JPS6033878A - Submerged arc welding method of high-carbon steel - Google Patents

Submerged arc welding method of high-carbon steel

Info

Publication number
JPS6033878A
JPS6033878A JP14209883A JP14209883A JPS6033878A JP S6033878 A JPS6033878 A JP S6033878A JP 14209883 A JP14209883 A JP 14209883A JP 14209883 A JP14209883 A JP 14209883A JP S6033878 A JPS6033878 A JP S6033878A
Authority
JP
Japan
Prior art keywords
electrode current
welding
distance
electrodes
carbon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14209883A
Other languages
Japanese (ja)
Inventor
Isao Sugioka
杉岡 勲
Saneji Nishimura
西村 實治
Masao Kamata
政男 鎌田
Akitomo Sueda
明知 末田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14209883A priority Critical patent/JPS6033878A/en
Publication of JPS6033878A publication Critical patent/JPS6033878A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding

Abstract

PURPOSE:To prevent high-temp. cracking and to improve welding efficiency in submerged arc welding of a high-carbon steel by limiting the sum of and difference between preceding electrode current and succeeding electrode current as well as an inter-electrode distance and subjecting at least one side to single-layer build-up welding with two electrodes. CONSTITUTION:Welding of a high-carbon steel contg. 0.20-0.33W% C is accomplished by regulating the sum of preceding electrode current and succeeding electrode current to >=1,200A, the difference between the succeeding electrode current and preceding electrode current to 0-200A and an inter-electrode distance to 25-50mm., respectively. If the sum of both electrodes is <1,200, there is substantially no effect in terms of efficiency. High-temp. cracking arises when the preceding electrode current is higher than the succeeding electrode current. An undercut and consequent defective appearance arise when the succeeding electrode current has over 200A difference from the preceding electrode current. High-temp. cracking arises at <25mm. inter-electrode distance. The unstable arc and consequent defective bead appearance arise if said distance exceeds 50mm..

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高炭素鋼の2電桓サブマージアーク溶接方法に
係り、溶接金属の高温われを確実に防止することのでき
るサブマージアーク溶接方法を提供するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a two-electrome submerged arc welding method for high carbon steel, and provides a submerged arc welding method that can reliably prevent high-temperature cracking of weld metal. It is something to do.

JIS G3103あるいはASTMA515で規定さ
れる5B42.5B46.5B49. A315Gr6
0. A315Gr65゜A315Gr70 等の鋼材
においては鋼材の成分としてCを0.20〜0.33w
t%含有している。このように比較的Cを多く含む鋼材
の板継ぎあるいは造管においては溶着速度が大きく、高
速溶接が可能で高能率な溶接ができるサブマージアーク
溶接法が広く使用されている。
5B42.5B46.5B49 specified by JIS G3103 or ASTMA515. A315Gr6
0. For steel materials such as A315Gr65゜A315Gr70, C is added as a component of the steel by 0.20 to 0.33w.
Contains t%. In this way, submerged arc welding is widely used for plate joining or pipe making of steel materials containing a relatively large amount of C, as it has a high welding speed, enables high-speed welding, and can perform highly efficient welding.

しかし、このよう力高炭素鋼の両面1層もしくは少なく
とも片面を1綴糸で行うサブマージアーク溶接において
は溶接金属内に高温われが発生しやすいという問題があ
る。
However, in such submerged arc welding in which both sides of high-strength carbon steel are welded in one layer or at least one side with one stitch, there is a problem in that high-temperature cracks are likely to occur in the weld metal.

一般に軟鋼や50ギロ高張力鋼などの開先内の初層溶接
やスミ肉溶接では第1図に示すように高温われ3は溶接
金属2の中央部に発生する。これは溶接金属の凝固時に
発生したもので溶接金属中のC,Sが液相−固相線間の
凝固温度幅を増大させ、さらにFeSおよびFe5−F
e などの低融点物質が凝固の最終段階で粒界に偏析す
ること女どに起の大きいほど発生しやすいことは良く知
られている。
Generally, in initial layer welding or fillet welding in a groove of mild steel or 50 gyro high tensile strength steel, a high temperature crack 3 is generated in the center of the weld metal 2 as shown in FIG. This occurs when the weld metal solidifies, and C and S in the weld metal increase the solidus temperature range between the liquid phase and the solidus line, and FeS and Fe5-F
It is well known that low-melting-point substances such as E are more likely to segregate at grain boundaries in the final stage of solidification.

