discharge machine | |
EP0009928B1 (en) | Arc monitor for electrical discharge machining | |
JPS637890B2 (en) | ||
JPS6034220A (en) | Electric discharge machine | |
JPS62201091A (en) | Current detector of dc motor | |
SU860976A1 (en) | Method of protecting from short circuits at dimensional electrochemical working | |
JPS5937018A (en) | Electric discharge machine | |
JP3419900B2 (en) | Arc discharge detection circuit | |
SU1255328A1 (en) | Method of adaptive protection from short-circuits in electric methods of machining | |
JPS57189724A (en) | Electric discharge machining condition detector | |
JPS5924921A (en) | Electric discharge machine | |
JPS56109178A (en) | Welding strength monitoring apparatus of spot welding | |
JPH0857297A (en) | Detection of arc discharge | |
JPS61109620A (en) | Wire cut electric spark machine | |
JP2703769B2 (en) | Tokinobu ground fault detector | |
JPS6158252B2 (en) | ||
SU516907A2 (en) | Level switch |