JPS6057970B2 - Electric discharge machining equipment - Google Patents

Electric discharge machining equipment

Info

Publication number
JPS6057970B2
JPS6057970B2 JP52015889A JP1588977A JPS6057970B2 JP S6057970 B2 JPS6057970 B2 JP S6057970B2 JP 52015889 A JP52015889 A JP 52015889A JP 1588977 A JP1588977 A JP 1588977A JP S6057970 B2 JPS6057970 B2 JP S6057970B2
Authority
JP
Japan
Prior art keywords
discharge
machining
component
circuit
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52015889A
Other languages
Japanese (ja)
Other versions
JPS53101194A (en
Inventor
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP52015889A priority Critical patent/JPS6057970B2/en
Priority to US05/860,164 priority patent/US4236057A/en
Priority to DE2755772A priority patent/DE2755772C2/en
Priority to FR7737723A priority patent/FR2374130A1/en
Priority to IT5243577A priority patent/IT1091758B/en
Publication of JPS53101194A publication Critical patent/JPS53101194A/en
Priority to US06/112,460 priority patent/US4376880A/en
Publication of JPS6057970B2 publication Critical patent/JPS6057970B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • B23H1/024Detection of, and response to, abnormal gap conditions, e.g. short circuits

Description

【発明の詳細な説明】 本発明は電極と被加工体を対向した加工間隙に加工パ
ルスによる繰返し放電を行つて加工する放電加工(電蝕
加工を含む)において、行なわれている放電の状態が良
いか悪いか、即ち加工間隙の状態変化、その良否を正確
に検出し、判別すること、更にそれによつて加工状態を
最良に制御することを目的とする。
Detailed Description of the Invention The present invention is applicable to electric discharge machining (including electrolytic erosion machining) in which a machining gap between an electrode and a workpiece is repeatedly discharged by machining pulses. The purpose of this invention is to accurately detect and judge changes in the machining gap state, whether they are good or bad, and to control the machining state in the best way possible.

放電加工においては、間隙状態(放電状態)に応じて
加工パルスを制御したり、加工液の流速、電導度の制御
、加工屑が堆積したとき電極振動、電極引上げによる洗
浄作業、間隙長を加工に追従させるためのサーボ制御等
を最適に行なうことが必要である。
In electric discharge machining, machining pulses are controlled according to the gap state (discharge state), flow rate of machining fluid, control of electrical conductivity, electrode vibration when machining debris accumulates, cleaning work by pulling up the electrode, and machining of gap length. It is necessary to perform servo control etc. optimally to follow the

従来、加工間隙の状態、放電状態を判別するのに、加
工間隙にパルスを加えて放電したかしないか、発生した
放電を放電々圧によつてアーク放電か、短絡か、正常放
電かどうか等により判別し、各部制御を行なうようにし
ていたが正確な検出、判別ができず、最適な制御をする
ことができなかつた。
Conventionally, to determine the state of the machining gap and the discharge state, it was necessary to apply pulses to the machining gap to determine whether a discharge occurred or not, and to determine whether the generated discharge was an arc discharge, a short circuit, a normal discharge, etc. based on the discharge pressure. However, accurate detection and discrimination were not possible, and optimal control was not possible.

本発明は加工間隙の放電中に含まれる高周波成分(振
動成分)またはこれを含む信号を検出し判別するもので
ある。
The present invention detects and discriminates a high frequency component (vibration component) contained in the discharge in the machining gap or a signal containing this.

