JPS59205236A - Electric discharge machining device - Google Patents

Electric discharge machining device

Info

Publication number
JPS59205236A
JPS59205236A JP7871983A JP7871983A JPS59205236A JP S59205236 A JPS59205236 A JP S59205236A JP 7871983 A JP7871983 A JP 7871983A JP 7871983 A JP7871983 A JP 7871983A JP S59205236 A JPS59205236 A JP S59205236A
Authority
JP
Japan
Prior art keywords
gap
machining
pressure
discharge
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7871983A
Other languages
Japanese (ja)
Inventor
Tetsuro Ito
哲朗 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7871983A priority Critical patent/JPS59205236A/en
Priority to US06/606,328 priority patent/US4892989A/en
Priority to DE19843416249 priority patent/DE3416249A1/en
Priority to CH2133/84A priority patent/CH664314A5/en
Publication of JPS59205236A publication Critical patent/JPS59205236A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply
    • B23H7/16Electric circuits specially adapted therefor, e.g. power supply for preventing short circuits or other abnormal discharges by altering machining parameters using adaptive control

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To remove sludge etc. forcedly by sensing the time distribution condition from voltage impression till generation of electric discharge, judging whether it is normal or abnormal discharge, and then controlling the pressure of machining liquid so as to restitute to normal condition. CONSTITUTION:Time distribution condition in the gap between electrode 10 and a work to be machined 14 from impression of voltage till generation of electric discharge is sensed to be compared with the reference distribution condition, and the result is used to judge the condition of the interpolar gap, and if the state of the gap is considered to have worsened, a sensing signal SA is emitted. In accordance with the sensing signal SA, a controller 106 opens a solenoid valve 101 to allow a pump 100 to supply the machining liquid to a jet path 104, and there the liquid pressure is boosted above the pressure liquid obtained with a manual valve 102, and if a certain specified pressure value is exceeded, a feedback signal from a liquid pressure meter relay 105 maintains the pressure at a proper set value. Thus splash etc. produced in the interpolar gap can be exhasuted effectively to ensure a well improved machining efficiency.

Description

【発明の詳細な説明】 本発明は放電加工装置、特に電極と被加工物とを絶縁性
加工液を介在させて対向させ、その対向極間内に放電を
発生させて上記被加工物を加工する放電加工装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric discharge machining apparatus, in particular, an electric discharge machining apparatus, in which an electrode and a workpiece are opposed to each other with an insulating machining liquid interposed therebetween, and an electrical discharge is generated between the opposing electrodes to machine the workpiece. This invention relates to electrical discharge machining equipment.

第1図には従来の放電加工装置の概要構成図が示されて
いる。第1図において、電極頭は加工槽@内に置かれた
被加工物α4と絶縁性加工液θGを介して対向しでいる
。電極αOと被加工物041間には加工電源(至)が接
続されている。この加工電源(2)は直流電源(18a
)と、加工電流の断続を行うためのスイッチング素子(
is’b)と、電流制限抵抗(18C)と、上記スイッ
チング素子(181))の断続を制御するための発振器
(18d)とによって構成され、加工電流を断続的に電
極00と被加工物α4との極間々隙翰に供給する。
FIG. 1 shows a schematic configuration diagram of a conventional electric discharge machining apparatus. In FIG. 1, the electrode head faces a workpiece α4 placed in a processing tank with an insulating processing liquid θG interposed therebetween. A processing power source (to) is connected between the electrode αO and the workpiece 041. This processing power source (2) is a DC power source (18a
) and a switching element (
is'b), a current limiting resistor (18C), and an oscillator (18d) for controlling the switching element (181)), and the machining current is intermittently connected to the electrode 00 and the workpiece α4. Supply to the gap between the poles.

加工軍流工は T =E  vg (Eは直流電源(1
8a)のば正値、Rは電流制限抵抗(180)の抵抗値
、Vgは極間電圧値)の式であられされる。極間電圧値
Vgは、アーク放電中は20〜80■、短絡時はOv、
無放電中はEVとなり、スイッチング素子(18b)が
オフ状態の時は0■となる。
Processing military engineering is T = E vg (E is DC power supply (1
8a) is a positive value, R is the resistance value of the current limiting resistor (180), and Vg is the voltage between electrodes. The interelectrode voltage value Vg is 20 to 80■ during arc discharge, Ov during short circuit,
During no discharge, it becomes EV, and when the switching element (18b) is in the off state, it becomes 0■.