しかし前記高炭素鋼の1rrJ盛溶接の場合に発生する
高温わ瓦は第2図に示すように溶接金属2に発生するハ
の字又は7′の字型の形態の高温われ4であり軟鋼や5
0キロ高張力鋼力との開先内の初層溶接や隅肉溶接時に
発生する高温われとは異なったものでかつ1層盛溶接時
に発生しやすいものである。この高温われの原因も溶接
金属中のC2Sが主要因であると従来は考えられていた
。そしてその防止方法が次に述べる刊行物に記載されて
いる。
However, the high-temperature cracks that occur during 1rrJ welding of high carbon steel are high-temperature cracks 4 that are formed in the weld metal 2 in the form of a V or 7' shape, as shown in FIG. 5
This is different from the high-temperature cracks that occur during initial layer welding or fillet welding in a groove with 0 kg high tensile strength steel, and is more likely to occur during single-layer welding. It was previously thought that C2S in the weld metal was the main cause of this high temperature cracking. Methods for preventing this are described in the following publications.

壕ず、特開昭57−6449号公報および特開昭5’8
−77778号公報記載の発明はこの高温われを防止す
る方法として、ワイヤおよびフラックスのc、p、sを
下げることによシ溶接金属中のC2P、Sを低下させ、
またフラックスの塩基度を低くし溶接金属中の酸素含有
量を増すことにより非金属介在物を多くし低融点硫化物
を析出させないようにしている。さらには大電流MIG
 +2 SAW法により入熱を分割するなどして高温わ
れを防止する方法がある。
Moatzu, JP-A-57-6449 and JP-A-5'8
The invention described in Publication No. 77778 is a method for preventing this high-temperature cracking by lowering C2P and S in the weld metal by lowering c, p, and s of the wire and flux.
Furthermore, by lowering the basicity of the flux and increasing the oxygen content in the weld metal, nonmetallic inclusions are increased and low melting point sulfides are prevented from precipitating. Furthermore, large current MIG
+2 There are ways to prevent high temperature cracks by dividing the heat input using the SAW method.

[7かしこれらは溶接材料が限定されるとともに溶接金
属中の酸素含有量が多くなることから衝撃値はある程度
犠牲となっている。また大電流MHG+ 2SAW法で
は装誼自体が煩雑となるとともに可視アーク、ヒユーム
など作業璃境が悪くなる等の問題がある。
[7 However, these methods sacrifice the impact value to some extent because the welding materials are limited and the oxygen content in the weld metal increases. In addition, the high current MHG+2SAW method has problems such as the equipment itself being complicated and the working environment being poor due to visible arcs and fumes.

特開昭58−377号公報には開先ルート部に低炭素の
儒片ブロックをインサートしうもれアークとなる深溶込
み法で溶接し、溶接金属中のCを低くし高温われを防止
する方法が示されている。この方法では溶接前に開先ル
ート内への鋼片ブロックのインサート作業が加わり作業
工数の増加により能率面での問題がある。
JP-A No. 58-377 discloses a method of inserting a low-carbon block into the root of the groove and welding by a deep penetration method that creates a leaking arc to lower C in the weld metal and prevent high-temperature cracking. It is shown. This method has problems in terms of efficiency due to the addition of the work of inserting a steel slab block into the groove root before welding, which increases the number of work steps.

(発明が解決しようとする問題点) 本発明者らは、高炭素鋼の1層盛溶接において前記高温
われ発生のない溶接部が得られ、かつ高能率な溶接条件
について詳細に検討した。
(Problems to be Solved by the Invention) The present inventors have conducted detailed studies on welding conditions that can provide the above-mentioned welded portion without high-temperature cracking and that are highly efficient in single-layer welding of high carbon steel.

その結果、溶接金属中のC,S葉よりむしろビード横断
面形状が高温われ発生に大きく寄与していることが明ら
かとなった。
As a result, it became clear that the cross-sectional shape of the bead rather than the C and S leaves in the weld metal contributed significantly to the occurrence of high temperature cracking.