高周波成分は第1図にその電圧波形を示すように各パル
ス放電の放電維持電圧に高周波交流電圧成分の振巾ΔV
が重畳された形をとる。VGはパルス放電中の加工間隙
電圧(平均値)である。重畳された前記高周波成分は通
常周破数が1MHz〜30MHz程度であり、一旦アー
ク状態が確立されると同時にこの高周波成分は消え去る
ものである。勿論短絡しても発生しない。したがつてこ
の高周波成分が有るか無いかを検出し判別して、高周波
成分が存在すれば良好な放電であり、高周波成分が無け
れば不良放電を判定し、またこれによつて加工状態の制
御を行なうことができる。がその後の研究によれば、加
工液の種類、変化に依存性があり、高周波成分の発生、
高周波成分の大きさが変化する。即ち分子量の小さい純
水(分子量18)では高周波成分の電圧ΔVは極めて小
さく、ケロシン(分子量200〜300)ではΔvは大
きく、更にスピンドル油(分子量〜700)では更に大
きいΔVが発生する。第2図は加工液分子量による間隙
電圧(放電々圧)をグラフしたもので、間隙電圧は陽極
降下電圧Vaと陰極降下電圧Vcとの和■1+VCの直
流成分と、高周波交流電圧成分の振巾ΔVがプラスした
ものとなる。即ち、加工間隙電圧(波高値)VmはV.
.=■1+VO+ΔVで、高周波成分Δ■が直流バイア
スされて加工間隙電圧V..を形成する。
The high frequency component has an amplitude ΔV of the high frequency AC voltage component at the discharge sustaining voltage of each pulse discharge, as shown in the voltage waveform in Figure 1.
takes the form of superimposed VG is the machining gap voltage (average value) during pulse discharge. The superimposed high frequency component usually has a frequency of about 1 MHz to 30 MHz, and once the arc state is established, this high frequency component disappears. Of course, this will not occur even if there is a short circuit. Therefore, the presence or absence of this high frequency component is detected and determined, and if the high frequency component is present, it is determined that the discharge is good, and if there is no high frequency component, it is determined that it is a bad discharge, and the machining state can be controlled based on this. can be done. However, according to subsequent research, there is a dependence on the type and change of the machining fluid, and the generation of high frequency components,
The magnitude of high frequency components changes. That is, in pure water with a small molecular weight (molecular weight 18), the voltage ΔV of the high frequency component is extremely small, in kerosene (molecular weight 200 to 300), Δv is large, and in spindle oil (molecular weight ~700), an even larger ΔV occurs. Figure 2 is a graph of the gap voltage (discharge pressure) depending on the molecular weight of the working fluid.The gap voltage is the sum of the anode drop voltage Va and the cathode drop voltage Vc, the DC component of 1+VC, and the amplitude of the high-frequency AC voltage component. ΔV is added. That is, the machining gap voltage (peak value) Vm is V.
.. =■1+VO+ΔV, the high frequency component Δ■ is DC biased and the machining gap voltage V. .. form.

高周波交流成分Δ■は前記したように加工液の分子量に
応じて(比例して)増大するようである。分子量の小さ
い純水(分子量18〜36)では正常放電でも極めて小
さいが、分子量の大きいスピンドル油(分子量300〜
700)ではΔV≠10Vにもなる。また、この高周波
交流成分は放電がアークになればとたんに消滅する。こ
れは、媒体(加工液)が高分子量であると放射する電子
が吸収されることにより放電がパルス化され易くて高周
波交流成分が発生するが、媒体が低分子量であると電子
が吸収されにくくなり、電子が多くなり過ぎると放電が
持続してアークになり易くなるため、高周波交流成分が
発生しなくなると考えられる。またこれから媒体に高分
子量のものを用いても、加工中にクラツキング、低分子
量化され)ば、高周波成分は次第に5低減し、遂にはア
ークに達することがわかる。これは第1図の高周波交流
電圧成分の振巾Δ■が放電開始後、時間経過にしたがつ
て次第に低減することかられかる。即ち放電性の圧力,
温度が時間的に変化し、媒体の温度による分解によつて
分子丁量が変化するのである。このように、1回のパル
ス放電中に発生する高周波交流成分の振巾(波高値)は
、放電開始時に最大となり以後加工液の状態に応じて減
少していくが、良好な加工を行うためには、放電中なる
べこく前記振巾が減少しないような放電状態で加工する
ことが望ましい。
As mentioned above, the high frequency AC component Δ■ seems to increase depending on (in proportion to) the molecular weight of the processing fluid. Pure water with a small molecular weight (molecular weight 18 to 36) has a very small discharge even during normal discharge, but spindle oil with a large molecular weight (molecular weight 300 to 36)
700), ΔV≠10V. Moreover, this high frequency alternating current component disappears as soon as the discharge becomes an arc. This is because if the medium (processing fluid) has a high molecular weight, the emitted electrons will be absorbed and the discharge will easily become pulsed, generating a high-frequency AC component, but if the medium has a low molecular weight, it will be difficult for the electrons to be absorbed. Therefore, if the number of electrons becomes too large, the discharge will continue and arc will easily occur, so it is thought that the high frequency alternating current component will no longer be generated. Furthermore, it can be seen that even if a high molecular weight medium is used, if the medium is cracked and the molecular weight is reduced during processing, the high frequency component will gradually decrease by 5 and finally reach the arc. This is because the amplitude Δ■ of the high frequency AC voltage component shown in FIG. 1 gradually decreases as time passes after the start of discharge. That is, discharge pressure,
The temperature changes over time, and the molecular weight changes due to temperature-induced decomposition of the medium. In this way, the amplitude (peak value) of the high-frequency alternating current component that occurs during one pulse discharge reaches its maximum at the start of discharge, and then decreases depending on the state of the machining fluid. In this case, it is desirable to perform machining in a discharge state in which the amplitude does not decrease as much as possible during discharge.