そこでこの極間電圧饋Vgを検出して平滑回路(イ)で
平均化すれば、この鎖で(夕闇々隙制御を行うことがで
きる。すなわち、極間々隙が広い時は放電が起こりに〈
〈平均重圧値Vsは高い。極間々隙が狭い時は短絡した
り、容易に放電するため平均電圧IVsは低下する。従
って、この平均電圧値Vsを基準電正直’Vrと比較し
て、この差を増幅器−で増幅して油圧サーボコイル翰に
入力すれば、油圧発生ポンプ翰と油圧シリンダωとで構
成される油圧サーボ機構によって樹間々隙翰がほぼ一定
になるよう電WQG’!r制御することができる。
Therefore, if this inter-electrode voltage Vg is detected and averaged by the smoothing circuit (a), it is possible to perform gap control using this chain.In other words, when the inter-electrode gap is wide, discharge is less likely to occur.
<The average pressure value Vs is high. When the gap between the electrodes is narrow, short circuits or discharges occur easily, so the average voltage IVs decreases. Therefore, if this average voltage value Vs is compared with the reference electric current 'Vr, and this difference is amplified by an amplifier and inputted to the hydraulic servo coil wire, the hydraulic pressure generated by the hydraulic pressure generating pump wire and the hydraulic cylinder ω is The servo mechanism ensures that the gap between the trees is almost constant. r can be controlled.

従来の放電加工装置で加工状態の良否を判別する際、最
も一般的なのは極間電圧値Vgの平均電圧値Vsを観測
することである。すなわち、平均電圧値VSが低い時は
極間インピーダンスが低め場合であって、短絡、連続的
アーク放電となり、極間々隙には加工粉やスワフジの滞
留等が考えられる。しかし放電加工に〉bて最も危険な
異常アーク放電は、一度発生すると加工液の熱分解によ
るカーボン発生のために、カーボンと被加工物との間の
放電となC,fM間インピーダンスが高くなったような
状態となる。このため平均電圧値Vsの観測では異常ア
ーク放電による極間々原状態悪化の検出は不可能である
と^う欠点があった。
When determining whether the machining state is good or bad using a conventional electrical discharge machining apparatus, the most common method is to observe the average voltage value Vs of the machining voltage value Vg. That is, when the average voltage value VS is low, the inter-electrode impedance is low, resulting in short circuits and continuous arc discharge, and it is possible that machining powder and swamp particles remain in the inter-electrome gap. However, the most dangerous abnormal arc discharge in electric discharge machining is that once it occurs, carbon is generated due to thermal decomposition of the machining fluid, resulting in a discharge between the carbon and the workpiece, and the impedance between C and fM increases. The situation will be as follows. For this reason, observation of the average voltage value Vs has the drawback that it is impossible to detect the deterioration of the original state from time to time due to abnormal arc discharge.

本発明は前述した従来の課題に鑑みて為されたものであ
り、電圧印加後、放電発生に至るまでの時間分布状態を
検出し該検出結果をもとにして正常放電と異常放電の判
別を行い、極間々隙状態が正常な状態に復帰するように
、棒間々隙へ供給する加工液の圧力全制御して棒間々隙
に滞留しているスラッジや加工粉を強制的に排除するこ
とにより放電の集中を防いで異常アーク放電の発生を防
ぐようにした放電加工装置を提供することにある。
The present invention was made in view of the above-mentioned conventional problems, and detects the time distribution state from voltage application to the occurrence of discharge, and distinguishes between normal discharge and abnormal discharge based on the detection result. By fully controlling the pressure of the machining fluid supplied to the gap between the rods and forcibly removing the sludge and machining powder that has accumulated in the gap between the rods, so that the gap between the rods returns to its normal state. It is an object of the present invention to provide an electrical discharge machining device which prevents the concentration of electrical discharge and prevents the occurrence of abnormal arc discharge.

上記目的を達成するために、本発明は電極と被加工物と
全絶縁性加工液全介在させて対向させ、その極間々隙に
訃いて放電を発生させて被加工物を加工する放電加工装
置において、電極と被加工物の間隙における電圧印加か
ら、放電発生までの時間の分布状態を検出し、該検出結
果と棒間々隙状態の良否を示す代表的分布状態を比較し
て棒間々隙状態を判別する倹畠手段と上記検出結果によ
って極間々隙状態が悪い状態にあると判断して信号を出
力する手段と、該出力に基づいて極間々原状態ヲ良好な
状1!IIC回復させるように制御する制御手段とを備
えたことを特徴とする。
In order to achieve the above object, the present invention provides an electrical discharge machining apparatus that machines the workpiece by arranging an electrode, a workpiece, and a completely insulating machining fluid to face each other, and generating electric discharge in the gap between the electrodes. In this step, the distribution state of the time from the voltage application to the occurrence of electric discharge in the gap between the electrode and the workpiece is detected, and the detection result is compared with a typical distribution state indicating the quality of the bar gap condition to determine the bar gap condition. A means for determining that the gap between the poles is in a bad state based on the above detection result and outputting a signal, and a means for outputting a signal based on the output to determine whether the original gap between the poles is in a good state! The present invention is characterized by comprising a control means for controlling to recover IIC.