すなわち、第3図(A)Ic示すごとく鋼板表面aの下
4〜5w+のbより鋼板表面aに向って急に広がった場
合(Iソ下逆帽手型という)高温われが発生しやすく、
第3図の)および第3図(C)に示すごとく、V型また
はU型の形状の場合われにくいことが明らかとなった。
That is, as shown in Fig. 3 (A) Ic, if it suddenly spreads from b of 4 to 5w+ below the steel plate surface a toward the steel plate surface a (referred to as an inverted hat type), high-temperature cracks are likely to occur.
As shown in FIG. 3) and FIG. 3(C), it has become clear that V-shaped or U-shaped materials are less likely to break.

これは、第3図(A)の逆帽子型の場合〜鋼板表面aの
下4〜5 ran bよシ急に広がった部分より高温わ
れが発生するが、それはこの部分に応力が集中するため
である。第3図ω)および第3図C)のV型、U型の場
合われにくいのは応力が分散されるからである。とのビ
ード横断面形状に影響する溶接条件について検討の結果
先行電極電流と後行電極電流差および電極間距離が影響
することが判明した。つまり先行電極電流が後行電極電
流より高い場合逆帽子型となり、逆に先行電極電流が後
行電極電流と同一もしくは低く、かつ電極間距離を25
〜50mとした場合にV型または(発明の構成) 本発明はり上の知見に基づいてなされたものであってそ
の要旨とするところは、Cを0.20〜0.33wt9
6含有する鋼のサブマージアーク溶接において、先行電
極布、流と後行電極電流の和を1200At、l上、後
行電極′ぼ流と先行電極電流の差を0〜200A%電極
間距離を25〜50咽とし、少なくとも片面を2電極で
1層盛溶接することを特徴とする高炭素鋼のサブマージ
アーク溶接方法にある。
In the case of the inverted cap type shown in Figure 3 (A), high-temperature cracks occur from the part that suddenly spreads from 4 to 5 ran b below the steel plate surface a, and this is because stress is concentrated in this part. It is. The V-shape and U-shape shown in Fig. 3 ω) and Fig. 3 C) are difficult to break because stress is dispersed. As a result of examining the welding conditions that affect the cross-sectional shape of the bead, it was found that the difference between the leading and trailing electrode currents and the distance between the electrodes have an effect. In other words, if the leading electrode current is higher than the trailing electrode current, it will be an inverted cap shape, and conversely, if the leading electrode current is the same or lower than the trailing electrode current, and the distance between the electrodes is 25
-50m, V-type or (Structure of the Invention) The gist of the present invention, which was made based on the knowledge of the beam, is that C is 0.20-0.33wt9
In submerged arc welding of steel containing 6, the sum of the leading electrode current and the trailing electrode current is 1200 At, the difference between the trailing electrode current and the leading electrode current is 0 to 200 A%, and the distance between the electrodes is 25 A submerged arc welding method for high carbon steel, which is characterized by performing one-layer welding on at least one side with two electrodes.

後行電極電流と先行電極電流の差とは(後行電極電流)
−(先行1イ、極電流)を意味する。
What is the difference between trailing electrode current and leading electrode current (trailing electrode current)?
- (preceding 1a, polar current).

り下に本発明を詳述する。The present invention will be described in detail below.

捷ず先行電極電流と後行電極電流の和は1200八世上
である必要がある。1200A未満であると特に2電極
溶接を採用するだけの能率面での効果がほとんど寿く外
る。
The sum of the leading electrode current and the trailing electrode current must be 1,200 or more. If it is less than 1200A, the efficiency advantage of using two-electrode welding will be almost negligible.

次に後行電極電流と先行電極電流の差は0〜200Aで
ある必要がある。先行電極電流が後行電極電流より高く
なると逆帽子型のビード横断面形状となシ高温われが発
生する。また後行電極電流が先行電極電流より20OA
超の差になるとビード横断面形状はU型となり、高温わ
れは発生しないがアンダーカットが発生しビート°外観
が不良となる。
Next, the difference between the trailing electrode current and the leading electrode current must be between 0 and 200A. When the leading electrode current is higher than the trailing electrode current, high-temperature cracking occurs with an inverted cap-shaped bead cross-sectional shape. Also, the trailing electrode current is 20OA lower than the leading electrode current.
If the difference is too large, the cross-sectional shape of the bead becomes U-shaped, and although high temperature cracks do not occur, undercuts occur and the appearance of the bead becomes poor.