従つて、放電開始(起動)後の一時点に於ける高周波交
流成分の有無や大きさを検出して判別しても放電状態の
良否を適確に検知することはできない。そこで本発明は
第1図のクような時間の経過とともに減少する高周波交
流成分の振巾の平均変化率を検出判別するようにしたも
のである。これは第3図に示すように、放電開始直後の
設定時をT。,中頃をTO,終時をTeとし、各々の時
刻の高周波交流電圧成分の振巾(波高値)を各々ΔVO
,ΔVx,ΔVeとすれば、ΔVeは極めて小さいから
、TO−Tx時のΔVO〜ΔVxて平均変化率を検出判
別する。即ち?を検出判別して放電状態の判定を行なT
x−TO うものである。
Therefore, it is not possible to accurately detect the quality of the discharge state even if the presence or absence and magnitude of the high-frequency alternating current component at a certain point after the start of discharge (startup) is detected and determined. Therefore, the present invention detects and discriminates the average rate of change in the amplitude of the high-frequency AC component, which decreases with the passage of time as shown in FIG. As shown in Fig. 3, the setting time is T immediately after the start of discharge. , the middle time is TO, the end time is Te, and the amplitude (peak value) of the high frequency AC voltage component at each time is ΔVO.
, ΔVx, ΔVe, since ΔVe is extremely small, the average rate of change is detected and determined from ΔVO to ΔVx at the time of TO-Tx. That is? The discharge state is determined by detecting and determining T.
x-TO Umono desu.

勿論ΔVeの検出が正確に可能ならば仝514ゝまたは
?で検出判別してTe−TOte−ζ ノもよい。
Of course, if it is possible to accurately detect ΔVe, then 514 or ? It is also possible to detect and determine Te-TOte-ζ.

以下一実施例図により本発明を説明する。The present invention will be explained below with reference to one embodiment.