以下図面に基づ^て本発明の好適な実施例全説明する。Preferred embodiments of the present invention will be fully explained below based on the drawings.

l第2図は本発明における検出+g坤を−fQ明するた
めの放電々圧波形と、その波形における直後 圧印加放電開始までの無放電時間の分布状態を示△ すもので、実倹に、l:9得られた結果である。尚、放
電開始点は、電圧の立下りの時点を検出していルタめ、
パルスのオン−オフ時も信号が出る。この分布状態と極
間状態との関係から以下のことが判明している。
Fig. 2 shows the discharge pressure waveform for clarifying the detection +g-con of -fQ in the present invention, and the distribution state of the no-discharge time in that waveform until the immediate pressure application discharge starts. , l:9 is the result obtained. Note that the discharge start point is determined by the time point at which the voltage falls.
A signal is also output when the pulse is on and off. The following has been found from the relationship between this distribution state and the interpolar state.

(6)極間開放状態(電極、被加工物間が完全に離れて
おり加工していない状態)ヲ除いては、電圧印加後5μ
秒以内に放電の開始する率が高い。
(6) Except for the open state between the electrodes (the state where the electrode and workpiece are completely separated and are not being processed), 5 μm after voltage application.
The rate of initiation of discharge within seconds is high.

(ト)アークの前駆的状態の時には、上記5μ秒以内に
放電全開始する比率が70%を越す。
(G) In the pre-arc state, the rate of complete discharge initiation within the above 5 μsec exceeds 70%.

(Q サーボ系の安全度が悪くハンチング状態となると
、無放電と短絡の繰り返しとなり、5μ秒以後の放電分
布はなくなる。
(Q: If the safety level of the servo system is poor and a hunting state occurs, no discharge and short circuit will occur repeatedly, and there will be no discharge distribution after 5 μs.

(匂 正常放電時は、電圧印加後5μ秒までの分布が3
0%程度あり、その後はなだらかに減少する分布となる
(Odor) During normal discharge, the distribution up to 5 μs after voltage application is 3
The distribution is approximately 0% and then gradually decreases.

(ト)アーク状態となった時の分布は、上記(8)と(
ト)の状態を数秒間の周期で交互に繰り返す。
(g) The distribution when the arc state is reached is as shown in (8) above and (
(g)) are repeated alternately at intervals of several seconds.

おそらく異常アーク放電により発生1〜たカーボン同志
の放電となり、放電のモードが、放電加工における一般
の電極と被加工物の組合わせと異るためと考えられる。
This is probably because the abnormal arc discharge caused a discharge between two carbon atoms, and the mode of the discharge was different from the usual combination of electrode and workpiece in electric discharge machining.

(ト) きわめて極間々隙を狭くした時、上記◎のアー
ク前駆状態に似てくるが、それでも5μ秒〜80μ秒の
間における分布は10%以上存在する。
(g) When the gap between the poles is made extremely narrow, it becomes similar to the arc precursor state described in ◎ above, but even then, the distribution between 5 μsec and 80 μsec is more than 10%.

0 極間々隙が開くように極間サーボを行うと、10〜
20%は5μ秒以内で放電し、それ以後なだらかに減少
する。
0 If the inter-electrode servo is performed so that the inter-electrode gap is widened, 10~
20% discharges within 5 microseconds and then gradually decreases.

以上の結果より次のような状態であれば一極間間隙状態
は異常ではなめという判断ができる。
Based on the above results, it can be determined that the unipolar gap condition is not abnormal if the following conditions exist.

(1)5μ〜30μ秒に放電開始するパルスが10%以
上存在する。
(1) There are 10% or more pulses that start discharging in 5 μ to 30 μ seconds.

(2)5μ秒以内に放電するパルスの比率が50%を越
さない。
(2) The ratio of pulses that discharge within 5 μs does not exceed 50%.

(3)  τpでも放電しない比率が50%を越さない
(3) Even at τp, the ratio of no discharge does not exceed 50%.

