JPS6034220A - Electric discharge machine - Google Patents

Electric discharge machine

Info

Publication number
JPS6034220A
JPS6034220A JP14072283A JP14072283A JPS6034220A JP S6034220 A JPS6034220 A JP S6034220A JP 14072283 A JP14072283 A JP 14072283A JP 14072283 A JP14072283 A JP 14072283A JP S6034220 A JPS6034220 A JP S6034220A
Authority
JP
Japan
Prior art keywords
machining
gap
discharge
electrode
inter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14072283A
Other languages
Japanese (ja)
Inventor
Tetsuro Ito
哲朗 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14072283A priority Critical patent/JPS6034220A/en
Publication of JPS6034220A publication Critical patent/JPS6034220A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/10Supply or regeneration of working media

Abstract

PURPOSE:To improve the working efficiency by controlling the ejection pressure or the suction pressure of working liquid to remove contamination from the inter-pole gap on the basis of the output from means for deciding the inter- pole state between the electrode and a work. CONSTITUTION:Working liquid sucked through a feed pump 100 from a working liquid tank 99 is fed through a solenoid valve 101 and manual value 102 to an ejection path 104 provided in an electrode 10. Upon exceed over predetermined pressure level, signal SB is fed back from a liquid pressure meter relay 105 to a controller 106 for said valve 101 to maintain specific pressure level of working liquid. Upon accumulation of chips in the inter-pole gap, signal SA is fed from an abnormal discharge detecting means for analyzing the frequency spectrum of discharge voltage waveform across the electrode 10 and a work 14 and for deciding whether it is abnormal discharge or normal discharge to a valve controller 106 thus to open the solenoid valve 101. Consequently, chips accumulated in the inter-pole gap are removed quickly by the ejected pressure to recover the inter-pole state.

Description

【発明の詳細な説明】 本発明は放電加工装置、特に電極と被加工物と(1) を絶縁性加工液を介在させて対向させ、その極間間隙内
に放電を発生させて上記被加工物を加工する放電加工装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric discharge machining apparatus, in particular, an electrode and a workpiece (1) are faced to each other with an insulating machining liquid interposed therebetween, and an electric discharge is generated in the gap between the electrodes to machine the workpiece. This invention relates to electrical discharge machining equipment for machining objects.

第1図には従来の放電加工装置の概要構成図が示されて
いる。第1図において、電極10は加工槽12内に置か
れた被加工物14と絶縁性加工液16を介して対向して
いる。劃10と被加工物14間には加工電源18が接続
されている。この加工電源18は直流電源18&と、加
工電流の断続を行なうためのスイッチング素子18bと
、電流制限抵抗18cと、上記スイッチング素子18b
の断続を制御するための発振@18dとによって構成さ
れ、加工電流を断続的に電極10と被加工物14との極
間間隙20に供給する。
FIG. 1 shows a schematic configuration diagram of a conventional electric discharge machining apparatus. In FIG. 1, an electrode 10 faces a workpiece 14 placed in a processing tank 12 with an insulating processing fluid 16 in between. A processing power source 18 is connected between the cutting edge 10 and the workpiece 14. This machining power source 18 includes a DC power source 18&, a switching element 18b for switching on and off the machining current, a current limiting resistor 18c, and the switching element 18b.
The machining current is intermittently supplied to the gap 20 between the electrode 10 and the workpiece 14.

上記の加工電流Iは、1 = 一旦ヨ壺−(Eは直流電
源尺 18aの電圧値、Rは電流制限抵抗18cの抵抗値、ν
9は極間電圧値)の式であられされる。極間電圧値v9
は、アーク放電中は20〜30v1短絡時ばOV1無放
電中はEVとなり、スイッチング素子18bがオフ状態
の時はOvとなる。
The above machining current I is 1 = once turned - (E is the voltage value of the DC power supply scale 18a, R is the resistance value of the current limiting resistor 18c, ν
9 is the voltage between electrodes). Electrode voltage value v9
is 20 to 30v1 during arc discharge.When short-circuited, OV1 becomes EV1 during no discharge, and when the switching element 18b is in the off state, becomes Ov.