第4図において、1は電極と被加工体を対向した加工間
隙、2は加工用パルス電源で、これにより加工間隙に繰
返しパルス放電を行なう。この放電々圧(又は電流)は
検出回路3により検出される。検出回路3により検出さ
れる放電々圧(又は電流)中には前記したように高周波
成分(振動成分)が含まれていて、これが媒体の分子量
に依存していることは既でにした。またこれは放電中、
クラツキング等て媒体分子量が低減するに応じて減少変
化することも説明した(第3図)。検出信号はハイパス
フィルタ4によつて高周波成分のみが取り出され、次の
直流変換増巾器5により高周波電圧に相当する大きさの
直流信号に変換される。一方放電起動(放電開始)は判
別回路6で検出され、放電起動時から所定時間T。(第
3図)遅延するタイマー7が作動し、時間完了時にチェ
ックパルス発生回路8からT。時のチェックパルスが出
力する。またタイマー7の出力信号でタイマー9が作動
し、Tx−TO時間完了するとチェックパルス発生回路
10からTx時のチェックパルスを発生する。回路8の
チェックパルスはラッチ回路11に加わり、TO時の増
巾器5出力ΔVOを記憶保持し、また回路10のチェッ
クパルスはラッチ回路12に加わり、Tx時の増巾器5
出力ΔVxを記憶保持する。13はクロックパルス発振
器で、このクロックパルスで、前記ラッチ信号を置換し
カウントする。
In FIG. 4, reference numeral 1 denotes a machining gap in which the electrode and the workpiece face each other, and 2 denotes a machining pulse power source, which repeatedly generates pulsed discharge in the machining gap. This discharge voltage (or current) is detected by the detection circuit 3. As mentioned above, the discharge voltage (or current) detected by the detection circuit 3 contains a high frequency component (vibration component), and it has already been explained that this component depends on the molecular weight of the medium. Also, this is during discharge,
It was also explained that the molecular weight decreases as the molecular weight of the medium decreases due to cracking, etc. (Figure 3). Only the high frequency component of the detection signal is extracted by the high pass filter 4, and then converted by the next DC conversion amplifier 5 into a DC signal having a magnitude corresponding to a high frequency voltage. On the other hand, the discharge start (start of discharge) is detected by the discrimination circuit 6, and a predetermined time T is elapsed from the start of discharge. (FIG. 3) The delay timer 7 operates, and when the time is completed, the check pulse generating circuit 8 outputs T. The hour check pulse is output. Further, the timer 9 is activated by the output signal of the timer 7, and when the Tx-TO time is completed, the check pulse generation circuit 10 generates a check pulse at the time of Tx. The check pulse of the circuit 8 is applied to the latch circuit 11 to memorize and hold the amplifier 5 output ΔVO at the time of TO, and the check pulse of the circuit 10 is applied to the latch circuit 12 to store the amplifier 5 output ΔVO at the time of Tx.
The output ΔVx is memorized and held. 13 is a clock pulse oscillator, and this clock pulse replaces the latch signal and counts.

14がラッチ信号ΔVOをカウントするカウンタ、15
がラッチ信号ΔVxをカウントするカウンタ、16は両
カウンタ14,15の出力を比較するコンパレータで、
比較した差の出力Δ■o−ΔVxを出力する。
14 is a counter that counts the latch signal ΔVO; 15
is a counter that counts the latch signal ΔVx, and 16 is a comparator that compares the outputs of both counters 14 and 15.
The compared difference output Δ■o−ΔVx is output.

出力信号は再びクロックパルスで置換されカウンタ17
でカウントされる。18は前記タイマ9の作動時間T8
−TOをクロックパルスで置換しカウントするカウンタ
で、両カウンタ17,18の出力が次のデバイダ19で
比較され割算される。
The output signal is again replaced by a clock pulse and the counter 17
is counted. 18 is the operating time T8 of the timer 9
The outputs of both counters 17 and 18 are compared and divided by the next divider 19, in which -TO is replaced by a clock pulse and counted.

出力信号は6V−6Vである。即ちこれは求めようとす
る高Tx−TO周波交流成分の振巾の平均変化率であり
、この信号はまたクロックパルスで置換されカウンタ2
0でカウントされる。
The output signal is 6V-6V. That is, this is the average rate of change in the amplitude of the high Tx-TO frequency AC component that we are looking for, and this signal is also replaced by a clock pulse and sent to the counter 2.
It is counted as 0.

21はカウンタ20出力、即ち高周波交流成分の振巾の
平均変化率仝5二仝Htx−TOを基準値と比較判別す
るコンパレータで、基準値はプリセット回路22により
プリセットされる。
Reference numeral 21 denotes a comparator that compares and discriminates the output of the counter 20, that is, the average rate of change in the amplitude of the high frequency AC component 2 Htx-TO, with a reference value.The reference value is preset by the preset circuit 22.

プリセットは加工液の種類、分子量に対応し、また加工
パルスのパルス巾、休止巾、波高値(1,)、極性、電
極材、被加工体材、その組合せ、その他の加工条件に応
じて最適加工範囲に設定される。例えば4ゝ14ゝはV
lpSで表わされ、通常 Tx−TOこれが約0.
06〜0.屹程度では正常で0.1〜0.0程度では不
良てある。
The preset corresponds to the type and molecular weight of the machining fluid, and is optimal according to the pulse width of the machining pulse, pause width, peak value (1,), polarity, electrode material, workpiece material, combination thereof, and other machining conditions. It is set in the machining range. For example, 4ゝ14゜ is V
It is expressed as lpS and is usually Tx-TO which is about 0.
06-0. A value of about 0.1 to 0.0 is considered to be normal, and a value of about 0.1 to 0.0 is considered bad.