第3図は、この実施例を含む概要図であって、極間々隙
に電圧を印加し、放電電流を流すスイッチングトランジ
スタ(18b)は、スイッチングアン7’(18e)に
より駆動され、アンプ(18e)に入力すれるパルス休
止信号は、パルス休止発生回路(18f)によって作ら
れる。この(18f)の基本クロックパルスは、クロッ
クパルス発生器(18g)によって発生される。クロッ
クパルスの周波数は、極間印加電圧の放電までの時間の
サンプリングにも使用するため1■り以上の周波数全数
要とする。頓は極間電圧の立下りを検出する回路で、抵
抗rl、r2によって分圧され、コンパレータ(50a
)で基換電圧Vrより下−だ時点の信号を、抵抗r3 
、 r4コンデンザCIで構成される立下り微分IEI
l路によって信号S2として取り出してめる。ψ1)は
放電状態判別口1路であって、以下第4図と第5図を用
いて動作内容′fr:説明する。電圧が1板間々隙に印
加されリングカウンタ6のが動作し、QRゲートwt:
mu、各時間毎にゲート開の状態となる。例えば、OR
ゲート曽は0〜5μ秒の間出力け′″1′となっている
。この間に放電が発生して直圧立下り信号S2が入力さ
れると、ANDゲート■6カ(4)を介してカウンタ6
91 (joi (61)に所定期間における区間毎の
放電分戸に沿ったパルス数が計数される。所定時間とし
ては、極間々原状態貧化の速度から鑑み、10〜BOm
秒が、実験結果からも適切と考えられている。これらカ
ウンタ四■ηの内容は、テ“イジタルコンパレータ輪嗅
−によって判別され、所定時間において何個以上あるい
は以下のパルスがどのような無負荷電圧印加時間の分布
で放電したかが明らかとなる。前述のように、分布状況
は異常と判別される分布と、正常とされる分布に分類さ
れ、異常と判断された場合にこれ會カウンターで更に計
数する。
FIG. 3 is a schematic diagram including this embodiment, in which a switching transistor (18b) that applies a voltage to the gap between poles and causes a discharge current to flow is driven by a switching amplifier 7' (18e), and an amplifier (18e). ) is generated by a pulse pause generation circuit (18f). This (18f) basic clock pulse is generated by a clock pulse generator (18g). Since the frequency of the clock pulse is also used for sampling the time until the discharge of the voltage applied between the electrodes, a total frequency of 1 or more is required. TON is a circuit that detects the fall of the voltage between electrodes, and is divided by resistors rl and r2, and is connected to a comparator (50a).
), the signal at the point when it is lower than the reference voltage Vr is connected to the resistor r3
, falling differential IEI composed of r4 capacitor CI
It is taken out as a signal S2 by the l path. ψ1) is a discharge state determination port 1, and the operation content 'fr: will be explained below using FIGS. 4 and 5. A voltage is applied to the gap between the two plates, the ring counter 6 operates, and the QR gate wt:
mu, the gate becomes open every time. For example, OR
The output of the gate so is 1' for 0 to 5 microseconds.When discharge occurs during this period and the direct voltage fall signal S2 is input, the output is output through the AND gate 6 (4). counter 6
91 (joi (61)), the number of pulses along the discharge section for each section in a predetermined period is counted.The predetermined time is 10 to BOm, considering the speed of the original state deterioration from time to time.
Seconds are considered appropriate based on experimental results. The contents of these counters are determined by a digital comparator, and it becomes clear how many or fewer pulses are discharged in a given time and with what distribution of no-load voltage application time. As mentioned above, the distribution status is classified into distributions that are determined to be abnormal and distributions that are determined to be normal, and if the distribution is determined to be abnormal, the distribution is further counted by the counter.

また正常と判断される分布の場合には、カウンタ@全リ
セットするので、このカウンターは、異常状態と判断さ
れる時、すなわち電圧印加後5μ秒以内に放電している
率が50%以上、あるbはパルスの終了点でも尚放電し
ない率が50%以上の時、内容が増加し、5〜30μ秒
で放電するパルスが10%以上存在する時にはただちに
カウンタ6ηがリセフトされる。よって正常であれば零
、異常であればカウンタ内容増加という状態をくりかえ
すので、このカウンタ内容をディジクlレアナログ貧換
器(イ)を用いて、アナログ電圧■0を観察することに
よっても極間々隙状態の良否を判別できる。すなわちア
ナログ電圧VOが大であれば異常放電に近すいているこ
ととなり、例えば被加工粉の滞留に工って棒間々隙にス
ラフジがたまっているとか、異常アークによって加工液
OGが熱分解してカーボンが発生しているとか、電極の
一部が破損してそのかけらが極間々隙翰に存在するとか
、等の不具合が容易に検出できる。
In addition, in the case of a distribution that is judged to be normal, the counter @all resets, so when it is judged as an abnormal state, that is, the rate of discharge within 5 μs after voltage application is 50% or more. The content of b increases when the rate of non-discharge at the end of the pulse is 50% or more, and the counter 6η is immediately reset when there are 10% or more of the pulses that discharge in 5 to 30 μsec. Therefore, if it is normal, it will be zero, and if it is abnormal, the counter content will increase. Therefore, the counter content can be changed very easily by observing the analog voltage 0 using the DigiCure Analog Converter (A). It is possible to determine whether the gap condition is good or bad. In other words, if the analog voltage VO is large, it is close to an abnormal discharge.For example, slough may have accumulated in the gaps between the bars due to the accumulation of workpiece powder, or the machining fluid OG may have been thermally decomposed due to an abnormal arc. It is easy to detect problems such as carbon being generated in the electrode, or a part of the electrode being damaged and its fragments being present in the gap between the electrodes.