さらに雷伶間距離は25〜50咽である必要がある。2
5fi未満であるとビード横断面形状が逆帽子型となり
高温われが発生する。また50叫超になるとアークが不
安定となりビード外観が不良となる。ここでいう電極間
距離とは、先行電極と後行型、極ワイヤの被溶接物の溶
接線上においての先端中心間距離をいう。
Furthermore, the distance between the thunderbolts must be 25 to 50 degrees. 2
If it is less than 5fi, the cross-sectional shape of the bead becomes an inverted cap shape and high temperature cracking occurs. Moreover, if it exceeds 50 degrees, the arc becomes unstable and the bead appearance becomes poor. The inter-electrode distance herein refers to the distance between the centers of the tips of the leading electrode, trailing type, and pole wire on the welding line of the object to be welded.

また、当然のことながら両面を2電極で1綴糸溶接をす
れば溶接能率は非常に良い。しかし小径管の溶接の場合
、装置の関係上内面と2電極で溶接できない時や、極厚
鋼板の溶接で両面1綴糸溶接ができない場合がある。こ
れらの場合でも片面を2電極で1綴糸溶接をすることに
よシ溶接能率を向上させることができる。
Also, as a matter of course, welding efficiency is very high if one thread welding is performed on both sides with two electrodes. However, when welding small-diameter pipes, there are times when it is not possible to weld the inner surface with two electrodes due to equipment limitations, or when welding extra-thick steel plates, it may not be possible to perform single-thread welding on both sides. Even in these cases, welding efficiency can be improved by welding one thread on one side with two electrodes.

なお、溶接電圧および溶接速度もビード横断面形状に関
与するが、前記溶接電流差および電極間距離の範囲内で
はその影響はあまり大きくなく溶接電圧は通常使用され
ている28〜42Vの範囲で、溶接電流が低い場合は低
目の電圧で(例600A程度では31V±4V)、溶接
電流が高い場合は高目の電圧で(例、120OA程度で
は3gv±3v)、さらに後行電極電圧は先行電極電圧
より0〜7v高い方がビード外観がよい。しかしこれル
上高くなるとビード横断面形状に影響し高温われ性にも
影響するようになるので好ましくない。
Although welding voltage and welding speed also affect the cross-sectional shape of the bead, their influence is not so large within the range of the welding current difference and interelectrode distance, and the welding voltage is within the commonly used range of 28 to 42V. If the welding current is low, use a lower voltage (for example, 31V ± 4V for about 600A), if the welding current is high, use a higher voltage (for example, 3gv ± 3V for about 120OA), and the trailing electrode voltage is The bead appearance is better when the voltage is 0 to 7 V higher than the electrode voltage. However, if this level becomes too high, it will affect the cross-sectional shape of the bead and affect high-temperature brittleness, which is undesirable.

電源がDCの場合は前記ACでの電圧より3〜4v低目
が適正とがる。また、これらの電圧はフラックスの種類
によって適正筒、圧範囲が変わることがある。
If the power source is DC, the appropriate voltage is 3 to 4 volts lower than the AC voltage. Also, the appropriate cylinder and pressure range for these voltages may vary depending on the type of flux.

溶接速度については、開先形状と溶接w7流により変わ
るが能率および溶接作業性の点から35〜1501M/
min 程度が良い。
The welding speed varies depending on the groove shape and welding flow, but from the viewpoint of efficiency and welding workability, it is 35 to 1501M/
Min level is good.

また、ワイヤ成分としてはC0,12%以下、SIo、
551以下、Mn 1.25〜2.80 tlI%P 
O,020%以下、So、015%以下で、とくにC,
Sはできるだけ低いことが好it−い。しかしCがあま
り低い場合F!、衝撃値が低下するのでStまたはMn
は高い方が好ましい。
In addition, the wire components include C0.12% or less, SIo,
551 or less, Mn 1.25-2.80 tlI%P
O, 020% or less, So, 015% or less, especially C,
It is preferable that S be as low as possible. However, if C is too low, F! , St or Mn because the impact value decreases.
The higher the value, the better.