判別出力は、例えば設定値と比較判別することにより良
好であれば0K信号を、また悪い状態てあれはDAME
信号を出力するように、あるいは良好のときのみ0K信
号を出力し、また悪いときのみD.AME信号を出力す
るものてあつてもよい。23はその判別信号の表示回路
であり、またカウンタ等を組合せた論理回路であり、集
合信号により加工パルス電源、サーボ装置、加工液供給
装置等を制御する制御回路である。
The discrimination output is, for example, a 0K signal if the condition is good by comparing it with the set value, and a DAME if the condition is bad.
or output the 0K signal only when the condition is good, or output the 0K signal only when the condition is bad. There may also be a device that outputs an AME signal. Reference numeral 23 denotes a display circuit for the discrimination signal, a logic circuit combining counters, etc., and a control circuit for controlling the machining pulse power source, servo device, machining fluid supply device, etc. by collective signals.

以上の回路装置によつて加工間隙1に繰返される各パル
ス放電は判別され、勿論アーク、短絡であれば、検出信
号はフィルタ4により阻止され、弁別されるが、高周波
成分を伴なう放電でも、高周波交流成分の振巾の平均変
化率分?二仝hを検 Tx−
TO出判別して適合しないものであれば適合する良放電
とは区別して判別するから正確な放電状態の検出ができ
る。
Each pulse discharge repeated in the machining gap 1 is discriminated by the circuit device described above, and of course, if it is an arc or a short circuit, the detection signal is blocked and discriminated by the filter 4, but even if it is a discharge accompanied by a high frequency component. , the average rate of change in the amplitude of the high-frequency AC component? Check the second h Tx-
If the TO output is determined and the discharge is not compatible, it is discriminated from the compatible good discharge, so the discharge state can be detected accurately.

例えば第3図において、ΔVOが大きくてもΔVOが小
さくて、平均変化率が大きく放電開始後高周波交流成分
が急激に低減するような場合は、1パルス放電の放電終
了に至るまで高周波交流成分の発生が持続しないことに
なり、したがつてこれによる加工量は極めて小さく、即
ち加工量、加工スピードは高周波の発生に比例増大する
傾向にあり、高周波成分が小さいか、早く消滅するよう
な放電は加工が小さいことにならるから、高周波交流成
分の振巾の平均変化率を検出することにより、放電状態
の良否を正確に判別できるものである。なお加工間隙に
おける放電は、加工パルスに限らず、加工パルスの放電
の前、または放電パルス列の中に検査用のパルスを加え
て放電を行ない、この放電を検出判別し、放電中の高周
波成分、または高周波成分を含む放電の電圧、電流等の
信号を検出し判別することができ、そのように回路構成
してもよい。
For example, in Figure 3, if ΔVO is large but ΔVO is small and the average rate of change is large and the high-frequency AC component decreases rapidly after the start of discharge, the high-frequency AC component will decrease until the end of one-pulse discharge. The generation does not continue, and therefore the amount of machining due to this is extremely small.In other words, the amount of machining and machining speed tend to increase in proportion to the generation of high frequency, and discharges where the high frequency component is small or disappears quickly are Since the machining is small, it is possible to accurately determine whether the discharge state is good or bad by detecting the average rate of change in the amplitude of the high frequency alternating current component. Note that the discharge in the machining gap is not limited to the machining pulse; discharge is performed before the discharge of the machining pulse or by adding an inspection pulse to the discharge pulse train, and this discharge is detected and determined, and the high-frequency components during the discharge, Alternatively, signals such as discharge voltage and current containing high frequency components can be detected and discriminated, and the circuit may be configured in such a manner.