(2) そこでこの極間電圧値vgを検出して平滑回路22で平
均化すれば、この値で極間間隙¥Kll!+を行なうこ
とができろ。ずなオ)も、極間間隙20が広い時は放電
が起りにくく平均電圧値Vsは高い。極間間隙20が狭
い時は短絡したり、容易に放電するため平均電圧値Vs
は低下する。従って、この平均電圧値Vsを基準電圧値
Vtと比較して、乙の差を増幅器24で増幅して油圧サ
ーボコイル26に入力すれば、油圧発生ポンプ28と油
圧シリンダ30とで構成されろ油圧サーボ機構によって
、極間間隙20がほぼ一定になるように電極10を制御
することができる。
(2) Then, if this inter-electrode voltage value vg is detected and averaged by the smoothing circuit 22, the inter-electrode gap ¥Kll! Be able to do +. Also in Zunao), when the gap 20 between the electrodes is wide, discharge is difficult to occur and the average voltage value Vs is high. When the inter-electrode gap 20 is narrow, short circuits or discharges occur easily, so the average voltage value Vs
decreases. Therefore, if this average voltage value Vs is compared with the reference voltage value Vt, and the difference between them is amplified by the amplifier 24 and inputted to the hydraulic servo coil 26, the hydraulic pressure generated by the hydraulic pressure generating pump 28 and the hydraulic cylinder 30 is The servomechanism allows the electrodes 10 to be controlled so that the interpolar gap 20 is approximately constant.

従来の放電加工装置で加工状態の良否を判別する際、最
も一般的なのは上記の極間電圧値v9の平均電圧値Vs
を13131することである。すなわち、平均電圧値V
sが低い時は極間インピーダンスが低い場合であって、
短絡、連続的アーク放電となり、極間間隙20には加工
粉やスラッジの滞留等が考えられる。しかし放電加工に
おいて最も危険な異常アーク放電は、一度発生すると加
工液の熱分解(3) によるカーボン発生のなめに、カーボンと被加工物との
間の放電となり、極間インピーダンスが高くなったよう
な状態になる。このため平均電圧値Vsの観測では異常
アーク放電による極間間隙状態悪化の検出は不可能であ
るという欠点があった。
When determining whether the machining condition is good or bad with a conventional electrical discharge machining device, the most common method is to use the average voltage value Vs of the machining voltage value v9 mentioned above.
13131. That is, the average voltage value V
When s is low, the impedance between poles is low,
Short circuits and continuous arc discharge may occur, and machining powder and sludge may remain in the gap 20 between the poles. However, the most dangerous abnormal arc discharge in electric discharge machining is that once it occurs, carbon is generated due to the thermal decomposition of the machining fluid (3), resulting in an electric discharge between the carbon and the workpiece, and the impedance between the electrodes increases. It becomes a state. Therefore, observation of the average voltage value Vs has the disadvantage that it is impossible to detect deterioration of the inter-electrode gap condition due to abnormal arc discharge.

本発明は前述した従来の課題に鑑み為されたものであり
、その目的は放電発生時の極間間隙放電電圧波形の周波
数スペクトル解析を行って正常放電と異常放電の判別を
し極間間隙状態が正常となるように極間間隙において噴
出あるいlよ吸引させる加工液の圧力を増加することに
より、極間間隙に滞留した加工粉やカーボン、スラッジ
等の異常アーク発生原因となる物質を排出除去して放電
集中を防ぐようにした放電加工装置を提供することにあ
る。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to analyze the frequency spectrum of the discharge voltage waveform of the gap between electrodes when a discharge occurs, to distinguish between normal discharge and abnormal discharge, and to determine the state of the gap between electrodes. By increasing the pressure of the machining fluid that is ejected or sucked into the gap between the poles so that the process becomes normal, substances that can cause abnormal arc generation such as machining powder, carbon, and sludge that have accumulated in the gap between the poles are discharged. It is an object of the present invention to provide an electrical discharge machining device which prevents discharge concentration by removing the discharge.

上記目的を達成するために、本発明は電極と被加工物と
を絶縁性加工液を介在させて対向させ、その対向間隙内
に放電を発生させて上記被加工物を加工する放電加工装
置において、電極と被加工物の間の放電電圧波形の周波
数スペクトルを分析(4) し、異常放電状態と正常放電状態であるかを識別する異
常放電検出手段と、上記分析によって極間間隙状態に応
じて信号を出力する極間状態判別手段と、この判別手段
の出力に基すいて極間間隙の汚れを排除するように加工
液の噴出圧力や殴打を制御する制卸手段とを備えたこと
を特徴とする。
In order to achieve the above object, the present invention provides an electric discharge machining apparatus that machines the workpiece by arranging an electrode and a workpiece to face each other with an insulating machining liquid interposed therebetween, and generating electric discharge in the opposing gap. , an abnormal discharge detection means that analyzes the frequency spectrum of the discharge voltage waveform between the electrode and the workpiece (4) and identifies whether it is an abnormal discharge state or a normal discharge state; and a control means for controlling the jetting pressure and striking of the machining fluid so as to eliminate contamination in the gap between the machining fluids based on the output of the discriminating means. Features.