しかしごく短時間であれば極間々隙状態は断えず貧化し
ており、短時間アナログ電圧Voがあっても必ずしも棒
間々隙状態が悪匹とは判断できない。そこで、ディジタ
ルアナログ貧換器帥の出力Voの所定値以上の存在があ
る時間続込たことを検出して、棒間々隙せ態の良否を判
断する必要がある。
However, for a very short period of time, the pole-to-bar gap condition is constantly becoming poorer, and even if there is a short-time analog voltage Vo, it cannot necessarily be determined that the bar-to-bar gap condition is bad. Therefore, it is necessary to determine whether the gap between the rods is good or not by detecting that the output Vo of the digital-to-analog converter continues to be at or above a predetermined value for a certain period of time.

第6図における電圧比較! (148)はディジタルア
ナログ貧換器(41の出力Voが所定値V11よりも大
か小かを判別している。■○)V++になると、電圧比
較器(148)の出力は負となり、ベース抵抗(150
) ’r:介り、てスイッチング用ト巧ンジスタ(15
2)をオフ状態にする。このため時間計測用コンデンサ
(154)は抵抗(156) ’!i:介して充電され
、コンデンサ(154)の両端電圧■け次式のようにあ
られされる。
Voltage comparison in Figure 6! (148) is a digital-analog poor converter (41 that determines whether the output Vo is larger or smaller than a predetermined value V11. ■○) When it becomes V++, the output of the voltage comparator (148) becomes negative, and the base Resistance (150
) 'r: Intermediate, te switching transistor (15
2) is turned off. Therefore, the time measurement capacitor (154) is a resistor (156)'! i: is charged through the capacitor (154), and the voltage across the capacitor (154) is developed as follows.

rZ 監 C V31−■4I(1−eXp) ただしrZ1は抵抗(156)の抵抗値Cはコンデンサ
(154)の容量 tは時間 このコンデンサ(154)の両端m圧V31け基塩電圧
VHと電圧比較器(158)で比較される。V31<V
21の期間は電圧比較器(158)の出力が負にならな
いため、発光ダイオード(160)は点灯しない。
rZ Supervisor C V31-■4I (1-eXp) However, rZ1 is the resistance value of the resistor (156) C is the capacitance t of the capacitor (154) is the time m pressure across this capacitor (154) V31 times the base voltage VH and the voltage A comparator (158) compares them. V31<V
During period 21, the output of the voltage comparator (158) does not become negative, so the light emitting diode (160) does not light up.

そしてVo’)Vuの状態が所定時間継続して■31〉
■2!になると、電圧比較器(158)の出力が負とな
り、発光ダイオード(160)を抵抗(162)を介し
て点灯させて極間々隙状態の異常発生を表示するもので
ある。
Then, the state of Vo') Vu continues for a predetermined time ■31>
■2! When this occurs, the output of the voltage comparator (158) becomes negative, and the light emitting diode (160) is turned on via the resistor (162) to indicate the occurrence of an abnormality in the gap state.

スイッチ(164)は、時間の関数だけで極間々隙状態
を判断するか、ディジタルアナログ変換器((0の出力
V○の大きさと時間の積の関数として判断するかを切換
えるためのスイッチである。すなわち単に時間だけの検
出でl”j:極間々隙状態の異常判別の困難な加工、例
えば超硬合金の加工のように一瞬にしてアークによる割
れや、タングステンの欠落が発生する場合には、スイッ
チ(164)を図示例のように接点(164a)側に投
入すると、ディジタルアナログ変換器(至)の出力■0
と時間の積の関数として、極間々隙状態の異常発生をす
みやかに知ることができる。上記の出力’Voが大であ
ればコンデンサ(154)の充電フイ流が増え、ただち
にコンデンサ(154)の両端電圧V31が基準電圧V
21に達するからである。
The switch (164) is a switch for switching whether to judge the pole gap state only as a function of time or as a function of the product of the magnitude of the output V○ of the digital-to-analog converter ((0) and time. In other words, by simply detecting time, l''j: In machining where it is difficult to determine abnormalities in the gap between poles, for example, when machining cemented carbide, arc cracking or tungsten chipping occurs instantaneously. , when the switch (164) is turned on to the contact (164a) side as shown in the example, the output of the digital-to-analog converter (to) ■0
As a function of the product of and time, the occurrence of an abnormality in the polar gap state can be quickly detected. If the above output 'Vo is large, the charging current of the capacitor (154) increases, and the voltage V31 across the capacitor (154) immediately changes to the reference voltage V.
This is because it reaches 21.

また、上記の出力VOを直接電圧計で観測することによ
り、棒間々隙状態のモニターとして使用できることは明
らかである。
Furthermore, it is clear that by directly observing the output VO with a voltmeter, it can be used as a monitor for the state of the gap between the rods.