フラックスは高電流、高速溶接での作業性が良ければ溶
融型、焼成型などどのようなタイプでも良い。
Any type of flux, such as molten type or fired type, may be used as long as it has good workability in high current and high speed welding.

(実施例) j″J下に本発明の実施例について説明する。(Example) Embodiments of the present invention will be described below.

第1表に示す組成の板厚18■および25+mnの鋼板
を第4図に示すX開先で、鋼板記号Aの場合H:18n
ロフ軍 、θ : 70° 、hl:6van+h2 
二 6 tan 。
In the case of steel plates with the composition shown in Table 1 and thicknesses of 18mm and 25+mm, with the X groove shown in Figure 4, and steel plate symbol A, H: 18n.
Roff army, θ: 70°, hl:6van+h2
Two six tan.

h3 :6−とし、鋼板記号BおよびCの場合H:25
 mm *θニア0°、h+ : 11mm+ h2 
: fimm+h3:Rm+nとし、第2表に示す組成
のワイヤ径4.8間のワイヤと第3表に示すタイプの7
ラツクスとを種々組合せ、鋼板記号Aの場合BP側、’
FP側ともに2電極の同一条件で、鋼板記号BおよびC
の場合BP側の溶接条件は1電極溶接で溶接電流900
A、溶接電圧36v、溶接速度40 cm/mi nの
一中急〃L〒値く坊 1’T’ p 布iか 9 留浴
マ婉悼 1 番 −2電極溶接の場合に先行電極電流と
後行電極電流の和および差と電極間距離を種々変化させ
溶接終了後ビード外観、ビード横断面形状、高温ゎれの
有無について調べた。
h3: 6-, H: 25 for steel plate symbols B and C
mm *θ near 0°, h+: 11mm+ h2
: fimm+h3:Rm+n, and the wire diameter between 4.8 and the composition shown in Table 2 and the type 7 shown in Table 3.
In the case of steel plate symbol A, BP side, '
Under the same conditions with two electrodes on the FP side, steel plate symbols B and C
In this case, the welding conditions on the BP side are 1 electrode welding and a welding current of 900
A, Welding voltage 36V, Welding speed 40cm/min Ichichukyu〃L〒Hakubo 1'T' P Cloth i? The sum and difference of the trailing electrode currents and the distance between the electrodes were varied to examine the appearance of the bead after welding, the cross-sectional shape of the bead, and the presence or absence of high-temperature fluctuations.

その結果を第4表にまとめて示す。The results are summarized in Table 4.

なお、高温われの検査は側曲げ試験を各に10枚につい
て行なった。
In addition, for the inspection of high temperature cracks, a side bending test was performed on 10 sheets of each sheet.

本発明を満足する溶接条件で溶接した試験例】。Test example in which welding was performed under welding conditions that satisfy the present invention].

2.3.4,5.Fiおよび試験例7はビード外観が良
好で、ビード横断面形状もV型またはU型となり側曲げ
試験片に高温われもみられなかった。
2.3.4,5. In Fi and Test Example 7, the bead appearance was good, the bead cross-sectional shape was V-shaped or U-shaped, and no high temperature cracks were observed in the side bend test pieces.

また鋼板組成、ワイヤ組成およびフラックスタイプによ
る差もみられなかった。
Furthermore, no differences were observed depending on the steel sheet composition, wire composition, or flux type.

比較例中、試験例8け先行電極電流が後行電極電流よp
高いためビード横断面形状が逆帽子型となシ側曲げ試験
片に高温われが発生した。
Among the comparative examples, in Test Example 8, the leading electrode current was higher than the trailing electrode current.
Because of the high temperature, the cross-sectional shape of the bead had an inverted cap shape, and high-temperature cracking occurred in the side bend test piece.

試験例9は後行電極電流が高すぎるためアンダーカット
が発生しビード外観が不良となった。
In Test Example 9, the trailing electrode current was too high, so undercutting occurred and the bead appearance was poor.