以下、図面に基づいて本発明の好適な実施例を説明する
。第2図;よ本発明におけろ検出原理を説明するための
放電電圧波形と、その周波数スペクトルを示すものであ
って、無放電の際のように放電せずに単なる電圧パルス
の印加のみの場合には比較的容易に数式化でき、ちなみ
に振幅E2周期T、パルス幅τの時のスペクトルは以下
にように表わすことができる。(しかし、放電波形の場
合アトランダムであり式化は難しい。) ただし、ω= 、?z 丁 第2図におけるスペクトル図はT=2τの場合を例にし
て記載した。このスペクトル分布と放電状(5) 態かられかること1よ以下の項目である。
Hereinafter, preferred embodiments of the present invention will be described based on the drawings. Figure 2 shows the discharge voltage waveform and its frequency spectrum to explain the detection principle in the present invention, and shows the voltage pulse that is simply applied without discharging as in the case of no discharge. In this case, the spectrum can be expressed relatively easily, and the spectrum when the amplitude is E2, the period is T, and the pulse width is τ can be expressed as follows. (However, the discharge waveform is at random and difficult to formulate.) However, ω= , ? The spectrum diagram in FIG. 2 has been described using the case of T=2τ as an example. The following items can be learned from this spectral distribution and discharge state (5).

filいづれの状態のスペクトルであっても、周期Tの
逆数にあたる周波数f、に高い出力を示す。ただし正常
放電の場合、他と比較してそのピーク値は低い。
The spectrum in either state shows a high output at a frequency f, which is the reciprocal of the period T. However, in the case of normal discharge, the peak value is low compared to others.

(2)アークに関連するような放電の場合、高周波fI
−1(約2 M Hz以上)はほとんど存在せず正常放
電の場合200MH2付近にまで高周波成分が減衰しな
いで発生している。
(2) In the case of discharges such as those related to arcs, high frequency fI
-1 (approximately 2 MHz or more) hardly exists, and in the case of normal discharge, high frequency components occur up to around 200 MHz without attenuation.

(31fOの時の出力が低く、EHでの出力が十分あれ
ば正常放電しているとみなせる。
(If the output at 31fO is low and the output at EH is sufficient, it can be considered that the discharge is normal.

上記の結果より、(31項のような状態にあることを判
別できれば放電状態の異常識別が可能となることがわか
る。
From the above results, it can be seen that if it is possible to determine that the state is as in item 31, it is possible to identify an abnormality in the discharge state.

第3図は、この実施例を示す概要図であって、基本的に
は周波数スペクトル分析型と同様の構成となっている。
FIG. 3 is a schematic diagram showing this embodiment, which basically has the same configuration as the frequency spectrum analysis type.

極間間隙の電圧信号F(t)は、FM変l!11M51
の出力信号f (t)と混合糖によって混合されヘテロ
ダイン検波によって、F(t)とf(t)の和の周波数
のうち中間周波3 (tlの周波数のみが取り(6) 出され差も出るが、これはフィルターによって除去する
中間周波数増幅器53により増幅され、検波M54によ
り振幅分が検波されて低周波増幅器55によって増幅さ
れる。前述のFM変@晋51は、アナログ電圧Aνによ
って周波数変調されているので、このアナログ電圧AV
を時間に比例して変化させることにより時間と周波数の
関係が直線的となり、時間毎にFTt)のうちの」(t
)の周波数分多いだけの周波数スペクトルの振幅を低周
波増幅器55の出力として取り出すことができる。よっ
てアナログ電圧^νが前記のfo、 fHに相当する電
圧になる時間は正確な発lit!!!!58、及びこの
出力を数えていくカウンター57によって判別できる。
The voltage signal F(t) at the gap between the poles is FM variable l! 11M51
The output signal f (t) of is mixed by the mixed sugar, and by heterodyne detection, only the frequency of intermediate frequency 3 (tl) is extracted from the sum of frequencies of F (t) and f (t) (6) and a difference is also generated. However, this is amplified by the intermediate frequency amplifier 53 which is removed by a filter, and the amplitude component is detected by the detection M54 and amplified by the low frequency amplifier 55. Therefore, this analog voltage AV
By changing proportional to time, the relationship between time and frequency becomes linear, and ``(t) of FTt) changes at each time.
) can be extracted as the output of the low frequency amplifier 55. Therefore, the time at which the analog voltage ^ν reaches the voltage corresponding to the fo, fH mentioned above is accurate! ! ! ! 58 and a counter 57 that counts this output.