よって、上記検出信号SAの有無に応じて極間間隙への
加工液噴出圧力を変化させれば、極間状態を回復させる
ことができる。ig7図において、加工液タンク−から
加工液供給ポンプ0(イ)より吸い上げられた加工液は
、電磁バルブ(101)、手動バルブ(1(+2) ’
i介してパイプ(103) 全通り、このパイプ(10
B)は1jOに設けられた噴出路(104)に接続され
ており、加工液圧は液圧メータリレー(105)により
観測され、しかも所定圧力を越すとフィードバック信号
゛SEが出力されて軍母バルブ(101)のコントロー
ラ(106)にフィードパ・ツクされ、適切な設定圧力
′f:維持する。なお、手切バルブ(102)は、電磁
バルブ(101)が動作しない時の最低圧力を維持する
ためのものである。加工状態が悪化し、顆間々隙に加工
粉が滞留すると、検出信号SAが出力され、この信号S
Aはバルブコントローラ(106)に入力されるため、
電磁バルブ(101)は開放となり、液圧メータリレー
(105)から信号フィーバツクされるまで開き続ける
。この強い噴出圧力によって極間々隙に存在してbた加
工粉はすみやかに除去されて極間状態は回復する。
Therefore, by changing the machining fluid jetting pressure to the machining gap depending on the presence or absence of the detection signal SA, the machining gap state can be restored. In figure ig7, the machining fluid sucked up from the machining fluid tank by the machining fluid supply pump 0 (a) is supplied to the electromagnetic valve (101) and the manual valve (1 (+2)'
i through the pipe (103) all the way through this pipe (10
B) is connected to the jetting passage (104) provided in 1jO, and the machining fluid pressure is monitored by a fluid pressure meter relay (105), and when the pressure exceeds a predetermined value, a feedback signal ``SE'' is output and the A feed pack is applied to the controller (106) of the valve (101) to maintain an appropriate set pressure 'f'. Note that the hand valve (102) is for maintaining the minimum pressure when the electromagnetic valve (101) is not operating. When the machining condition deteriorates and machining powder accumulates in the spaces between the condyles, a detection signal SA is output, and this signal S
Since A is input to the valve controller (106),
The electromagnetic valve (101) is opened and remains open until signal feedback is received from the hydraulic pressure meter relay (105). Due to this strong ejection pressure, the machining powder present in the gap between the machining plates is quickly removed, and the condition between the machining plates is restored.

回復すると、検出信号S7は出力されなくなり、電磁バ
ルブ(101)は閉じ、手動バルブ(1,02)のみで
設定された弱す圧力に戻る。尚、何故2種の圧力が必要
かにつ匹て述べると、一般に、0.05 k、’7d程
度の圧力の時最も極間インピーダンスが適切で(適度に
汚れている方が放電しやすく、加工の安定性がよい。)
、電極αOの消耗も少い。また0、5kg/d以上とな
ると、電極01の表面温度が低下し、電極000表面を
保護するパイログラファイトの生成が期待できなくなり
、電極01の消耗が増えること、ある囚は極間々隙のイ
ンピーダンスが高くなりすぎて放電のための間隙長が狭
くなりすぎ、短絡が発生しやすくなって加工が不安定に
なる等の不具合があるため、通常は0.o5kg/ai
  以下で加工しているのが望ましく、極間が汚れすぎ
たり、加工のスラツジが一部に滞留した時のみ、高圧の
液流を必要とするのである。実験によれば、銅電極と鉄
の組合わせでは、低圧0.05 kg/d  と高圧1
 次/Cd 、銅タングステン電極とタングステンカー
バイドの場合、低圧0.2 kg/c!高圧4 kg/
d等が有効であることが判明している。
Once recovered, the detection signal S7 is no longer output, the electromagnetic valve (101) closes, and the pressure returns to the weakening pressure set only by the manual valve (1, 02). In addition, to explain why two types of pressure are necessary, in general, the impedance between electrodes is most appropriate when the pressure is about 0.05 k, 7 d (moderately dirty is easier to discharge, Good processing stability.)
, the wear of the electrode αO is also small. In addition, if it exceeds 0.5 kg/d, the surface temperature of the electrode 01 will decrease, and the generation of pyrographic material that protects the electrode 000 surface cannot be expected, and the wear of the electrode 01 will increase. is too high, the gap length for discharge becomes too narrow, short circuits are likely to occur, and machining becomes unstable, so it is usually 0. o5kg/ai
It is preferable that the machining process be carried out below, and a high-pressure liquid flow is required only when the machining gap is too dirty or machining sludge accumulates in some areas. According to experiments, the combination of copper electrode and iron has a low pressure of 0.05 kg/d and a high pressure of 1
Next/Cd, low pressure 0.2 kg/c for copper tungsten electrode and tungsten carbide! High pressure 4 kg/
d etc. have been found to be effective.

以上のように本発明によれば、極間々隙状態の良否に応
動して加工液噴出圧力を制御するため、極間々隙に生成
する加工粉の排出が能率的に行われることになり、加工
能率を著しく改善できる。
As described above, according to the present invention, since the machining fluid ejection pressure is controlled in response to the quality of the gap between the machining plates, the machining powder generated in the gap between the machining plates is efficiently discharged, and the machining powder is efficiently discharged. Efficiency can be significantly improved.