また前記実施例回路図は信号のデジタルな検出、判別、
論理演算処理する例について説明したが、勿論アナログ
的な検出,判別であつてもよく、回路構成は任意に設計
することができる。
In addition, the circuit diagram of the above-mentioned embodiment is for digital detection and discrimination of signals.
Although an example in which logical operation processing is performed has been described, analog detection and discrimination may of course be used, and the circuit configuration can be arbitrarily designed.

そしてこのようにして放電に存在するもしくは含まれる
高周波交流成分の平均変化率を検出して判別することに
より放電状態の適確な正確な検出ができるが、この検出
判別にもとずく各部制御、プロセス制御も極めて正に行
なわれる。例えば検出判別した信号にもとずいて、加工
液の分子量の制御、例えばベース液に対して高分子量の
溶液添加制御,添加量の制御を行つてもよく、加工液の
噴流速度,流量制御,また電極の振動制御,振動数,振
巾制御,電極のレシプロ運動制御,サーボ制御等を行つ
ても最適に行なうことができる。
In this way, by detecting and determining the average rate of change of the high-frequency AC component present or included in the discharge, it is possible to accurately and accurately detect the discharge state. Process control is also very accurate. For example, based on the detected and determined signal, the molecular weight of the machining fluid may be controlled, for example, the addition of a high molecular weight solution to the base fluid and the amount of addition may be controlled, and the jet speed and flow rate of the machining fluid may be controlled. Optimal results can also be obtained by controlling the vibration of the electrode, controlling the frequency and width of the electrode, controlling the reciprocating motion of the electrode, and controlling the servo.

また加工パルスのパルス巾,休止巾,波高値等の単独,
組合せ制御をすることができ、”いずれの制御も加工状
態、放電状態の検出精度が高く、常に最適な制御が可能
である。
In addition, the pulse width, pause width, and peak value of the processing pulse, etc.
Combination control can be performed, and both types of control have high detection accuracy for machining status and discharge status, and optimal control is always possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は放電々圧波形、第2図は加工液分子量に対する
間隙電圧(放電々圧)のグラフ図、第3図は高周波成分
の時間的変化状態波形説明図、第4図は本発明の一実施
例回路構成図てある。 1は加工間隙、2は加工パルス電源、3は検出回路、4
はハイパスフィルタ、5は増巾器、6は放電起動検出回
路、7はT。
Fig. 1 is a graph of the discharge pressure waveform, Fig. 2 is a graph of the gap voltage (discharge pressure) against the molecular weight of the machining fluid, Fig. 3 is an explanatory diagram of the waveform of the high frequency component changing over time, and Fig. 4 is a diagram of the waveform of the present invention. A circuit configuration diagram of one embodiment is shown. 1 is a machining gap, 2 is a machining pulse power source, 3 is a detection circuit, 4
5 is an amplifier, 6 is a discharge start detection circuit, and 7 is a T.

Claims (1)

【特許請求の範囲】[Claims] 1 対向して配置される加工電極と被加工体間の加工間
隙でパルス放電を繰返すことによつて加工する放電加工
装置に於て、前記パルス放電中の放電電圧や放電電流に
含まれる高周波交流成分の放電起動後の設定された一時
期に於ける振幅を検出する回路と、前記一時期から前記
高周波交流成分の数サイクル以上の期間経過後の他の一
時期に於ける前記振巾を検出する回路と、前記両検出振
幅値の差を前記期間で割算することにより前記高周波交
流成分の振幅の前記期間に於ける平均変化率を求める回
路と、該平均変化率を設定された基準値と比較して放電
状態の良否を判別する回路とを設け、該判別結果に基づ
いて加工状態を表示もしくは制御するようにしたことを
特徴とする放電加工装置。
1. In an electric discharge machining device that performs machining by repeating pulse discharge in a machining gap between a machining electrode and a workpiece disposed facing each other, high-frequency alternating current contained in the discharge voltage and discharge current during the pulse discharge is used. a circuit that detects the amplitude at a set period after starting discharge of the component; and a circuit that detects the amplitude at another period after a period of several cycles or more of the high-frequency AC component has elapsed from the one period. , a circuit that calculates an average rate of change in the amplitude of the high frequency AC component during the period by dividing the difference between the two detected amplitude values by the period, and compares the average rate of change with a set reference value. What is claimed is: 1. An electric discharge machining apparatus characterized in that a circuit for determining whether a discharge state is good or bad is provided, and the machining state is displayed or controlled based on the determination result.
JP52015889A 1976-12-14 1977-02-16 Electric discharge machining equipment Expired JPS6057970B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP52015889A JPS6057970B2 (en) 1977-02-16 1977-02-16 Electric discharge machining equipment
US05/860,164 US4236057A (en) 1976-12-14 1977-12-13 Apparatus for detecting gap conditions in EDM processes with monitoring pulses
DE2755772A DE2755772C2 (en) 1976-12-14 1977-12-14 Method and device for controlling workpiece machining by means of electrical discharge machining
FR7737723A FR2374130A1 (en) 1976-12-14 1977-12-14 METHOD AND APPARATUS FOR DETECTING INTERVAL CONDITIONS OF MACHINING BY ELECTRIC SHOCK
IT5243577A IT1091758B (en) 1977-01-12 1977-12-30 Automatic control of electro-discharge machining - using both machining pulses and monitoring pulses with electronic logic circuit
US06/112,460 US4376880A (en) 1976-12-14 1980-01-16 Method of and apparatus for detecting gap conditions in EDM process with monitoring pulses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52015889A JPS6057970B2 (en) 1977-02-16 1977-02-16 Electric discharge machining equipment