58はf6の判別器、59はfI、の判別器である。カ
ウンター57の内容はD/A変換器60によってアナロ
グ電圧^νとなり、前記FM変調器51を変調する。レ
ベル比較@s61はf。判別器あるいはf1判別冊より
のタイミング(8号に応答してそのタイミングにおける
所定の基準値よりも低周波増幅された振幅、すなわち周
波数スペクトルが大か小かの判(7) 別をし、この結果に基づいて異常放電の時は出力SAを
出す。例えばf、が3KH2,11,1が5 M 11
2とする。また中間周波数10.7M+(2とすれば、
f(t)が、10.693MH,の時にf。が5.70
0 MH,の時f、の各スペクトルが検出できる。FM
変w4晋51が広帯域のものであって、入力電圧OVの
時5MH,IOVの時10MHのものとし、D/A変換
が16bitタイプのものなら±80H程度の分解能の
スペクトル分析器となる。また、■に関しては常に加工
の条件選択の毎に変更されるのでf。−一部 (ただし、周期Tはオンタイムとオフタイムの和)の演
算制御を行う必要がある。
58 is a discriminator for f6, and 59 is a discriminator for fI. The contents of the counter 57 are converted into an analog voltage ^v by the D/A converter 60, which modulates the FM modulator 51. Level comparison @s61 is f. In response to the timing (No. 8) from the discriminator or the f1 discrimination booklet, determine whether the amplitude of the lower frequency amplification, that is, the frequency spectrum, is larger or smaller than the predetermined reference value at that timing (7). Based on the result, output SA is output when there is an abnormal discharge.For example, f is 3KH2, 11, 1 is 5M 11
Set it to 2. Also, if the intermediate frequency is 10.7M+(2),
f when f(t) is 10.693MH. is 5.70
At 0 MH, each spectrum of f can be detected. FM
If the variable W4JIN51 is of wide band type, 5MH when the input voltage is OV, and 10MH when the input voltage is IOV, and the D/A conversion is of the 16-bit type, the spectrum analyzer has a resolution of about ±80H. Also, regarding ■, f is always changed every time the machining conditions are selected. - It is necessary to perform some (however, period T is the sum of on-time and off-time) arithmetic control.

さて、上記出力SAについて、厚4図のレベル比較11
i61の詳細説明図を用いてより詳しく説明する。低周
波増幅器55の出力はアナログスイッチ62.63によ
り、各々f、判別とf11判別のタイミング以外に比較
器64.65に接続されないようになっている。そして
、10判別タイミングにおいて、スペクトル振幅V。が
vlより大であると比較器64の出力は1″となり、A
NDゲート66を(81 介してカウンター67をカウントアツプいる。また、1
1判別タイミングにおいて、上記■がvlより大である
と、比較器65の出力は“1”となり、ANDゲート6
8を介してカウンタ67をリセットするので、このカウ
ンター67はf。タイミングでのスペクトル振幅大の時
内容が増加し、f)Iタイミングでのvoが大の時はた
だちにカウンタ内容が零になる。よって高周波成分があ
れば零、fO酸成分大であると増加という状態を(りか
えずので、このカウンター内容をD/A変換器40を用
いてアナログ電圧voを観察することによっても、極間
間隙状態の良否を判別できる。すなわち、VQが大であ
れば異常放電に近づいていることとなり、例えば加工粉
の滞留によって極間間隙スラッジがたまっているとか、
異常アークによって加工液16が熱分解してカーボンが
発生しているとか、電極の一部が破損してそのかけらが
極間間隙2oに存在するとか、等の不具合が容易に検出
できる。
Now, regarding the above output SA, level comparison 11 of thickness 4 diagram
This will be explained in more detail using a detailed explanatory diagram of i61. The output of the low frequency amplifier 55 is prevented from being connected to the comparators 64, 65 by analog switches 62, 63 except at the timings of f, discrimination and f11 discrimination, respectively. Then, at the 10th discrimination timing, the spectrum amplitude V. is larger than vl, the output of the comparator 64 is 1'', and A
The counter 67 is counted up through the ND gate 66 (81).
1 determination timing, if the above-mentioned ■ is larger than vl, the output of the comparator 65 becomes "1", and the AND gate 6
Since the counter 67 is reset via f. When the spectral amplitude at the timing is large, the content increases, and when f) vo is large at the I timing, the counter content immediately becomes zero. Therefore, if there is a high frequency component, it will be zero, and if the fO acid component is large, it will increase. It is possible to determine whether the condition is good or bad.In other words, if VQ is large, it means that abnormal discharge is approaching, and for example, sludge has accumulated in the gap between the machining plates due to the retention of machining powder.
Problems such as thermal decomposition of the machining fluid 16 due to an abnormal arc and generation of carbon, or a part of the electrode being damaged and its fragments being present in the inter-electrode gap 2o can be easily detected.