すなわち、加工粉が極間々隙に存在すると放電の火花は
電極→加工粉→被加工物の経路で発生するため、放電エ
ネルギーのかなりの割合が加工粉と加工液の熱分解に費
やされ、加工速度が低下するという現象を防止できるこ
とと、加工粉や熱分解によるカーボンによるアーク放t
i未然に防ぐことができるという効果がある。以上のと
と〈放電の異常を既述の検出方法で判別し、該検出結果
をもとにして極間々隙状態の回復をはかるために、加工
液圧を変化させて序間々隙の加工粉や、力一ボンを排除
して良好な状態に復帰させるという従来にない放電加工
装置の提供を行うものである。
In other words, when machining powder is present in the gap between the machining plates, sparks from the discharge are generated along the path of electrode → machining powder → workpiece, so a considerable proportion of the discharge energy is spent on thermal decomposition of machining powder and machining fluid. It is possible to prevent the phenomenon of slowing down the processing speed, and to reduce arcing caused by processing powder and carbon caused by thermal decomposition.
i) It has the effect of being able to prevent it from happening. In addition to the above, in order to determine the discharge abnormality using the detection method described above, and to recover the gap state based on the detection result, the machining fluid pressure is changed and the machining powder in the gap is determined. The purpose is to provide an unprecedented electric discharge machining apparatus that eliminates the power and force and restores the machine to a good state.

尚、本実施例では噴出、噴射の事例で説明してきたが、
吸引による加工の場も全く同様の効果を得ることは明ら
かである。
In addition, although this example has been explained using examples of ejection and injection,
It is clear that the same effect can be obtained when processing by suction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の放電加工装置を示す原坦図、第2図は本
発明になる原理の説明図、第3図は本発明の検出回路の
概要図、第4図は検出のだめの回路の詳細図、第5図は
第4図の回路を説明するためのタイムチャート、第6図
は極間々原状態判別回路の詳細図、第7図は判別信号に
従って極間々隙状態を回復させるようにする制御手段の
本発明実施例図である。 図中00は電極、0褐は被加工物、(ハ)は加工′醒源
、(2)は異常検知カウンタである。 なお図中同一符号は同−又は相当部分を示す。 代理人 大岩増雄 第2図 故114ズ       方グ引P々ILI多    
  カタリIu弓七台11劃向分尋(、λン孝rン・土 ハバ黙yistjTm−丁−””l+ ←τP、o102o3o″rP 、了−7直前   二トニー一−1−)−ニー一1−←
てr ヤ          、     ”’   
 20  30 1”p□□土 1j:’隨   ←今一+       0 10 2
6 36  でP■−モーf≦=4 錦d 、い   。、。2゜、。 E・・ E了−7−トーーーヨト」ニー−;− 一て、−・ 0  0 2°  釦  てPF、峡鳴來
4− 4(、q、   4−7.、−り  、    Q  
Io 、to  3o  ?pにM楕、T■タミー○≧
二―− 輪   さ 1、事件の表示   特願昭58−78719号29発
明の名称 放電加工装置 3、補正をする者 事件との関係 特許出願人 住 所    東京都千代田区丸の内皿丁目2番3号名
 称  (601)三菱電機株式会社代表者片山仁八部 4、代理人 6、補正命令の日付  昭和58年8月8o日(発送日
)6、補正の対象 (1)明細書全文 7、補正の内容 (1)明細書全文を別紙のとおり浄書する。、(内容に
変更なし) 8、添付書類の目録 (1)明細書    1通 以上
Fig. 1 is an original diagram showing a conventional electric discharge machining device, Fig. 2 is an explanatory diagram of the principle of the present invention, Fig. 3 is a schematic diagram of the detection circuit of the present invention, and Fig. 4 is a diagram of the detection circuit. 5 is a time chart for explaining the circuit of FIG. 4, FIG. 6 is a detailed diagram of the circuit for discriminating the original state of the gap between poles, and FIG. FIG. 4 is a diagram showing an embodiment of the present invention of a control means for controlling. In the figure, 00 is an electrode, 0 brown is a workpiece, (c) is a machining failure source, and (2) is an abnormality detection counter. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Masuo Oiwa 2nd figure late 114s
Katari Iu Yuyu Shichitai 11 劃向分孢(、λn孝轝・地habamo yistjTm-Ding-""l+ ←τP, o102o3o"rP, just before the end-7 Two Tony 1-1-) - Ni 1 −←
Hello, ”'
20 30 1”p□□Sat 1j:'隨←Imaichi+ 0 10 2
6 36 and P■-Mo f≦=4 Nishiki d, I. ,. 2゜. E... E completed-7-Toyoto'Knee-;- One,--0 0 2° Button PF, 4-4(, q, 4-7.,-ri, Q
Io, to 3o? M oval on p, T ■ Tammy○≧
2-- Ring Sa1, Indication of the case Japanese Patent Application No. 58-78719 29 Name of the invention Electric discharge machining device 3, person making the amendment Relationship to the case Patent applicant address 2-3 Sara-chome, Marunouchi, Chiyoda-ku, Tokyo Name (601) Mitsubishi Electric Co., Ltd. Representative Hitoshi Katayama 4, Agent 6, Date of amendment order August 8, 1980 (shipment date) 6, Subject of amendment (1) Full text of specification 7, Amendment Contents (1) Engrave the entire specification as shown in the attached sheet. , (No change in content) 8. List of attached documents (1) At least 1 statement