試験例10は電流差および電極間距離は本発明を満足j
−でおりビード外卸売よ?、ビー?堆断面形状もV型で
側曲げ試験片にも高温われはなかったが、先行電極電流
と後行電極電流の和が低いため溶接速度が遅くなシ溶接
能率が非常に悪い。
In Test Example 10, the current difference and the distance between the electrodes satisfied the present invention.
- Is it wholesale outside the bead? , Bee? Although the cross-sectional shape of the pile was V-shaped and there was no high temperature in the side-bending test piece, the welding speed was slow due to the low sum of the leading electrode current and the trailing electrode current, resulting in very poor welding efficiency.

試験例11は電極間距離が短いためビード横断面形状が
逆帽子型となシ側曲げ試験片に高温われが発生した。
In Test Example 11, the distance between the electrodes was short, so the cross-sectional shape of the bead had an inverted cap shape, and high-temperature cracking occurred in the side bend test piece.

試験例12は電極間距離が長いためアークが不安定とな
シビード外観が不良となった。
In Test Example 12, the distance between the electrodes was long, so the arc was unstable and the appearance of the sheave was poor.

試験例13は先行電極電流が後行電極電流より高いのと
電極間距離が短いためビード横断面形状が逆帽子型とな
り側曲げ試験片に高温われが発生した。
In Test Example 13, because the leading electrode current was higher than the trailing electrode current and the distance between the electrodes was short, the cross-sectional shape of the bead became an inverted cap shape, and high-temperature cracking occurred in the side bend test piece.

試験例14は先行電極電流が後行電極電流より高く、電
極間距離が長いため、アークが不安定となりビード外観
が不良で、ビード横断面形状が逆帽子型となり側曲げ試
験片に高温われも発生した。
In Test Example 14, because the leading electrode current was higher than the trailing electrode current and the distance between the electrodes was long, the arc became unstable, the bead appearance was poor, the cross-sectional shape of the bead became an inverted cap shape, and the side bending test piece was exposed to high temperatures. Occurred.

試験例15は後行電極電流が高すぎるのと電極間距離が
長すぎるためアークが不安定となりアンダーカットが発
生しビード外観が不良であった。
In Test Example 15, because the trailing electrode current was too high and the distance between the electrodes was too long, the arc became unstable, undercutting occurred, and the bead appearance was poor.

々お、本発明を満足する試験例3,4,5.6および試
験例7について、FP側表面より7柵下を中心としてJ
IS4号シャルピー試験片を採取し試験温度0℃セ試験
した結果6〜12に9I−mの衝撃値が得られた。
Regarding Test Examples 3, 4, 5.6 and Test Example 7, which satisfy the present invention, J
An IS No. 4 Charpy test piece was taken and tested at a test temperature of 0° C. As a result, an impact value of 6 to 12 and 9 I-m was obtained.

第2表 ワイヤの化学成分(wt%) (発明の効果) 均上の実施例にも示されているように、高炭素鋼の1綴
糸サブマージアーク溶接において本発明法は、高能率で
かつ高温われ発生のない健全な溶接部が得られるもので
あり、本発明の工業的価値は極めて高いものである。
Table 2 Chemical composition of wire (wt%) (Effect of the invention) As shown in the example above, the method of the present invention is highly efficient and effective in single thread submerged arc welding of high carbon steel. A sound welded joint without high-temperature cracking can be obtained, and the industrial value of the present invention is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は軟鋼および50キロ高張力鋼などの開先内の初
層溶接部に発生する高温われの形態を示す図、第2図は
高炭素鋼の1綴糸溶接時に発生する高温われの形態を示
す図、第3図は先行電流と後行電流の差および極間距離
を変化させたときのビード横断面形状を示す図、第4図
は本発明の実施例における鋼板の開先形状を示す図であ
る。 記号の説明 】:母材、2:溶接金属、3:高温われ、4;高温われ
、IL=鋼板表面、baaの4〜5浦下の位置、H:板
厚、h@*h*:開先深さ、h2 :ルートフェイス、
θ:開先角度。
Figure 1 shows the form of high-temperature cracks that occur at the first layer weld in a groove of mild steel and 50kg high-strength steel, and Figure 2 shows the form of high-temperature cracks that occur during single-thread welding of high-carbon steel. Figure 3 is a diagram showing the bead cross-sectional shape when changing the difference between the leading current and trailing current and the distance between poles, and Figure 4 is the groove shape of the steel plate in an example of the present invention. FIG. Explanation of symbols]: Base metal, 2: Weld metal, 3: High temperature welding, 4: High temperature welding, IL = steel plate surface, position 4 to 5 below baa, H: plate thickness, h@*h*: open Tip depth, h2: root face,
θ: Groove angle.