しかしごく短時間であれば極間間隙状態は断えず変化し
ており、短時間前記のηがあっても必ず(9) しも極間間隙状態が悪いとは判断できない。そこでディ
ジタルアナログ変換@!j40の出力voのFLt値以
上の存在がある時間線いたことを検出して、極間間隙状
態の良否を判断する必要がある。
However, for a very short time, the state of the gap between the poles is constantly changing, so even if the above-mentioned η exists for a short time, it cannot always be determined that the state of the gap between the poles is bad. So digital analog conversion @! It is necessary to determine whether the inter-electrode gap condition is good or bad by detecting that there is a time line in which the output vo of j40 is equal to or greater than the FLt value.

第5図における電圧比較器148はディジタルアナログ
変換器40の出力V、が所定値′vlIよりも大か小か
を判別している。Vo>V、、になると、電圧比較器1
48の出力は負となり、ペース抵抗150を介してスイ
ッチング用トランジスタ152をオフ状態にする。この
ため時間計測用コンデンサ154は抵抗156を介して
充電され、コンデンサ154の両端電圧へ、は次式にょ
うにあられされるーニ( %−%1 (1el(y r2c ) ただし、r2は抵抗156の抵抗値 Cはコンデンサ154の容量 tは時間 このコンデンサ154の両端電圧Vは基準電圧・ノl (10) 間は電圧比較14g158の出力が負にならないため、
発光ダイ4−ド160は点灯しない。モしてV。
A voltage comparator 148 in FIG. 5 determines whether the output V of the digital-to-analog converter 40 is larger or smaller than a predetermined value 'vlI. When Vo>V, , voltage comparator 1
The output of 48 becomes negative, turning off switching transistor 152 via pace resistor 150. Therefore, the time measuring capacitor 154 is charged via the resistor 156, and the voltage across the capacitor 154 is expressed by the following formula: The resistance value C is the capacitance t of the capacitor 154, and the voltage V across the capacitor 154 is the reference voltage.
The light emitting diode 4-160 does not light up. Mote V.

〉VIIの状態が所定時間継続してV、、> V、μこ
なると、電圧比較部158の出力が負となり、発光ダイ
オード160を抵抗162を介して点灯させて極間間隙
状態の異常発生を表示するものである。
When the state of 〉VII continues for a predetermined time and becomes V, > V, μ, the output of the voltage comparator 158 becomes negative, and the light emitting diode 160 is turned on via the resistor 162 to prevent the abnormal occurrence of the gap between the poles. It is to be displayed.

スイッチ164ば、時間の関数だけで極間間隙状態を判
断するか、ディジタルアナログ変換銀40の出力■oの
大きさと時間の積の関数として判断するかを切換えるた
めのスイッチである。すなわち単に時間t!けの検出で
は極間間隙状態の異常判別の困難な加工、例えば超硬合
金の加工のように一瞬にしてアークによる割れや、タン
グステンの欠落が発生する場合には、差の電圧と時間の
積の関数として、異常の発生をすみやかに知ることがで
きる。すなわち短時間であっても、差が大であればコン
デンサCの充電電流が増え、f−たちにコンデンサ電圧
v3がvzに達するからである。
The switch 164 is a switch for switching whether to judge the state of the gap between poles only as a function of time or as a function of the product of the magnitude of the output (2) of the digital-to-analog converter 40 and time. That is, simply time t! In machining where it is difficult to determine abnormalities in the gap between poles, for example, when cracking due to arcing or chipping of tungsten occurs instantaneously, such as when machining cemented carbide, the product of the voltage difference and time can be used to detect cracks. The occurrence of an abnormality can be immediately known as a function of That is, if the difference is large even for a short time, the charging current of the capacitor C will increase, and the capacitor voltage v3 will reach vz at f-.