Publications (2)

Publication Number Publication Date
JPS53101194A JPS53101194A (en) 1978-09-04
JPS6057970B2 true JPS6057970B2 (en) 1985-12-18

Family

ID=11901350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52015889A Expired JPS6057970B2 (en) 1976-12-14 1977-02-16 Electric discharge machining equipment

Country Status (1)

Country Link
JP (1) JPS6057970B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425770B2 (en) * 1987-03-03 1992-05-01 Misato Kk

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2858515B2 (en) * 1992-01-07 1999-02-17 三菱電機株式会社 Electric discharge machining method and apparatus
DE112012006730B4 (en) * 2012-07-25 2020-12-10 Mitsubishi Electric Corporation Wire EDM machining device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508194A (en) * 1973-05-28 1975-01-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508194A (en) * 1973-05-28 1975-01-28

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425770B2 (en) * 1987-03-03 1992-05-01 Misato Kk

Also Published As

Publication number Publication date
JPS53101194A (en) 1978-09-04

Similar Documents

Publication Publication Date Title
US4236057A (en) Apparatus for detecting gap conditions in EDM processes with monitoring pulses
EP2623245B1 (en) Method of wire electric discharge machining capable of detecting machining state and determining average voltage in machining gap and corresponding wire electric discharge machine.
JP5739563B2 (en) Wire electric discharge machine equipped with means for calculating average discharge delay time
US3997753A (en) Control system and method for electric discharge machining (EDM) using a predetermined portion of each discharge pulse for monitoring
JP4444303B2 (en) Discharge occurrence detection method and apparatus
JPS6057970B2 (en) Electric discharge machining equipment
US3662143A (en) Method and apparatus for detecting and controlling by relative movement between the tool and workpiece arcing conditions in an edm process
JPS5813297B2 (en) Electric discharge machining equipment
JPS6227930B2 (en)
JPS59205223A (en) Electric discharge machining device
JPS5937176B2 (en) Gap control device in electrical discharge machining
JPS5853975B2 (en) Electric discharge machining equipment
KR820002134B1 (en) Method of detecting gap conditions in edm process with monitoring pulses
JP3113305B2 (en) Electric discharge machine
JPS59205233A (en) Electric discharge machining device
JPS6036894B2 (en) Gap control device in electrical discharge machining
JPS5923938B2 (en) Electric discharge machining equipment
JP5349375B2 (en) EDM machine
JPS6034221A (en) Electric discharge machine
JPH071238A (en) Electric discharge machining method and device therefor
JPS59205234A (en) Electric discharge machining device
JPS6057972B2 (en) Electric discharge machining equipment
JPS5827054B2 (en) Electric discharge machining equipment
JPS5924918A (en) Electric discharge machine
JPS61111834A (en) Wire-cut electric discharge machinine