Claims (1)

【特許請求の範囲】[Claims] 電極と被加工物を絶縁性加工液を介在させて対向させ、
その極間々院内に放電を発生させて被加工物全加工する
放電加工装置におめで、上記電極と被加工物の極間々隙
で放電した際の電圧印加後の時間の分布状態全検知する
検知手段と、この検知手段により検知される電圧印加か
ら放電発生までの時間の分布状態を予め設定した瞳間々
隙状態の良否を示す分布状態と比較し、極間状態全判断
して信号を出力する極間状態判別手段と、この判別手段
の出力に基づいて上記極間々隙へ供給する加工液の圧力
を変更制御する制御手段を具備することを特徴とする放
電加工装置。
The electrode and the workpiece are placed facing each other with an insulating processing fluid interposed between them.
The electric discharge machining device generates an electric discharge between the electrodes and processes the entire workpiece, and detects the entire state of distribution of time after voltage application when electric discharge occurs between the electrodes and the workpiece. and a distribution state of the time from voltage application to discharge occurrence detected by the detection means is compared with a distribution state indicating the quality of the interpupillary gap state set in advance, and a signal is output after determining the entire interpupillary gap state. An electrical discharge machining apparatus comprising: a machining gap state determining means; and a control means for changing and controlling the pressure of the machining fluid supplied to the machining fluid gap based on the output of the discriminating means.
JP7871983A 1983-05-02 1983-05-04 Electric discharge machining device Pending JPS59205236A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7871983A JPS59205236A (en) 1983-05-04 1983-05-04 Electric discharge machining device
US06/606,328 US4892989A (en) 1983-05-02 1984-05-02 Discharge machining apparatus having means for distinguishing abnormal interelectrode gap conditions
DE19843416249 DE3416249A1 (en) 1983-05-02 1984-05-02 Apparatus for machining by means of a discharge
CH2133/84A CH664314A5 (en) 1983-05-02 1984-05-02 SPARK EDM DEVICE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7871983A JPS59205236A (en) 1983-05-04 1983-05-04 Electric discharge machining device

Publications (1)

Publication Number Publication Date
JPS59205236A true JPS59205236A (en) 1984-11-20

Family

ID=13669680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7871983A Pending JPS59205236A (en) 1983-05-02 1983-05-04 Electric discharge machining device

Country Status (1)

Country Link
JP (1) JPS59205236A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621144U (en) * 1985-06-20 1987-01-07
US5085247A (en) * 1988-12-10 1992-02-04 Fanuc Ltd. Machining fluid supply device for a wire cut electric discharge machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621144U (en) * 1985-06-20 1987-01-07
US5085247A (en) * 1988-12-10 1992-02-04 Fanuc Ltd. Machining fluid supply device for a wire cut electric discharge machine

Similar Documents

Publication Publication Date Title
US8168914B2 (en) Electric-discharge-machining power supply apparatus and electric discharge machining method
US8093528B2 (en) Method and device for electrical discharge machining
JPS59205236A (en) Electric discharge machining device
JPS59205225A (en) Electric discharge machining device
JPS6146252B2 (en)
JPS6044225A (en) Electric discharge machine
JP3086364B2 (en) Electric discharge machining method and apparatus
JP4128726B2 (en) Welding state monitoring device and consumable electrode gas shield arc welding device provided with the same
JPH07156019A (en) Electric discharge machining device
JPS6034220A (en) Electric discharge machine
JPS59205234A (en) Electric discharge machining device
US4545874A (en) Electro chemical machining
JPS5924924A (en) Electric discharge machine
JPS61111835A (en) Wire-cut electric discharge machinine
JPS59205233A (en) Electric discharge machining device
JPS61125728A (en) Electric discharge machine
JPH0343119A (en) Abnormality detection circuit for electrolysis finishing processing device
JPS62287928A (en) Electric discharge machine
KR820002134B1 (en) Method of detecting gap conditions in edm process with monitoring pulses
JPS59205226A (en) Electric discharge machining device
JPH0453646B2 (en)
JPS61109622A (en) Wire cut electric spark machine
JPS641254B2 (en)
JPS61111834A (en) Wire-cut electric discharge machinine
JPS61111831A (en) Wire-cut electric discharge machinine