また、差の電圧馬を直接電圧計で観測する乙とより、最
進値と現在値の差を直接観測することが111 でき、極間間隙状態のモニターとして使用できることは
明らかである。
Furthermore, by directly observing the voltage difference with a voltmeter, it is possible to directly observe the difference between the most advanced value and the current value, and it is clear that it can be used as a monitor of the gap between poles.

よって、上記の検出信号SAの有無に応じて極間間隙へ
の加工液噴出圧力を変化させれば、極間状態を回復させ
ることができる。第6図において加工液タンク99より
加工液供給ポンプ100より吸い上げられた加工液は、
電磁バルブ101、手動バルブ102を介してパイプ1
03を通り、電極10に設けられた噴出路104に接続
されており、加工液圧は液圧メータリレー105によす
観測され、しかも所定圧力を越すとフィードバック信号
SRが出力されて電磁バルブ101のコントローラ10
6にフィードバックされ、適切な所定圧力を維持する。
Therefore, by changing the machining fluid jetting pressure to the machining gap according to the presence or absence of the detection signal SA, the machining gap state can be restored. In FIG. 6, the machining fluid sucked up from the machining fluid tank 99 by the machining fluid supply pump 100 is
Pipe 1 via electromagnetic valve 101 and manual valve 102
03 and is connected to a jetting passage 104 provided in the electrode 10, and the machining fluid pressure is monitored by a fluid pressure meter relay 105, and when a predetermined pressure is exceeded, a feedback signal SR is output and the electromagnetic valve 101 controller 10
6 to maintain an appropriate predetermined pressure.

また、手動バルブ102は電磁バルブ101が動作しな
い時の最低圧力を維持するためのものである。加工状態
が悪化し極間間隙に加工粉が滞留すると、検出信号SA
が出力され、バルブコントローラ106に入力されるた
め電磁バルブは開放となり、液圧メータリレー105か
ら信号がフィードバックされるまで開き続ける。この−
f\19) 強い噴出圧力によって極間間隙に存在していた加工粉は
すみやかに除去され、極間状態は回復する。回復すると
検出信号S^ば出力されなくなり、電磁バルブ101は
閉じて手動バルブのみで設定された弱い圧力に戻る。尚
、何故2種の圧力が必要かについて述べると、一般に、
0.05kg / cd程度の圧力の時最も極間インピ
ーダンスが適切で(適度に汚れているほうが放電しやす
く加工の安定性がよい。)電極の消耗も少ない。また、
0.5kg/aJ9上となると電極表面温度が低下し、
電極表面を保護するパイログラファイトの生成が期待で
きなくなって電極の消耗が増える乙と、あるいは、極間
間隙のインピーダンスが高くなりすぎて放電のための間
隙長が狭くなりすぎ、短絡が発生しやすくなって加工が
不安定になる等の不具合があるため、通常は0.05k
g / csf以下で加工しているのが望ましく、極間
間隙が汚れすぎたり加工のスラッジが一部に滞留した時
のみ高圧の液流を必要とするのである。実験によれば、
銅電極と鉄の組合せでは、低圧0.05kg / cd
と高圧1kgcj1銅タングステ(13) 、:;”’H’ぜ′ ン電極とタングステンカーバイドの場合、低圧0.2 
kg / cd高圧4kg/cd等が有効であることが
判明しな。
Further, the manual valve 102 is for maintaining the minimum pressure when the electromagnetic valve 101 is not operating. When the machining condition worsens and machining powder accumulates in the gap between the machining poles, the detection signal SA
is output and input to the valve controller 106, so the electromagnetic valve is opened and remains open until a signal is fed back from the hydraulic pressure meter relay 105. This-
f\19) Due to the strong jetting pressure, the machining powder present in the gap between the electrodes is quickly removed, and the condition between the electrodes is restored. When the pressure is recovered, the detection signal S is no longer output, and the electromagnetic valve 101 closes to return to the weak pressure set only by the manual valve. In addition, to explain why two types of pressure are necessary, generally speaking,
When the pressure is about 0.05 kg/cd, the impedance between the electrodes is most appropriate (the more dirty the electrode is, the easier it is to discharge and the stability of machining is better), and there is less wear on the electrode. Also,
When it is above 0.5 kg/aJ9, the electrode surface temperature decreases,
The generation of pyrographic material that protects the electrode surface can no longer be expected, resulting in increased electrode wear.Alternatively, the impedance of the gap between the electrodes becomes too high, making the gap length for discharge too narrow, making short circuits more likely to occur. Normally it is 0.05k due to problems such as unstable processing.
It is preferable to process at less than g/csf, and a high-pressure liquid flow is required only when the gap between the poles is too dirty or processing sludge accumulates in a part. According to experiments,
For copper electrode and iron combination, low pressure 0.05kg/cd
and high voltage 1 kg cj 1 copper tungsten (13) :;'H' Zene electrode and tungsten carbide, low voltage 0.2
kg/cd High pressure such as 4kg/cd has not been found to be effective.