Claims (1)

【特許請求の範囲】[Claims] Cを0.20〜0.33 wtチ含有する鋼のサブマー
ジアーク溶接において、先行電極電流と後行電極′電流
の和を1200A以上、後行電極電流と先行電極電流の
差をO〜20OA、電極間距離を25〜50關とし、少
なくとも片面を2電極で1綴糸溶接することを特徴とす
る高炭素鋼のサブマージアーク溶接方法。
In submerged arc welding of steel containing 0.20 to 0.33 wt C, the sum of the leading electrode current and the trailing electrode' current is 1200 A or more, the difference between the trailing electrode current and the leading electrode current is 0 to 20 OA, A submerged arc welding method for high carbon steel, characterized in that the distance between the electrodes is 25 to 50 degrees, and at least one side is welded with two electrodes in one thread.
JP14209883A 1983-08-03 1983-08-03 Submerged arc welding method of high-carbon steel Pending JPS6033878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14209883A JPS6033878A (en) 1983-08-03 1983-08-03 Submerged arc welding method of high-carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14209883A JPS6033878A (en) 1983-08-03 1983-08-03 Submerged arc welding method of high-carbon steel

Publications (1)

Publication Number Publication Date
JPS6033878A true JPS6033878A (en) 1985-02-21

Family

ID=15307379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14209883A Pending JPS6033878A (en) 1983-08-03 1983-08-03 Submerged arc welding method of high-carbon steel

Country Status (1)

Country Link
JP (1) JPS6033878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130140280A1 (en) * 2010-08-17 2013-06-06 Laurent Biskup Arc welding device and process using a mig/mag torch combined with a tig torch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130140280A1 (en) * 2010-08-17 2013-06-06 Laurent Biskup Arc welding device and process using a mig/mag torch combined with a tig torch

Similar Documents

Publication Publication Date Title
WO2010098499A1 (en) Complex method of welding incombination of gas-shield ark welding with submerged ark welding
JP2007216276A (en) Method for welding iron based material and aluminum based material, and welded joint
JP6927304B2 (en) Gas shield arc welding method for steel sheets
WO2017221865A1 (en) Gas-shielded arc welding method and method for manufacturing welded structure
JPH11138266A (en) Tandem submaerged arc welding method
US2475357A (en) Argon-gas-blanketed alternating electric current arc welding aluminum and the alloysthereof with a tungsten electrode and superimposed high-frequency high-voltage electric current
JP4385028B2 (en) MIG brazing welding method
JP6119948B1 (en) Vertical narrow groove gas shielded arc welding method
JP6383319B2 (en) Multi-electrode single-sided single layer submerged arc welding method
JPS6033878A (en) Submerged arc welding method of high-carbon steel
JP2711130B2 (en) Gas shielded arc welding wire
JP7126080B1 (en) Gas-shielded arc welding method, welded joint, and method for manufacturing the welded joint
JP2014133237A (en) Solid wire for gas shield arc welding of thin steel sheet
JP2857329B2 (en) Gas shielded arc welding method
Das et al. Experience with advanced welding techniques (RMD & P-GMAW) with seamless metal cored wire for Oil & Gas pipeline industries
JP3596723B2 (en) Two-electrode vertical electrogas arc welding method
JP3210609U (en) Consumable electrode for special coated metal
JP4319713B2 (en) Multi-electrode gas shield arc single-sided welding method
JPH0724576A (en) Gas shielded metal welding method
JP4707949B2 (en) Multi-electrode single-sided submerged arc welding method
JPH10296483A (en) Method for welding aluminum alloy material and filler metal for welding aluminum alloy material
JP2005319507A (en) Multiple electrodes one side submerged arc welding method
JPWO2018155508A1 (en) MIG brazing method, method of manufacturing lap joint member, and lap joint member
KR20190118897A (en) Tandem gas shielded arc welding wire
JP2892575B2 (en) Non-consumable nozzle type electroslag welding wire and welding method