以上のように本発明によれば、極間状態の良否に応動し
て加工液噴出圧力を制御するため、極間間隙に生成する
加工粉の排出が能率的に行われる乙とになり、加工能率
を著しく改善できる。すなわち加工粉が極間間隙に存在
すると放電の火花は電極−加工粉→被加工物の経路で発
生するため、放電エネルギのかなりの割合が加工粉と加
工液の熱分解に費やされ、加工速度が低下するという現
象を防止できることと、加工粉や熱分解によるカーボン
によるアーク放電を未然に防ぐことができるという効果
がある。以上のように放電の異常を既述の検出方法で判
別し、該検出結果をもとにして極間状態の回復をはかる
ために、加工液圧を変化させて極間間隙の加工粉やカー
ボンを排除して良好な状態に復帰させるという従来にな
い放電加工装置の提供を行うものである。
As described above, according to the present invention, since the machining fluid jetting pressure is controlled in response to the quality of the machining gap condition, machining powder generated in the machining gap can be efficiently discharged, and machining Efficiency can be significantly improved. In other words, when machining powder is present in the gap between the machining electrodes, sparks from the discharge are generated along the path between electrode - machining powder -> workpiece, so a considerable proportion of the discharge energy is spent on thermal decomposition of the machining powder and machining fluid, resulting in machining. This has the effect of being able to prevent the phenomenon of speed reduction and preventing arc discharge due to processing powder and carbon caused by thermal decomposition. As described above, abnormalities in electrical discharge are determined by the detection method described above, and based on the detection results, machining fluid pressure is changed to remove machining powder and carbon particles in the gap between the machining holes in order to recover the machining gap condition. The purpose is to provide an unprecedented electric discharge machining apparatus that eliminates this and restores a good state.

尚本実施例では噴出、噴射の事例で説明したき(14) たが、吸引による加工の場も全く同様の効果を得ること
は明らかである。
Although this embodiment has been explained using examples of jetting and jetting (14), it is clear that the same effect can be obtained in machining using suction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の放電加工装置を示す原理図、第2図は本
発明になる原理の説明図、第3図は周波数スペクトル分
析回路説明図、第4図は、異常状態検出判別回路図、第
5図はその表示回路図、第6図は本発明の詳細な説明図
である。図中10は電極、14は被加工物、18は加工
電源、67は異常検知カウンターである。 なお、図中同一符号は同−又は相当部分を示す。 代理人 大君 増雄 (15)
Fig. 1 is a principle diagram showing a conventional electrical discharge machining device, Fig. 2 is an explanatory diagram of the principle according to the present invention, Fig. 3 is an explanatory diagram of a frequency spectrum analysis circuit, and Fig. 4 is an abnormal state detection/discrimination circuit diagram. FIG. 5 is a display circuit diagram thereof, and FIG. 6 is a detailed explanatory diagram of the present invention. In the figure, 10 is an electrode, 14 is a workpiece, 18 is a processing power source, and 67 is an abnormality detection counter. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Masuo Ookimi (15)

Claims (1)

【特許請求の範囲】[Claims] 電極と被加工物とを絶縁性加工液を介在させて対向させ
ると共に、加工液に圧力を持たせて極間間隙より噴出さ
せながらその極間間隙に放電を発生させて上記被加工物
を加工する放電加工装置において、電極と被加工物の極
間間隙で放電した際の極間間隙における電気信号中の周
波数成分の分布を検知する検知手段と、この検知手段に
より検知される周波数成分の分布を予め設定した周波数
成分の分布を比較する比較手段と、上記比較手段の出力
信号に基づいて極間間隙状態を判断して信号を出力する
極間間隙状態判別手段と、この判別手段の出力に基づい
て上記加工液の圧力を制御する制御手段を具備すること
を特徴とする放電加工装置
The electrode and the workpiece are opposed to each other with an insulating machining fluid interposed between them, and the machining fluid is pressurized and ejected from the gap between the machining poles, generating an electric discharge in the gap between the machining poles, thereby machining the workpiece. In an electrical discharge machining apparatus, a detection means detects the distribution of frequency components in an electric signal in the gap between the electrodes and the workpiece when electric discharge occurs in the gap between the electrodes and the workpiece, and a distribution of the frequency components detected by the detection means. a comparison means for comparing the distribution of frequency components set in advance; a pole gap state determining means for determining the state of the gap between the poles based on the output signal of the comparing means and outputting a signal; An electrical discharge machining apparatus characterized by comprising a control means for controlling the pressure of the machining fluid based on the
JP14072283A 1983-08-01 1983-08-01 Electric discharge machine Pending JPS6034220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14072283A JPS6034220A (en) 1983-08-01 1983-08-01 Electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14072283A JPS6034220A (en) 1983-08-01 1983-08-01 Electric discharge machine

Publications (1)

Publication Number Publication Date
JPS6034220A true JPS6034220A (en) 1985-02-21

Family

ID=15275182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14072283A Pending JPS6034220A (en) 1983-08-01 1983-08-01 Electric discharge machine

Country Status (1)

Country Link
JP (1) JPS6034220A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075603A (en) * 1987-11-13 1991-12-24 Kabushiki Kaisha Toshiba Cold-cathode discharge lamp device
US6198595B1 (en) 1996-10-31 2001-03-06 Samsung Electronics Co., Ltd. Logic deck mechanism for portable audio
US20160361770A1 (en) * 2011-01-12 2016-12-15 Perfect Point Edm Corporation Dynamic adaptive flushing for workpiece erosion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075603A (en) * 1987-11-13 1991-12-24 Kabushiki Kaisha Toshiba Cold-cathode discharge lamp device
US6198595B1 (en) 1996-10-31 2001-03-06 Samsung Electronics Co., Ltd. Logic deck mechanism for portable audio
US20160361770A1 (en) * 2011-01-12 2016-12-15 Perfect Point Edm Corporation Dynamic adaptive flushing for workpiece erosion

Similar Documents

Publication Publication Date Title
US4236057A (en) Apparatus for detecting gap conditions in EDM processes with monitoring pulses
US3997753A (en) Control system and method for electric discharge machining (EDM) using a predetermined portion of each discharge pulse for monitoring
CN101291768B (en) Power supply control apparatus for discharging processor
DE2125749B2 (en) Device for detecting arcs
US4602142A (en) Electric discharge system including means to normalize the interpole gap to minimize abnormal discharge conditions
JP2858515B2 (en) Electric discharge machining method and apparatus
US4582974A (en) Electric discharge machine including means for detecting abnormal discharge conditions
JPS6034220A (en) Electric discharge machine
US4322595A (en) Arc monitor for electrical discharge machining
JPS5924924A (en) Electric discharge machine
JPS6034221A (en) Electric discharge machine
US4983800A (en) Interelectrode distance controlling device in electric discharge machining apparatus
EP0009928A1 (en) Arc monitor for electrical discharge machining
KR820002134B1 (en) Method of detecting gap conditions in edm process with monitoring pulses
JPS59205236A (en) Electric discharge machining device
GB1591861A (en) Electrical discharge machining
JP2967682B2 (en) Electric discharge machine
JPS6031609B2 (en) Electric discharge machining method
JPS6034222A (en) Electric discharge machine
JP2557929B2 (en) Electric discharge machine
JPS59205233A (en) Electric discharge machining device
JPS5853975B2 (en) Electric discharge machining equipment
JPH0319011B2 (en)
JPS59205234A (en) Electric discharge machining device
JPS6057970B2 (en) Electric discharge machining equipment